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Abstract WiFi fingerprinting is the method of recording WiFi signal strength from access points

(AP) along with the positions at which they were recorded, and later matching those to new mea-

surements for indoor positioning. Inertial positioning utilizes the accelerometer and gyroscopes for

pedestrian positioning. However, both methods have their limitations, such as the WiFi fluctuations

and the accumulative error of inertial sensors. Usually, the filtering method is used for integrating

the two approaches to achieve better location accuracy. In the real environments, especially in the

indoor field, the APs could be sparse and short range. To overcome the limitations, a novel particle

filter approach based on Rao Blackwellized particle filter (RBPF) is presented in this paper. The

indoor environment is divided into several local maps, which are assumed to be independent of each

other. The local areas are estimated by the local particle filter, whereas the global areas are com-

bined by the global particle filter. The algorithm has been investigated by real field trials using a

WiFi tablet on hand with an inertial sensor on foot. It could be concluded that the proposed

method reduces the complexity of the positioning algorithm obviously, as well as offers a significant

improvement in position accuracy compared to other conventional algorithms, allowing indoor

positioning error below 1.2 m.
Crown Copyright � 2015 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-

ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Global navigation satellite system (GNSS) could provide accu-
rate positioning in the outdoor environment.1 However, the

limitation of signal propagation makes this technology difficult
for indoor positioning. Therefore, various systems offering
high performance for indoor localization have been proposed.
Due to the popularity and wide spread inside building, WiFi

positioning was recently introduced as a potential alternative
to GNSS in satellite signal denied areas.

In WiFi networks, the principal source of information is the

received signal strength (RSS). WiFi positioning requires the
use of a propagation model which describes the change in
RSS with distance. The log fading model is widely used for this
purpose. Recently, for indoor positioning, the prevalent

technique is WiFi fingerprinting, which requires the database
creation of RSS values from each access point (AP).2 When
positioning, user’s device records its own value of RSS and
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matches it against the pre-recorded database. Location is then
calculated based on good matches between new and stored val-
ues. The accuracy depends on the number of positions regis-

tered in the database. Besides, signal fluctuations over time
could induce errors and discontinuities in the user’s trajectory.
In Ref.3, an energy efficient WiFi indoor positioning algorithm

is proposed, using the probabilistic fingerprinting method, to
eliminate the fluctuations. Hybrid positioning systems were
employed to enhance the performance of WiFi indoor

positioning in Ref.4. Furthermore, the collaborative RSS
fingerprinting system was utilized to overcome the cost and
time-consuming problem of WiFi RSS positioning in Ref.5.

To minimize the fluctuation of RSS, other methods such

as the low-cost inertial sensors have been used. Due to their
complementary advantages, fusing both systems could
increase the positioning accuracy.6 Pedestrian step is

detected by the inertial sensors and the estimated walking
direction and step length are fed into the particle filter as
a motion model to predict the new particles. The weight

of the particle is updated by computing the distance between
the particle and the WiFi localization result.7 Ref.8 presents
a sequential importance resampling particle filter to fuse the

accelerometer and WiFi signals. Also, an augmented particle
filter is proposed to simultaneously estimate location, step
length and user heading. The user heading could be
estimated by the inertial sensor, then updated by the user’s

trajectory in the measurement model of the augmented
particle filter.9 Inspired by our previous study on inertial
positioning, the pedestrian heading could be obtained by

the principle heading of building on map.10

Theoretically, for indoor positioning, Particle filter (PF)
can be employed for any state model, but the major disadvan-

tage of PF is that sampling in high dimensional states can be
inefficient.11–13 For large area mapping, some approaches
divide the whole environment into several sub-areas which

are estimated independently, and then these local maps are
joined through a global optimization algorithms.14,15

This paper proposes a novel particle filter approach for
indoor positioning by fusing WiFi and inertial sensors. The

measurement model is developed using WiFi fingerprinting,
which accurately characterizes the RSS relation and could
measure the related noise. For the state model, the heading
Fig. 1 Architecture of the p
information and the step length could be computed by fusing
the accelerometer and gyroscopes. In the proposed algorithm,
local areas are estimated independently by a local filter, and

then the trajectory of the local map origin is estimated by a
global filter. So the implementation of proposed Rao Black-
wellized particle filter (RBPF) for indoor positioning could

not only induce the complexity reduction, but also offer better
accuracy compared to other conventional algorithms.

