
Bone 87 (2016) 147–158

Contents lists available at ScienceDirect

Bone

j ourna l homepage: www.e lsev ie r .com/ locate /bone

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Review Article
Characterisation of matrix vesicles in skeletal and soft
tissue mineralisation
L. Cui ⁎, D.A. Houston, C. Farquharson, V.E. MacRae
The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK
Abbreviations:AB, Apoptotic body; ADP, Adenosine di
netic protein; CK, Choline kinase; CKD, Chronic kidney di
terminal kinase; LPS, Lysophosphatidylserine; MEPE, Mat
pyrophosphatase; nSMase2, Neutral sphingomyelinase 2;
scription factor; PPi, Pyrophosphate; PS, Phosphatidylserin
acid; Runx2, Runt-related transcription factor 2; SIBLING,
nonspecific alkaline phosphatase; VDAC1, Voltage-depend
⁎ Corresponding author.

E-mail address: Cui.Lin@roslin.ed.ac.uk (L. Cui).

http://dx.doi.org/10.1016/j.bone.2016.04.007
8756-3282/© 2016 The Authors. Published by Elsevier Inc
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 9 October 2015
Revised 25 March 2016
Accepted 6 April 2016
Available online 9 April 2016
The importance of matrix vesicles (MVs) has been repeatedly highlighted in the formation of cartilage, bone, and
dentin since their discovery in 1967. These nano-vesicular structures, which are found in the extracellular matrix,
are believed to be one of the sites of mineral nucleation that occurs in the organic matrix of the skeletal tissues. In
themore recent years, there have been numerous reports on the observation ofMV-like particles in calcified vascu-
lar tissues that could be playing a similar role. Therefore, here,we review the characteristicsMVs possess that enable
them to participate in mineral deposition. Additionally, we outline the content of skeletal tissue- and soft tissue-
derived MVs, and discuss their key mineralisation mediators that could be targeted for future therapeutic use.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1
Some of the common proteins identified inMVs derived from VSMCs, mineralising osteo-
blasts, and femurs of chicken embryo [18,71,172].

Protein type/family Protein name/family member

Calcium-binding proteins Anx A1
Anx A2
Anx A5
Anx A6
Voltage-dependent anion channel-1
(VDAC1)

Phosphate transporter 5′-Nucleotidase
Oxidative stress Peroxiredoxin 1

Peroxiredoxin 2
1. Introduction

The skeleton encompasses bone and cartilage. It is a multifunctional
and highly specialised system which comprises both mechanical and
biochemical properties that provide the basis for its roles in locomotion,
growth, and protection [44]. The skeleton also stores 98% and 85% of the
total body calcium (Ca2+) and phosphate (Pi), respectively [52,66]. Fur-
thermore, in recent years, research has uncovered the emerging role of
bone as an endocrine organ that regulates development and energy ho-
meostasis [74,118]. The development and lifelong maintenance of the
skeletal tissues is tightly regulated through the actions of distinct cell
types. Hypertrophic chondrocytes in the epiphyseal plate mineralise
the extracellular matrix (ECM) through specialised structures named
matrix vesicles (MVs). The first hydroxyapatite (HA) depositions are lo-
cated within the confinement of these nano-spherical bodies. MVs are
membrane-bound particles of cellular origin, that range from 100 to
200 nm in diameter [8,45]. The ability for MVs to calcify is dependent
on their content. Mineralising MVs typically contain abundant proteins
and lipids that are known to chelate Pi and Ca2+.MVs have also been re-
ported in osteoid, mantle dentin, and calcifying tendons [7,10,24,86,89,
158,178]. However, the density of these particles appear to decrease
with the increasing compactness of collagen fibrils in the mature bone
[25]. Therefore, MVs may be attributed a role in the mineralisation of
the embryonic bone, rather than themature lamellar bone [88]. Indeed,
mineral nucleation is a complex process, and whilst MVs are important
for this process they are unlikely to be the sole mechanism responsible
for the first steps of skeletal mineralisation. Throughout the years, there
have been many studies conducted with knockout models on various
proteins implicated in the initiation of mineralisation, that consistently
show different levels of mineralisation [13,66,113,147]. These studies
have provided in vivo proof thatmineralisation can be achieved through
variousmeans. Hencemultiple rational theorieswhich describemineral
crystallisation exist. One of themost discussed theories is the nucleation
of apatite through collagen polypeptide stereochemistry with Ca2+ and
Pi, where apatite crystals precipitate and propagate from an amorphous
phase, in the gap zone of collagen fibrils [49,87,91,117]. In contrast,
studies conducted using electronmicroscopy and X-ray diffraction anal-
ysis on human cortical femur bone, revealed that the majority of the
mineral is present outside of collagen fibrils and in the interfibrillar
compartment in the form of elongated mineral plate structures [102,
103,139]. However, the present review focuses on our current knowl-
edge and understanding of the role of MVs in the mineralisation pro-
cess. During recent decades, the role of MVs in the pathogenesis of
vascular mineralisation has become increasingly apparent, with a num-
ber of studies reporting the presence of vesicles in vascular tissues that
are comparable in both structure and content to skeletal MVs (Table 1).
However, the exact mechanisms through which MVs orchestrate the
mineralisation process remain unclear. This review presents a summary
of our current knowledge to date on the secretion, function, and content
of MVs during both physiological and pathological mineralisation.
Extracellular matrix Collagen type VI, a1
Cytoskeletal and surface proteins Actin-B

Moesin
Integrin, a3 isoform A
Integrin, a5
Integrin, b1 isoform 1A
Sodium-potassium adenosine
triphosphatase, a1

Chaperones Calreticulin
2. Bone formation

Bones develop through two different mechanisms. Mesenchymal
stem cells can directly differentiate into osteoblasts through
intramembranous ossification. This process is responsible for the for-
mation of flat bones such as the cranium, sternum, and rib cage.
Alternatively, the mesenchymal stem cells may differentiate into
chondrocytes, which serve as templates for bone formation by endo-
chondral ossification that leads to the development of long bones
[119]. Endochondral ossification begins with a primary centre in the di-
aphysis consisting of a cartilage model, hypertrophic chondrocytes and
vascular invasion. This is followed by the extension into secondary cen-
tres in the epiphyseal plate, which are responsible for longitudinal
growth. Concomitant invasion of the cartilaginous scaffold occurs ac-
companied by haematopoetically derived bone resorbing cells, known
as osteoclasts. The latter resorb the mineralised chondrocyte remnants
and much of the cartilaginous matrix [41]. Furthermore, mesenchymal
cells in the perichondriumbegin to differentiate into osteoblasts, direct-
ed by the expression of the transcription factors, Runt-related transcrip-
tion factor 2 (Runx2) and osterix [83]. These bone forming cells deposit
a bone-specific matrix, rich in type I collagen, on remnants of chondro-
cyte ECM and in the perichondrium, which are subsequently
mineralised [125]. Throughout lifetime, synchronised actions of osteo-
blasts and osteoclasts continue to remodel the bone, allowing growth
and adaptation in response to mechanical loading. The most abundant
cellular component ofmature bone are the terminally differentiated os-
teoblasts, known as osteocytes [82], which reside deep within the bone
matrix. The osteocytes orchestrate the actions of the osteoblasts and os-
teoclasts through relaying of external mechanical signals, to trigger de-
position or resorption of bone possibly via the expression
osteoprotegerin (OPG) and receptor activator of nuclear factor kappa-
B ligand (RANKL) [23,111,152,173].

The intricate process of skeletogenesis can be clearly observed in
the formation of the appendicular skeleton, which proceeds via a
cartilage primordium [84]. Under the influence of the transcription
factor Sox9, mesenchymal stem cells differentiate into chondrocytes
that proliferate and generate type II collagen and a proteoglycan-rich
ECM [125]. The chondrocytes within the prospective bone progress
through morphologically distinct zones, co-ordinated by sequential
expression of transcription and growth factors [101]. Chondrocytes
in the most advanced region of the epiphyseal plate exit the cell
cycle and become hypertrophic. The hypertrophic chondrocytes,
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osteoblasts and odontoblasts, release MVs into the ECM [6]. The first
mineral deposits are formed within the protective confines of these
nano-particles.

3. Origin and discovery of MVs

Initial identification of MVs took place in 1967, in studies performed
independently by H. Clarke Anderson [9], and Ermanno Bonucci [185].
The MVs were considered of cellular origin and were found in conjunc-
tionwith mineral deposition, during rat epiphyseal growth plate devel-
opment. The discovery of MVs, then termed “vesicles” or “calcifying
globules”, was initially received with scepticism. The relationship be-
tween MVs and the nucleation of HA was, and remains, controversial.
Some believe that the nucleation of HA takes place through the deposi-
tion of Ca2+ and Pi in the “hole zone” regions of collagen fibrils within
the organic matrix [50,58,87,90]. Others have disregarded MVs as cel-
lular debris or artefacts due to sample preparation which would oth-
erwise seldom be seen [88]. Indeed, it is important to stress that, as
with many techniques, there are certain limitations to the identifica-
tion of MVs by electron microscopy. Apart from artefacts that could
accumulate during specimen preparation, the localisation of MVs
could be complicated by the presence of other cellular membrane-
bound, micro-structures due to their similarity in size and shape.
However, the identification of MVs can be facilitated by their co-
localisationwithmineral crystals presentwithin the confines of the lim-
itingmembranes, and also those extruding out and rupturing themem-
brane. Through the evidence obtained from a series of in vivo and
in vitro studies, which also revealed that these structures are typically
surrounded by a trilaminar membrane, their existence became more
widely accepted [105,170,186].

Nevertheless, current methodology makes it impossible to isolate
populations of pure MVs. The obtained vesicle population is naturally
heterogeneous, and may include bodies that arise from physiological
and/or non-physiological backgrounds. Moreover, unique markers for
MVs have yet to be identified, therefore it is not presently possible to ex-
plicitly distinguishMVs from other vesicle populations. Indeed,many of
thosewho initially questioned the existence ofMVs later published data
on the function of these particles ([86,142].

There have been recurrent observations that the earliest
recognisable crystal structures in the growth cartilage, bone and dentin
to be found in theMV interior [12], thus suggestingMVs are responsible
for the initiation ofmineralisation. The competence ofMVs to direct this
process depends on many factors, amongst which include the type of
enzymes and the Ca2+-chelators carried by the MVs [180].

4. MV biogenesis and function

There have been several proposed mechanisms for the formation of
MVs since their discovery. Even today, the exact process ofMV assembly
is still under debate. The following summarises the current theories.