The remaining sections of this paper are organized as fol-

lows: Section 2 presents the basic techniques of pedestrian iner-
tial sensor. The WiFi-based measurement method is described
in Sections 3 and 4 demonstrates the proposed RBPF algo-
rithm. Section 5 gives the trial setup and preliminary results.

Finally, the conclusion is drawn in Section 6.

2. Pedestrian inertial sensor method

Fig. 1 presents the architecture of the proposed fusion
approach. The proposed method takes the WiFi RSS sensors
and inertial sensors as input and outputs the user’s location

upon each step.
The algorithm includes three major components: inertial

sensors, WiFi RSS and the RBPF. Inertial segment computes

the steps of the user and the length of each step. It also calcu-
lates the heading information aided by building layout, as
illustrated in our previous study.10 The pedestrian motion vec-

tor, [length, direction, time], would pass to RBPF as the state
model.

WiFi RSS records values periodically from all Aps as a RSS
vector of [rss1, rss2, rss3, . . ., time]. WiFi fluctuations could

cause notable variety in RSS vectors. The behavior of user
turning and entering room could mislead the inertial sensor,
due to the insufficient scanning of low-cost inertial sensor.

So the algorithm contains the turn distinguishing and entrance
discovering, as illustrated in Section 3.

PF method redistributes each particle according to the

pedestrian state at the particle propagation phase. At the
correcting phase, the algorithm corrects the weight of each
particle according to the map and calculates the center of

the particles. Finally, in the resampling phase, the new center
of weighted particles is output as the current estimated
position.
roposed fusion approach.
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2.1. Zero velocity update

Zero velocity update (ZUPT) is one of the main improve-
ments available for pedestrian navigation and it is based on
the physical property. During walking, the foot has to be

briefly stationary while it is on the ground and at this time
the foot does not have any velocity.16 Therefore, the non-
zero velocity measurement from the inertial sensors during
this period is considered as an error and can be subsequently

corrected. Furthermore if this zero velocity measurement is
used in Kalman filter, as adopted in this paper, it could not
only correct the user’s velocity, but also restrict the position

error. ZUPT is applied during each detected stance phase of
the walking, so the inertial errors are allowed to grow only
between these ZUPTs. Fig. 2 shows an example of detected

ZUPT during a walk and reveals that the algorithm is quite
reliable.

However, there remains the unobservable heading error

that could cause the position drift. Because the heading of
the inertial sensor does not affect the velocity, ZUPT measure-
ments are unable to restrict the error. The relationship between
velocity errors and attitude errors in local level frame is shown

in Eqs. (1)–(3):

_dVN
¼ �fDeh þ fEeu ð1Þ
_dVE
¼ fDe/ � fNeu ð2Þ
_dVD
¼ �fEe/ þ fNeh ð3Þ

where f is the force in the local frame and e/, eh, eu are the

roll, pitch and yaw errors respectively. During ZUPT, the
horizontal forces fE and fN in the local frame are basically
zero and specific force fD in the downward direction is
approximately close to the negative gravity constant. There-

fore, the above equations show that e/ and eh could result

in the velocity errors _dVN
; _dVE

and _dVD
, so e/ and eh are always

observable. However, the yaw error eu is only observable by
_dVE

and _dVN
; In order to observe eu, the horizontal accelera-

tion should not be zero, which is impossible when using

ZUPT. Therefore, the error eu becomes the crucial factor of

heading drift.17
Fig. 2 ZUPT detection results.
2.2. Building aiding measurements

Building aiding measurements are obtained by extracting the
principle heading of individual building on a map. After that,
the heading measurements will update the filter. This

algorithm will be shown as follows, to significantly reduce
the heading drift of the low-cost INS and make the initializa-
tion efficient.

The algorithm is based on two important assumptions.

Firstly, it is assumed that the pedestrians tend to be
constrained to a heading direction, which lies parallel to be
the outside of the building.18 Secondly, it is assumed that the

difference between the step and the outer orientation of the
building is the result of heading drift plus some uncertainty
resulting from the pedestrian not walking in a straight line.19

Due to the acceleration, the heading error is observable
through the position difference, as heading is used to deter-
mine the orientation of the accelerometer axes. This algorithm

will be entirely based on a simple illustration drawn in Fig. 3.
Step length d is computed based on the changes in horizon-

tal position (north and east):