4.1. Budding from the plasma membrane

One of the most discussed mechanisms of MV formation is through
the “budding”process,where it is believed thatMVs budoff the parental
plasma membrane in a highly polarised manner [7,26]. Additional in-
vestigations have reported that microvilli on the cell surface of hyper-
trophic chondrocytes could be the precursors of MVs, and that the
actin network is extensively involved during their formation [55,156,
187]. More precisely, it has been shown that at the proliferative zone
of the epiphyseal plate, chondrocytes are embedded in a highly imper-
vious matrix, which is composed mainly of collagen fibrils and proteo-
glycans. The latter effectively slows down the diffusion of oxygen and
depletes the proliferating cells from other nutrients, thus making
them hypoxic [80]. As a result, the chondrocytes adapt to secrete high
levels of glycolytic enzymes [80] and adopt anaerobic glycolysis for
respiration [127]. Upon the penetration of blood vessels in the prolifer-
ative zone, the hypoxic cells receive a sudden delivery of nutrients, elec-
trolytes (e.g. Ca2+ and Pi), and oxygen leading to a state of oxidative
stress. Their mitochondria become fully loaded with Ca2+, and can no
longer produce adenosine triphosphate (ATP). This causes the cells to
swell. Reactive oxygen species are consequentially generated, and
alongwith the elevated level of Pi as a result of ATPhydrolysis, the open-
ing of mitochondrial permeability transition pores is induced [141]. At
this stage, vesicles that are loaded with Ca2+ are released from the mi-
tochondria into the cytosol, whereby the released Ca2+ interact with Pi
and phosphatidylserine (PS) to formPS-Ca2+-Pi complexes, andwith PS
and annexin (Anx) to form PS-Ca2+-Anx complexes [170]. Anxs have
also been shown to bind and regulate intravesicular Ca2+, inhibition
of Anx activity decreasing chondrocyte mineralisation [164]. These PS-
Anx complexes attach to the cytoplasmic leaflet of the plasma mem-
brane of the chondrocytes. Due to most of the Ca2+ having been incor-
porated into these complexes, depletion of Ca2+ in the cytosol occurs.
As a result, cytoskeletal proteins such as actin depolymerises, and
blebbings are formed at the plasmamembranewhich eventually detach
to allow for the MVs to travel to the ECM [167,170].

Similarly, other studies have supported this mechanism of MV for-
mation by comparing the lipid and protein composition of MVs and
the plasma membrane of chondrocyte and osteoblasts. These mem-
branes were indeed similar in composition, albeit they possessed differ-
ent levels of structural lipids and proteins [105]. In contrast, there has
also been a study reporting distinct membrane compositions in MVs
and cellular plasma membranes, but this observation has remained
highly controversial to this date [92].

Further studies employing the SaOS-2 osteoblastic-like cells have
shown that MVs are originated from specific regions of the plasma
membrane, and that they bud off in the same orientation as the parental
membrane [45]. More recently, MVs released by SaOSLM2 cells (a cell
line derived fromSaOS-2with a p53 deletion) have been found to bede-
rived from microvilli structures at the apical plasma membrane [157],
supporting previous ultrastructural observations noted in studies of
long bone mineralisation [21,55].

4.2. Assembly of vesicles through apoptotic cell membrane rearrangement

An alternative hypothesis for MV formation suggests that the vesi-
cles are assembled due to the rearrangement of the apoptotic cell mem-
brane [73]. However, it has been subsequently shown that MVs and
apoptotic cell membranes are morphologically and functionally differ-
ent as osteoblasts and growth plate chondrocytes have been observed
to be intact post-MV release, suggesting apoptosis-independentmecha-
nisms are responsible [81,172]. Nevertheless, MV formation and apo-
ptosis are likely to occur simultaneously during cell differentiation as
apoptotic vesicles are still capable of accumulating mineral deposition,
and this may be a contributing factor in ectopic mineralisation.

While these theories are still topical, it is very likely that the release
of MVs involve both cell membrane rearrangement, budding, and fur-
ther additional mechanisms that have yet to be elucidated.

4.3. Mineral formation in MVs

Asmentioned previously, MVs have been recognised to nucleate hy-
droxyapatite through a biphasic phenomenon and is divided between
mineral crystallisation within the MVs and subsequent mineral propa-
gation [7]. During Phase I, there is an increase in activity of theMVphos-
phatases, including: alkaline phosphatase, adenosine triphosphatase,
pyrophosphatase, and PHOSPHO1 which generate and transport Pi; as
well as Ca2+-binding compounds such as the Anx family and PS [6].
The location of these molecules are generally found near the MVmem-
brane [6]. PHOSPHO1 is found inside the MVs [107]. Ca2+ and Pi are
attracted into the MVs by these compounds, until the threshold for
Ca2+-Pi precipitation is reached [7]. The enzyme carbonic anhydrase,
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which is also found inside theMVs, stabilises the initial crystals. Thepre-
cipitation is at first converted into an intermediate octacalcium-
phosphate before being transformed into the more insoluble HA [135].
In Phase II, the crystals of HA have accumulated sufficiently to penetrate
through the MV membrane to reach the extracellular fluid, ultimately
destroying the MVs. The rate of mineral deposition is controlled by the
pH of the extracellular fluid, its ion (Ca2+/Pi) concentration, and the
presence of mineralisation-regulating molecules present in the extra-
cellular fluid [37]. Under calcifying conditions, the extracellular fluid
contains sufficient Ca2+ and Pi to support further crystal propagation,
with preformed HA serving as templates for new minerals to grow on
[6].

5. The importance of MV constituents for skeletal tissues

The composition of MVs directs the mineralisation nature of MVs.
The variable regulation of proteins and lipids of MVs that promote
mineralisation depends on the mineralising nature of their parental
cells, as well as the local environment.

5.1. Phosphatidylserine (PS)

The presence of extracellular lipid material at the mineralisation
front of calcifying tissues was identified over 50 years ago [169]. The
source of thismaterial can nowbe attributed to the Ca2+-binding, acidic
phospholipids of theMVmembrane [170]. Since these early discoveries,
a wealth of information surrounding the lipid components of MV has
been revealed, from which the critical role of lipids in MV-mediated
mineralisation can be appreciated.

The anionic phospholipid, PS, shows selective enrichment in the
inner leaflet of MV membranes, where it is typically found as PS-
Ca2+-Pi complexes [36,165]. In vitro formation of PS-Ca2+-Pi complexes
show a potent ability to induce HAprecipitationwhen incubated in syn-
thetic cartilage lymph [166]. Indeed, early transmission electronmicros-
copy studies revealed an association between the inner leaflet
membrane andprimitivemineral formation [11]. PS-Ca2+-Pi complexes
have now been identified at the initial stages of growth plate cartilage
[168], bone [28], dentin [143] and tumour mineralisation [15]. Further-
more, studies utilising high performance thin layer chromatography
identified an increase in the levels of PS and lysophosphatidylserine
(LPS) during the in vitro mineralisation of chick growth plate MVs, at-
tributable to the ATP-independent base exchange of ethanolamine for
serine in phosphatidylethanolamine (PE) [165,171]. The maintenance
of high levels of PS in MV membranes, and the nucleation capacity
that it brings, may be a necessary component of mineralisation.

Gain of function mutations in the PS synthase (PSS) 1 gene has
been shown to cause the rare Lenz–Majewski syndrome, which is as-
sociated with hyperostosis of the cranium, vertebrae and diaphysis
of tubular bones [146]. Excessive PS accumulation (via PSS1 mediated
exchange of serine with the choline moiety of phosphatidylcholine
(PC)), and thus enhanced nucleation of HA by MVs may contribute to
the phenotype observed in this condition. However, mice deficient in
PSS1 and PSS2, which mediate the exchange of ethanolamine for serine
in PE, shownoperturbations ofmineralisation [16,22]. Not only is PS in-
volved in the formation of mineral, but it may additionally play a role in
the externalisation of immature mineral from MVs. Indeed, the exter-
nalisation of PS is induced in response to increases in intracellular
Ca2+, likely through the actions of Ca2+-dependent phospholipid
scramblases, a process which has been observed in the plasma mem-
branes of hypertrophic chondrocytes [40] and osteoblasts [42].

5.2. TNAP and NPP1

The ratio of inorganic pyrophosphate (PPi) to Pi is of critical impor-
tance in the promotion or indeed restriction of mineral in physiological
tissues. Although, the exactmechanism of Pi generation inMVs remains
to be elucidated, several theories have been proposed (Fig. 1).

It has long been known that the glycosylphosphatidylinositol (GPI)
anchored ectozyme, tissue-nonspecific alkaline phosphatase (TNAP),
and ectonucleotide pyrophosphatase (NPP1)/phosphodiesterase 1 are
the major regulators of the extracellular PPi/Pi ratio. TNAP, encoded by
Alpl (Akp2 in mice), is abundant on the surface of MVs derived from os-
teoblasts, hypertrophic chondrocytes, and odontoblasts [108]. More-
over, a study has identified the phosphosubstrate utilisation of TNAP
and NPP1 (encoded by Enpp1) at the level of the MV [35]. Analysis of
the catalysis of ATP, adenosine diphosphate (ADP) and PPi by
osteoblast-derived MVs from wild-type (WT), Akp2−/− and Enpp1−/−

mice highlighted that TNAP is the major phosphatase of these vesicles
with its absence producing the largest deficit in substrate hydrolysis. In-
terestingly, the absence of NPP1 fromMVs did not affect the hydrolysis
of the tested substrates indicating thatwhen associatedwithMVs, NPP1
does not have major PPi generating role, but rather can act as a “back-
up” phosphatase in the absence of TNAP. This role as a “plan B” phos-
phatase is proposed as the reason why in the Phospho1−/−; Akp2−/−

double knockout mouse, mineralisation of the axial skeleton can be oc-
casionally observed [177].

Hypophosphatasia, a condition of defective TNAP activity, common-
ly resulting frommissensemutations inAlpl [57], demonstrating the im-
portance of TNAP in skeletal mineralisation. Akp2−/− mice phenocopy
hypophosphatasia with hypomineralisation of the skeleton and teeth
ensuing after birth [175] and evidence of craniosynostosis [97]. Both pa-
tients with hypophosphatasia and Akp2−/− mice exhibit raised serum
PPi levels. Concomitant ablation of NPP1 on an Akp2−/− background
partially restores the serum PPi levels and skeletal mineralisation [56].
Despite this, pioneering studies utilising electron microscopy revealed
that MVs from patients with hypophosphatasia and Akp2−/− mice pos-
sess crystals of HA within their interiors [13,14]. These findings high-
light alternative mechanisms of generating a PPi/Pi ratio conducive to
mineral formation within the interior of MVs.

TNAP produces an environment surrounding MVs conducive to
mineralisation not only through regulation of the PPi/Pi ratio but also
through modulating the phosphorylation status of osteopontin (OPN).
OPN is a major non-collagenous bone protein which inhibits the nucle-
ation and growth of HA, through binding to nascent crystals bymeans of
the phosphorylated residues of the protein. Indeed, dephosphorylation
of OPN results in the loss of its inhibitory properties [2,27]. More recent-
ly, significant increases in OPN transcript and protein in the plasma and
skeleton of the Akp2−/− mouse have been noted [113]. Furthermore,
the skeletal over-expression of TNAP in Akp2−/− mice decreased the
phosphorylation status of OPNwithin long bones. These novel data sug-
gest that the pro-mineralisation role of TNAPmay be related not only to
its accepted PPi activity but also to its ability to modify the phosphory-
lation status of OPN.