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2N þ d2E

q
ð4Þ

The algorithm continues by making computation of a step
heading ustep:

ustep ¼ arctan
dE
dN

ð5Þ

The step heading is defined as the angle between two successive
steps and it is calculated at each ZUPT epoch. ustep is the mea-

sured step heading; dE and dN are the changes in east and
north.20

The measurement update is applied by forming the obser-

vation equation as follows:

uerror ¼ ubuilding � ustep ð6Þ

where uerror is the INS heading error, and ubuilding the current

building orientation.

uerror ¼
@u
@e/

;
@u
@eh

;
@u
@eu

� �
e/; eh; eu
� �T þ nk ð7Þ

where nk is the measurement noise at kth epoch, and it
represents the uncertainties when a pedestrian does not walk

in straight lines with respect to building orientations.
Fig. 3 Sample of heading algorithm.
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3. WiFi measurement

Inertial sensors could obtain relative displacement with high
accuracy in a short period. However, it suffers from accumula-

tive drift errors during walking. WiFi-based positioning system
could provide the absolute location estimation, while it sus-
tains the loss of accuracy when significant RSS fluctuations

happen. By fusing the two methods, it would exploit their com-
plementary advantages.21
Fig. 4 Measurement of
Fingerprinting method consists of some signal power foot-
prints or signatures that define the position in the environ-
ment. This signature is made of the received signal powers

from different APs that cover the environment. WiFi finger-
printing method requires much more preparation time, how-
ever potentially gives more accurate positioning results.22

Also, even the AP redeployment in the same room could make
the fingerprint database different. Fig. 4 presents the measure-
ments recorded in RSS vectors during pedestrian walking from

A to B. It shows that the closer a pedestrian walks to the AP,
RSS while walking.
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the higher RSS values are obtained. Also, there exist some fluc-
tuations in RSS values, which would be elaborated as follows.

3.1. Turn distinguishing

The WiFi method suffers from the fluctuation of RSS, mainly
due to the instable channel and human behavior. The fluctua-

tions could induce the algorithm to continuously choose a dif-
ferent position for the user even not moving or turning. So
reducing the unexpected jumps is necessary to improve the

rough positioning.
When the pedestrian walks, unconscious human behavior,

such as hand trembling, would mislead the WiFi sensors.23 If

such wrong estimation is not corrected, huge position errors
would appear when two methods fused.

Turn distinguishing algorithm is proposed to eliminate the
effect. When examining RSS vectors from each AP between

continuous steps, we choose the highest RSS values from the
unique AP. Then we use the chosen vector direction to confirm
whether the turn behavior occurs. If the angle of two consecu-

tive RSS vectors is higher than a threshold defined before, the
turn behavior would be affirmed. Otherwise, the heading direc-
tion would be replaced by previous step, as no turn exists in

motion. The algorithm is illustrated as follows.

3.2. Room discovering

Input: tc; tp1; tp2 // tc; tp1; tp2: current and last two epochs
Vc;Vp //Vc;Vp: current and last vector

Output: Current heading direction

/ ¼ arccosðVc;VpÞ=ðjVcj:jVpjÞ
If / 2 ðp=4; 3p=4Þ then

return Current heading direction = Vc

else

return Current heading direction = Vp

End if

When a pedestrian enters a room, we could find a clear ten-
dency in the change of RSS vectors and the particles should

follow the motion. However, in real environments, the number
of particles is limited to typically 300, thus the distribution is of
radius 1 m, only covers half of the corridor. Therefore, there

could exist the situation that when people enter a room
through the door, particles keep dying with the position
estimated against the wall, as shown in Fig. 5(a) and (b). To
Fig. 5 Room
alleviate that dilemma, the RSS vectors are utilized. If the
RSS values keep changing, the pedestrian should not be static
and move into the room. Then the algorithm queries the map

to locate the nearest door between the founded AP and current
position. The particle would be resampled with the weight 1,
while all other particles would be deleted. Thus pedestrian

motion estimated should be accurate after the resampling
phase, as shown in Fig. 5(c).

4. RBPF algorithm

PF algorithm receives the motion vector [length, direction,
time] from inertial sensors, and fuses with the WiFi RSS vector

[rss1, rss2, rss3, . . ., time], then outputs localization result. The
particles are initialized as follows:

Pt ¼ hpit;wi
ti

� �
; i ¼ 1; 2; . . . ;N ð8Þ

pit ¼ xi
t; y

i
t; h

i
t

	 
 ð9Þ
where pit is the estimated position with weight wi

t of i particle at

epoch t, N is the whole numbers of the particles, while hit
denotes the heading information.