5.3. SIBLING proteins

OPN, bone sialoprotein, matrix extracellular phosphoglycoprotein
(MEPE), dentin matrix protein and dentin sialoprotein make up a
group of non-collagenous extracellular mineralisation-regulating pro-
teins termed SIBLING (small integrin-binding ligand N-linked glycopro-
tein) proteins [150]. These proteins share a conserved arginine-glycine-
aspartic acid (RGD)motif whichmediates their cell attachment and sig-
nalling functions [46]. The conserved acidic serine- and aspartate-rich
motif (ASARM) peptide region within this family of proteins appears
however, to be a key determinant of their role in mineralisation [133].
In particular, it is the post-translational modifications of this motif,
through enzymatic cleavage and phosphorylation, which dictates its
function. Indeed, the ASARM peptide of OPN has been shown to inhibit
the ECM mineralisation of osteoblast-like cells through the binding of
HA [4]. This inhibition of mineralisation was dependent on the number
of phosphorylated serine residues, with non-phosphorylated ASARM



Fig. 1. Hypothetical generation of inorganic phosphate and the accumulation of calcium within MVs. The first stage in Pi generation is the production of PHOSPHO1 substrates,
phosphocholine, and phosphoethanolamine, through the actions of nSMase2 and/or phospholipases. Once released from membrane lipid precursors, phosphocholine, and
phosphoethanolamine undergo hydrolysis by PHOSPHO1 to generate intravesicular Pi. Further Pi accumulation within the MV may be facilitated by the phosphate transporter, PiT1.
Propagation of HA out with the confines of the MV is controlled by the local PPi/Pi ratio. The main regulators of the extracellular PPi/Pi ratio are NPP1 and TNAP.
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peptide showing no inhibition of mineralisation [4]. OPN has also
emerged as a potent inhibitor of ectopic, pathological mineralisation
[48]. This effect was most clearly demonstrated by a study which
showed the exacerbation of vascular calcification in the matrix gla pro-
tein (MGP) null mouse through the simultaneous ablation of OPN [147].
The phosphorylated ASARMpeptide ofMEPE has also been shown to in-
hibit themineralisation of osteoblast-like cell and bonemarrow stromal
cell cultures [3,106].

More recently, inhibition of mineralisation by the phosphorylated,
but not non-phosphorylated, MEPE-ASARM peptide in cultured murine
embryonic metatarsals, a model of chondrocyte mineralisation, has
been observed [149]. To our knowledge, the ability of TNAP to dephos-
phorylate the OPN ASARM peptide as previously mentioned [2,4,113],
has yet to be shown in other SIBLING protein derived ASARM peptides.

5.4. PiT1

Two related type III Na/Pi co-transporters, pituitary-specific tran-
scription factor (PiT-1)/Glvr1 and PiT-2/Ram, encoded by SLC20A1
and SLC20A2 respectively, are both expressed by chondrocytes and
osteoblasts, however PiT-1 is the major mediator of Pi influx in
these cell types [115,123,179]. Although ubiquitously expressed,
PiT1 shows enrichment in late hypertrophic chondrocytes, and as
such has been associated with Pi enrichment of MVs to promote ma-
trixmineralisation [121]. PiT1 expression is stimulated bymany clas-
sical osteotropic factors such as parathyroid hormone, Ca2+ and
bone morphogenetic protein (BMP)-2. Indeed, it has been recently
shown that the up-regulation of PiT1 in response to BMP-2 in
MC3T3 osteoblast-like cells is mediated through c-Jun N-terminal ki-
nase (JNK) pathway stimulation [155].

5.5. PHOSPHO1

First identified in chick growth plate chondrocytes, PHOSPHO1, is a
phosphatase and a member of the haloacid dehalogenase superfamily
[60]. PHOSPHO1 is essential for the initiation of skeletal mineralisation.
The expression of PHOSPHO1 has been shown to be around 120-fold
higher in growth plate chondrocytes compared to non-skeletal tissues
and the soluble protein has been identified in MV extracts from chick
growth plate cartilage [153] and murine hypertrophic chondrocytes
and osteoblasts [130]. Furthermore, through analysis of the ability of in-
tact and disrupted Akp2−/− MVs to generate Pi from phospholipid pre-
cursors, PHOSPHO1 has been localised to the sheltered interior of MVs
[130], a location critical to its key function in the initiation of mineral
formation. To date PHOSPHO1 has been identified in the MVs derived
from osteoblasts, chondrocytes, and odontoblasts [61,107,130] and a
number of studies unequivocally provide evidence for its key role in
intravesicular Pi generation. A reduction in ECMmineralisation was ob-
served in MVs from murine and chick epiphyseal cartilage after treated
with the PHOSPHO1 smallmolecule inhibitor, lansoprazole [130]. Treat-
ment of 5-day old chick embryos with lansoprazole similarly abolished
the mineralisation of both wing and leg bones of young chicks [104].

The pivotal role of PHOSPHO1 was recently highlighted by the
generation and characterisation of the Phospho1−/− mouse.
Phospho1−/− mice display severe bone and tooth abnormalities in-
cluding hypomineralisation, bowed long bones, spontaneous
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fractures and scoliosis [66,107,132,177,184]. Interestingly, recent
data have confirmed that tibiae of PHOSPHO1 deficient mice are
less stiff during growth but are eventually corrected in later life by al-
ternative mechanisms [69]. Serum levels of PPi and OPN are in-
creased in Phospho1−/− mice but reducing the PPi levels in
Phospho1−/− mice by cross-breeding them to ApoE-TNAP transgenic
mice, does not significantly improve the skeletal phenotype of
Phospho1−/− mice [177]. In contrast, the ablation of the OPN gene,
Spp1, completely prevents the scoliosis and improves the long bone
defects characteristic of Phospho1−/− mice [176]. Inhibition of both
PHOSPHO1 and TNAP activity by small molecule inhibitors signifi-
cantly reduced ECM mineralization in osteoblast-like cell lines and
metatarsals and this supports previous in vivo observations where
the double ablation of Phospho1 and Akp2 led to a complete lack of
skeletal mineralisation in embryonic mice [65,177]. Recent analysis
of Phospho1−/−/Pit1col2/col2 double knockout mice has further revealed
that MVs initiate mineralisation by a dual mechanism: PHOSPHO1-
mediated intravesicular generation of Pi and phosphate transporter-
mediated influx of Pi [174] (Fig. 1). Interestingly, in the Phospho1−/−

murine model, hydrolysis of ATP is reduced not directly due to the ab-
sence of PHOSPHO1 expression, but an apparent downregulation of
TNAP expression [35].