As the WiFi sensor could be sparse and short in range, the

whole region is divided into several local areas as shown in
Fig. 6.

The global map is divided into 4 local maps according to
the pedestrian trajectory. The local map and global map are

hierarchically estimated by RBPF. The algorithm is based on
three assumptions as follows24:

(1) The local maps are independent of each other.
(2) The global estimates are independent of raw data which

is used for local maps.

(3) Indoor environments mainly consist of orthogonal line.

The third assumption is the same as the requirements of the

building aiding measurements used in Section 2.2. Thus, we
could define the map as follows:

m ¼ M;m1:s
� � ð10Þ

where M and m1:s represent global and local maps; s indicates
the number of local maps.

The whole process of RBPF algorithm is shown in Fig. 7.
Firstly, pedestrian walks in a local area, while processing by

the local RBPF. Secondly, after closing loop for the local
discovering.
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region, the local particles are merged into a single map and
used in the global RBPF for measurement update. Thirdly,
pedestrian walks into another local area and the localization

particles are used as the sample distribution for updating the
distribution in global RBPF. The whole process would iterate
until the global map closure detected.

4.1. Local RBPF

Local RBPF is processed in the margin of local area. The par-

ticle pit is generated through three steps as follows:

4.1.1. Particle propagation

The new location and heading of the i particle at step t are

hit ¼ ut þ e ð11Þ

xi
t ¼ xi

t�1 þ lt þ dð Þ cos ht ð12Þ

yit ¼ yit�1 þ ðlt þ dÞ sin ht ð13Þ
where ut is the step direction, and lt denotes the stride length; d
and e are zero-Gaussian noises for stride length and heading

respectively.
4.1.2. Particle correction

This step is to correct the weights of propagated particles. Due
to the boundary of local map, if the particle moves across the
wall, the weight would be given to zero. The weights are

updated as

wi
t ¼

wi
t�1P

i2Pt
wi

t�1

ð14Þ

Correction process will interact with WiFi component

under particular conditions, such as the turn distinguishing
and room discovering.
4.1.3. Resampling

The step is to delete the particles with weight 0 and regenerate
new ones for the surviving particles. The weighted center of all

particles would be computed again and the current estimated
position is output.
4.2. Global RBPF

Global RBPF estimates the global area using the trajectory of
local map. Every particle contains the unique global map esti-

mation; however, it would increase the computation. So we
alleviate the burden with all particles sharing local maps and
the corresponding vectors. Thus the particles would include

trajectories and weights only:

Pi
s ¼ fhni1:s;wi

sig ð15Þ

Ms ¼ fhm1:s;V1:sig ð16Þ
where ni1:s the trajectory of local map, wi

s the particle weight

and V the vector in local map m.
Then we could process the global RBPF as follows.

Input: pit // p
i
t: local particle

Pi
s�1 // Pi

s�1 : previous global particle

Output: Pi
s // P

i
s: current global particle

For i ¼ 1; 2; . . . ;N

nis ¼ nis�1 � ni

End for

return Pi
s ¼ fhni1:s;wi

sig

Firstly, the probability distribution in the local map is input

as the localization particle pit; secondly, it combines them to

generate new trajectory nis; finally, the algorithm outputs the

global particle Pi
s.

25

5. Field trial

5.1. Equipmental setup

The experiments were conducted to test the proposed
approach. The pedestrian carried a foot mounted Microstrian

inertial sensor, with Samsung Galaxy tablet on hand, as shown
in Fig. 8. The low cost inertial sensor could induce errors that
may result in a large position drift. The sampling frequency of

inertial sensor was set at 50 Hz, while the sampling frequency
of WiFi sensor was 5 Hz.

The trials were carried out in an indoor office area covering
362.6 m2, as shown in Fig. 6. There are four APs available and

30 reference points to be deployed. The distance between
neighbor reference points is 1.2 m. During offline step, 8 train-
ing samples were collected per reference point to build the fin-

gerprint database.
To show the convincing results, 6 pedestrian users were

chosen to collect the data of 100 trajectories. The pedestrian

moved at a regular walking speed of about 1 m/s, and the tra-
jectory was designed, as shown in Fig. 6, including turn behav-
ior and entering the room with AP3.

5.2. Performance of the proposed fusion method

To confirm the validity of the proposed fusion approach, posi-
tioning results with inertial senor and WiFi sensor separately

are presented for comparison, as shown in Fig. 9(a). Results
with the proposed method and the truth path are shown in
Fig. 9(b).

In Fig. 9(a), the black dotted line indicates the path esti-
mated with inertial sensor, while the red dotted line indicates
the path estimated with WiFi sensor. There exist critical errors

for the inertial sensor. The true trajectory is that the pedestrian
entered the room with AP3, through the door, turned back-
wards and walked out. However, the black path computed
by the inertial method, pass the wall into the room. Whereas

the red path estimated by the WiFi method, presents accuracy
results when entering the room. It is mainly because of the
algorithm proposed in Sections 3.1 and 3.2.

Though WiFi localization obtains inaccurate tracking
results along the whole path, it could provide useful informa-
tion, especially along the orthogonal path (Fig. 9(a)). However

we find that the WiFi method provides bad results severely,



Fig. 6 Local areas and global areas.

Fig. 7 Flowchart of the proposed RBPF algorithm.

Fig. 8 Positioning equipment setup.

Table 1 Position errors.

Position method Mean error lðmÞ Standard deviation rðmÞ
Proposed fusion 1.2 0.7

Inertial sensor 2.1 1.6

WiFi sensor 2.8 2.1
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when pedestrian walked in the corner. The estimated location
is unacceptably far from the truth.

Clearly, the proposed fusion performs best and provides the

estimated trajectories matching the ground truth closest. Turn
distinguishing is invoked in the corner, where the highest RSS
values from the corresponding AP are found. Then we calcu-
late the vector direction to confirm whether the turn behavior

occurs.
After finding that the estimated position against the wall

lasts for several epochs, we check whether RSS values keep

changing. The room discovering algorithm begins, and it finds
the nearest door between AP3 and current position. Then the
algorithm corrects the path estimated by resampling the parti-

cle. From Fig. 9, it could be indicated that the estimated posi-
tion reaches the end point B only 0.8 m away from the truth
path.

We compare the positioning accuracy among various

approaches. As shown in Table 1, compared with inertial
sensor and WiFi sensor, the proposed approach performs
much better, while it could achieve mean position error by
1.2 m and standard deviation by 0.7 m. The corresponding

cumulative error distributions are also shown in Fig. 10. From
the figure, we could find that nearly 70% of the error distance
is below 1 m, which could achieve the need of indoor position-
ing accuracy.

5.3. Computation burden

Positioning accuracy could be promoted by increasing particle

numbers; however, the computation and storage cost of PF is



Fig. 9 Trajectory estimated.
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proportional to the numbers. Due to the heavy computation
burden, large particle-based approach should be run on a ser-

ver and is unsuitable for real-time applications. Actually, there
is a tradeoff between position accuracy and computation
burden.

This paper utilizes the local RBPF and global RBPF algo-

rithm to reduce the cost. According to the indoor area, the size
of each local area was set to 2.5 m � 3 m. For the local RBPF,
only 100 particles were used and reused each time when

entering new local area. The particles for global RBPF need
relatively little cost because they do not possess their own
areas, therefore 300 particles are used for the global RBPF.

Thus, after the local RBPF, we approximate the particles as

Fig. 10 Accuracy comparison using different methods.



Fig. 11 Accuracy comparison with different numbers.
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a Gaussian distribution, and sample 200 more particles to gen-
erate the 300 particles.

We compare the positioning accuracy between the pro-

posed RBPF algorithm and the previous PF algorithm.
Fig. 11 shows the cumulative error distributions using different
particle numbers. We can find that the accuracy degrades

severely when using PF algorithm with 300 particles, and only
47% of the error distance is below 1 m. If we enlarge the par-
ticle numbers, then the accuracy would increase. Thus, when

the particle number is 500, the performance of PF algorithm
would achieve comparable accuracy of the proposed RBPF.
So it is more suitable for real-time indoor position by the pro-

posed RBPF algorithm.

6. Conclusion

In this paper, a novel fusion algorithm for indoor positioning
is proposed. The filter method is exploited to integrate inertial
sensor, WiFi sensor and the map information. Also, local
RBPF and global RBPF are introduced into the fusion algo-

rithm. By dividing the indoor environments into several local
areas, without computing the global areas, the computation
could reduce greatly.

Preliminary trial results show that the proposed RBPF
algorithm could achieve the positioning accuracy of 1.2 m
and it meets the need of indoor positioning. Also, the calcula-

tion burden is nearly half of the conventional PF methods.
There remain some problems that should be addressed for

practical use. We need to expand the proposed approach to

the situation with non-orthogonal environments. Thus, these
considerations would be developed in the future work.
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