Despite a comprehensive appreciation of the resultant phenotype
of PHOSPHO1 deficiency, the precise molecular and biochemical
mechanisms underpinning PHOSPHO1-mediated intravesicular Pi
production has yet to be determined. The initial characterisation of
this novel phosphatase revealed that PHOSPHO1 displayed high spe-
cific activity in vitro towards two products of phospholipid metabo-
lism: phosphoethanolamine and phosphocholine [131]. As such,
PHOSPHO1 may rely on MV membrane phospholipid metabolism
in the provision of substrates for Pi generation.

Neutral sphingomyelinase 2 (nSMase2), encoded by the Smpd3
gene, may provide a link between MV phospholipids and the
PHOSPHO1 substrate phosphocholine.nSMase2, is recognised to break
down the membrane lipid sphingomyelin to produce ceramide and
phosphocholine; and has been identified in SaOS-2 derived MVs [154,
156]. The ablation of nSMase2 enzymatic activity by the chemically in-
duced deletion of a major portion of Smpd3, as in the fro/fromouse [17,
109] brings about a severe hypomineralisation of the skeletal and dental
tissues ([76–78]. Rescue of the skeletal phenotype through overexpres-
sion of nSMase2 suggests that the hypomineralisation observed could
be a consequence of deficient osteoblast mineralisation. This
hypomineralisationmay arise from a reduced production of PHOSPHO1
substrate (phosphocholine) in the absence of nSMase2 activity. Inter-
estingly however, transmission electron microscopy analysis of mantle
dentin from the fro/fro mouse revealed abundant MVs containing HA
crystals as in heterozygous animals [76].

More recently, the role of choline kinase (CK) in bone formation
has been highlighted. CK, encoded by Chka and Chkb, produces
phosphocholine from choline, and the pharmacological inhibition
of CK activity has resulted in decreased mineralisation capacity of
humanosteosarcomaMG-63 cells [96]. Similarly, another study showed
Chkb mutant mice, flp/flp, exhibited reduced bone formation by osteo-
blasts. Osteoclasts from flp/flp mice also displayed lower sensitivity to-
wards extracellular Ca2+ excessiveness which led to increased bone
absorption and overall low bone mass [85]. Furthermore, inactivation
of Chkb in mice led to a decrease in chondrocyte expression and
phosphocholine concentration. Interestingly, PHOSPHO1 expression in
these Chkb−/− mice is notably increased, possibly as to a compensatory
mechanism to produce more Pi from less amount of substrate [95].

6. Pathological mineralisation

Pathological mineralisation is defined as the ectopic accumulation of
minerals in non-skeletal tissues. There has been an emerging interest in
the study of the mechanisms driving vascular calcification, which
involves mineralisation of the blood vessels, valves or cardiac tissues.
This is a condition commonly found in the elderly, diabetics, and pa-
tients who suffer from chronic kidney disease (CKD) [181]. The pre-
dominant mineral formed during vascular mineralisation is HA,
although other types of biological minerals such as whitlockite
have been found in diabetic arterial medial mineralisation caused
by vitamin D toxicity [161].

The pathological process of vascular mineralisation was originally
believed to be caused by passive deposition of calcium minerals as
a consequence of ageing and vascular deterioration in the elderly.
However, it has now been widely established that the driving force
of vascular mineralisation is a complex network of tightly regulated
active processes that resemble the physiological process of skeletal
development (Fig. 2) [1,182]. Indeed, vascular cells are derived
from the same pluripotent mesenchymal cells that give rise to oste-
oblasts, and they can spontaneously undergo bone-like transforma-
tion. These vascular cells may then release calcifying-competent
ECM. In fact, the elastic lamellae which spans across arterial ECM
canmineralise, leading to subsequent vessel rigidity and altered biome-
chanics, inducing cell transformation and differentiation [110]. Evi-
dences of elastin involvement in mineralisation include its
degradation during the pathogenesis of arterial calcification, with min-
erals forming along the elastin fibrils [20,68]. Moreover, in vivo studies
conductedwithMgp-deficientmice (mgpm1/mgpm1) revealed extensive
mineralisation of the elastic lamellae in themedia of the aortic wall and
aortic valves [99]. Cells which may readily undergo phenotypic to oste-
ogenic transitions include: vascular smoothmuscle cells (VSMCs) in the
media, myofibroblasts in the adventitia, pericytes in microvessels,
multipotent vascular mesenchymal progenitors, and valve interstitial
cells (VICs) [29,53,120,124,188]. Alternatively, vascular
mineralisation could occur independent of cell transdifferentiation.
Past studies have shown that mutations in the genes encoding for
mineralisation inhibitors, such as MGP, could also lead to vascular
mineralisation without vascular cells trans-differentiating into cells of
the osteoblastic phenotype [98,134].

7. MVs in ectopic vascular mineralisation

Amongst themany features that skeletogenesis and ectopic vascular
mineralisation share, an emerging point of interest lies in the role of
MVs during pathological mineralisation. In the recent decades, numer-
ous studies have reported mineralising, MV-like structures released by
mineralising VSMCs, in both in vitro and in vivo experiments [63,71,
128,136,140,144]. Interestingly, MV-like particles have also been
found to be released by the vascular tissues under physiological condi-
tions [71,99,128,129]. These bodies have been recently identified as
exosomeswith an endosomal origin that arise frommultivesicular bod-
ies ([70,142]. Below, we summarise some of the main components of
vascular tissue-derived MVs and their potential role in promoting and
inhibiting ectopic mineralisation.

7.1. VSMCs release MV-like structures under physiological conditions

As discussed previously, the function of MVs highly relies on their
composition. Electron microscopy studies have revealed that MVs de-
rived from VSMCs under physiological conditions do not contain crys-
tals of HA [71]. Instead, MVs released by healthy VSMCs possess
mineralisation inhibitors, such as the vitamin-K dependent protein,
MGP, and fetuin-A, which prevent abnormal mineral deposition [72,
99,128]. Patients suffering from vascular mineralisation and ESRD
show reduced expression of these inhibitors [29,75,159]. Indeed, MVs
derived from VSMCs cultured under mineralising conditions contained
less MGP [71]. Moreover, MVs harvested from mineralising VSMCs in
both in vitro and in vivo conditions have a higher ability to nucleate
Ca2+ and Piwhen compared toMVs released under physiological condi-
tions [63,128]. Conversely, the mineralisation of both VSMCs and



Fig. 2. Proposed mechanisms for vascular mineralisation. Under physiological conditions, VSMC phenotype is maintained by circulatory mineralisation inhibitors. Metabolic alterations
such as inflammation, hypercalcemia or hyperphosphataemia induce the up-regulation of numerous osteogenic markers and loss of these mineralisation inhibitors. These events
ultimately lead to osteogenic phenotypic transition and the secretion of calcifying MVs.
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isolated vesicles was significantly decreased when cultured with serum
[128]. A possible explanation has implicated the role of fetuin-A, a nat-
ural mineralisation inhibitor secreted by the liver that circulates in the
serum [151]. A recent study suggests that nSMase2 controls the loading
of fetuin-A and exosome secretion in VSMCs [70]. Depletion of Smpd3by
small interfering RNA (siRNA) resulted in a decrease in exosome secre-
tion and calcification, suggesting a direct role in regulating vascular
mineralisation. Further studies are clearly needed to examine the clini-
cal potential of nSMase2-specific inhibitors for blocking exosome re-
lease and phosphocholine generation.

A novel role for gla-rich protein (GRP) in vascular mineralisation
inhibition has also been recently highlighted [162]. It has been
proposed that GRP, another vitamin-k dependent protein, may pre-
vent calcium-induced signalling pathways and direct mineral bind-
ing to inhibit crystal formation. Moreover, GRP up-regulation in
mineralisation competent MVs derived from VSMCs has been
demonstrated, and may be associated with the fetuin-A-MGP
mineralisation inhibitory system [162]. Intriguingly, GRP activity
has been shown to be dependent on its γ-carboxylation status. Like-
wise, the reduced loading of MGP into MVs may be due to an accu-
mulation of uncarboxylated MGP as a result of elevated Ca2+ levels
which could readily impair the functionality of the endoplasmic re-
ticulum [144]. These observations suggest that both the local envi-
ronment and the MV content are crucial in determining the fate of
MVs in soft tissues.

The vitamin K-dependent proteins, MGP and GRP, represent ex-
citing potential therapeutic targets for the inhibition of vascular
mineralisation. In rats, treatment with the vitamin K antagonist,
warfarin leads to rapid mineralisation of the arteries. This can be
regressed by a vitamin K-rich diet [138]. Specifically, Vitamin K2
supplementation prevents arterial mineralisation, yet vitamin K1
does not [62,148]. Furthermore, in the population based Rotterdam
study, increased intake of vitamin K2, but not K1, was shown to be
inversely related to all-cause mortality and severe aortic
mineralisation [47].

7.2. Cell death

It has been proposed that MV secretion is a result of an adaptive re-
sponse to normalise the presence of mineral imbalance [145] as ectopic
mineralisation is thought to be initiated by apoptotic bodies (ABs) re-
leased during VSMC necrosis [124]. Furthermore, in vitro studies using
human VSMCs have revealed that ABs are able to accumulate Ca2+ in
a similar manner to MVs [124]. ABs released by tissue necrosis, along
with MVs derived from viable mineralising vascular cells, may induce
an imminent pathological mineralisation site, as they accumulate min-
eral deposition.

Autophagy is a dynamic and highly regulated process of self-
digestion responsible for cell survival and reaction to oxidative stress.
Recent research has highlighted autophagy as a novel adaptive mecha-
nism that protects against Pi-induced VSMCmineralisation, by acting to
regulate apoptosis and the release of mineralising MVs from VSMCs
[39]. Further studies are required to fully understand the mechanisms
driving the autophagic response in VSMCs.
7.3. Annexins (Anxs)

MVs derived from calcifying VSMCs share similarities with
chondrocyte-derived MVs, with enrichment of Anx A2, A5, and A6
[34,71,164]. Anx A6 has been shown to be abundant at sites of vas-
cular mineralisation in vivo, and siRNA depletion of Anx A6 reduces
VSMC mineralisation. Furthermore, biotin cross-linking and flow
cytometry studies have demonstrated that Anx A6 shuttles to the
plasma membrane in response to elevated calcium levels in vitro
and forms Anx A6-PS nucleation complexes within MVs [71].
Fetuin-A has also been found to bind Anx A2 in a Ca2+ dependent
manner, with membrane fraction immunoprecipitation revealing
the binding to take place at the surface of the cell. [34]. This suggests
a possible mechanism for fetuin-A mediated inhibition of vascular
mineralisation. However, the function of fetuin-A could be ulti-
mately overwhelmed by Ca2+ overload and other mineralisation-
regulating protein activity.
7.4. Macrophage-derived MVs

During the initial phase of atherosclerosis development, inflam-
mation and local stress call for an accumulation of macrophages to
the pathogenic areas, implicating a direct role that these white cells
could play during the antecedent of mineralisation. Indeed, early
mineralisation of atherosclerotic plaques has been shown to directly
associate with macrophage accumulation [5]. Recent research has
highlighted for the first time that macrophages have the ability to re-
lease mineralising MVs enriched in the calcium binding proteins,
S100A9 and Anx A5, which contribute to accelerated microcalcification
in VSMCs [114]. These data further emphasise the importance of
calcium-chelating proteins on MV mineralisation.
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7.5. Osteogenic markers in vascular cell-derived MVs

Proteomic analysis, such as mass spectrometry has been used to
identify the protein composition of MVs released by vascular tissue
[71]. The results have been compared to previous mass spectrometry
data of MVs derived from osteoblasts and chondrocytes [18,172]. Inter-
estingly, MVs derived from these three cell-types share similar surface
receptors, Ca2+-binding proteins, ECM components, and cytoskeletal
proteins (Table 1).

Interestingly, the concentration of TNAP has been shown to be either
lowered or unchanged upon the addition of extracellular Ca2+ or Ca2+-
chelator, suggesting that TNAP may not be a key mediator of calcium-
induced VSMC mineralisation [71]. However, chemical inhibition of
TNAP activity has been shown to suppress VSMC mineralisation
in vitro [112]. Moreover, it has been revealed that transglutaminase 2
(TGM2), a calcium-dependent enzyme that can cross-linkECMproteins,
was found in MVs during aortic mineralisation [33]. The latter study
showed decreased TNAP activity, and reduced ability for MVs to calcify
type I collagen in CKD rats following TGM2 inhibition. A link has also
been established between TNAP and the hydrolysis of circulatory PPi,
an endogenous vascular mineralisation inhibitor [163]. These findings
suggest that TNAP could have multiple roles in ectopic mineralisation
depending on the inhibitors and inducers of mineralisation that are
present in the microenvironment.

OPG, which is known to be a soluble decoy receptor for RANKL, the
principal regulator of osteoclast function [59]. Deficiency of OPG in
mice results in mineralisation of the aorta and renal arteries [30], and
RANKL administration increases VSMC mineralisation in vitro [122].
OPG has been detected in VSMC derived MVs, and has been shown to
co-localise immunohistochemically with Anx A6 [137]. It has been pro-
posed that at physiological concentrations, OPG directly inhibits VSMC
mineralisation, potentially by a mechanism whereby OPG is secreted
via vesicle release from viable or apoptotic VSMCs, limiting the MV-
driven mineral nucleation and deposition of HA in the vascular wall.

There are a number of key osteogenic markers that have been de-
tected in calcified vascular cells, whose roles in MVs have yet to be ex-
amined. PiT1 is emerging as a key component in the pathogenesis of
vascular mineralisation. Higher levels of Pi in the serum, due to the in-
ability of the kidney to filter excess Pi, induces VSMCs to upregulate
the expression of PiT1, a predominant sodium-dependent phosphate
co-transporter that leads to an accumulation of intracellular Pi. PiT1
has been shown to induce VSMC osteogenic transition, marked by in-
creased Runx2 expression [189]. Upstream regulation of PiT1 in
VSMCs has also been demonstrated in response to treatment with
BMP-9, a potent inducer of VSMC mineralisation [183].

Recent studies have shown that the bone specific phosphatase
PHOSPHO1 also plays a critical role in VSMC mineralisation, and that
“phosphatase inhibition”may be a useful therapeutic strategy to reduce
vascular mineralisation [79,112]. However, it has yet to be determined
whether PHOSPHO1 is present in VSMC-derived MVs. As previously
stressed, nSMase2 hydrolyses sphingomyelin to phosphocholine [154],
which may be subsequently hydrolysed into choline and Pi by
PHOSPHO1. These data, together with the recently elucidated role of
nSMase2 in MV-mediated VSMC mineralisation [70] highlight the
need for further investigations into the actions of PHOSPHO1 in vascular
cell-derived MVs.

7.6. microRNAs (miRNAs)

MicroRNAs (miRNAs) are an important class of endogenous, single
stranded, non-coding RNAs, which are involved in the regulation of
gene expression and translation. miRNAs suppress gene expression
through imperfect base pairing to the 3′ untranslated region of target
mRNAs leading to repression of protein production or mRNA degrada-
tion. Importantly, a single miRNAmay affect the transcription of multi-
ple genes involved in common pathways. miRNAs upregulated during
vascular mineralisation include miRNA-221, −222 [100], −762,
−714,−712 [54], −210 [43,93,126]. Conversely, several miRNAs that
are involved inmineralisation inhibition are downregulated during vas-
cular mineralisation, including miRNA-125b [31,51], −30 [19,94],
−204 [38,64], −26 [67,116].

Intriguingly, vesicle-like structures derived from non-mineralising
cells have the ability to transfer RNA or miRNA to new cells facilitating
cell-to-cell or cell-to-ECM communication [160]. Recently, miRNA mi-
croarray analysis has identified for the first time a number of dysregu-
lated miRNAs in MVs derived from CKD rats showing aortic
mineralisation, including miRNA-667, −702, −3562, −3568 and
−3584 [32]. A fuller understanding of the functional role of miRNAs
inMVsmay provide insight into the cellular regulation ofMV packaging
of miRNA and help to determine the post-transcriptional networks in-
volved in vascular mineralisation.

8. Concluding remarks and future directions

The pathogenesis and physiology of mineralisation is a result of a
network of active cell signalling and differentiation, orchestrated by
the microenvironment. Our current knowledge of MVs is undoubtedly
building towards a foundation in understanding the complex mecha-
nisms underpinning the development of matrix mineralisation. Further
insights into MV function may also enable the identification of effective
targets for the development of novel therapeutics for the treatment of
skeletal disorders and vascular mineralisation.
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