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The role of unsaturated fatty acids (UFAs) is essential for determining stem cell functions. Eph/Ephrin interac-
tions are important for regulation of stem cell fate and localization within their niche, which is significant for a
wide range of stem cell behavior. Although oleic acid (OA) and Ephrin receptors (Ephs) have critical roles in
the maintenance of stem cell functions, interrelation between Ephs and OA has not been explored. Therefore,
the present study investigated the effect of OA-pretreated UCB-MSCs in skin wound-healing and underlying
mechanism of Eph expression. OA promoted the motility of UCB-MSCs via EphB2 expression. OA-mediated
GPR40 activation leads to Gαq-dependent PKCα phosphorylation. In addition, OA-induced phosphorylation of
GSK3β was followed by β-catenin nuclear translocation in UCB-MSCs. Activation of β-catenin was blocked by
PKC inhibitors, and OA-induced EphB2 expression was suppressed by β-cateninsiRNA transfection. Of those
Rho-GTPases, Rac1 was activated in an EphB2-dependent manner. Accordingly, knocking down EphB2 sup-
pressed F-actin expression. In vivo skin wound-healing assay revealed that OA-treated UCB-MSCs enhanced
skin wound repair compared to UCB-MSCs pretreated with EphB2siRNA and OA. In conclusion, we showed
that OA enhances UCB-MSC motility through EphB2-dependent F-actin formation involving PKCα/GSK3β/β-
catenin and Rac1 signaling pathways.

© 2015 Published by Elsevier B.V.
1. Introduction

Fatty acids are important sources of energy and play a central role in
the construction of cell membranes. Fatty acids are classified based on
the length of their carbon chain and their degree of saturation. Unsatu-
rated fatty acids (UFAs) are essential for determining stem cell function,
and they act as ligands for the G-protein coupled receptor protein
GPR40 that, when activated, induces the release of Ca2+ from the endo-
plasmic reticulum into the cytosol [1–3]. Although beneficial effects of
UFAs on mesenchymal stem cells (MSCs) have been reported [4], their
downstream signaling processes and associated mechanisms have not
been fully elucidated. Linoleic acid (LA) and oleic acid (OA) are two
UFAs that are abundant in blood plasma. Of those two, OA is the most
abundant form of a monounsaturated omega-9 fatty acid (C18:1 cis-9)
that is produced by stearoyl CoA desaturase 1 (SCD1), mainly from
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stearic acid (C18:0) by catalyzing Δ9 desaturation [5]. Moreover, OA
has been recognized as an effective biomolecule because it causes
MSCs to secrete angiogenic mediators and regulates immunomodulato-
ry functions [4,6,7]. Though the significance of OA with regard to the
modulation of stem cell functions has been recognized, the mechanism
by which OA mediates beneficial physiological effects at the intracellu-
lar signaling level has not been completely described.

Ephrin receptors (Ephs), the largest family of receptor tyrosine ki-
nases (RTKs), are expressed in stem cell niches [8]. There are two classes
of these receptors (EphA/EphrinA and EphB/EphrinB) based on their
structure and binding affinity [9]. The interaction between Ephs and
Ephrins results in bidirectional signal transduction, referred to as for-
ward and reverse signaling, via a cell–cell communication complex
that influences themigration and adhesion of cells during development
and in the course of wound repair [10–12]. In addition, Ephs have been
reported to have ligand- and kinase-independent functions, implying
that these receptors can signal in a contact-independent manner [13].
It has also been reported that Ephs play significant roles in a wide
range of stem cell behaviors [9]. Moreover, Eph/Ephrin signaling con-
tributes to the recruitment of MSCs into injury sites via the promotion
ofMSCmigration [14,15]. Although the expression patterns of Ephs dur-
ing developmental progresses have been described, the regulatory
mechanism of Ephs has not been fully elucidated in stem cells [16].
A GeneGo MetaCoreTM analysis of UFA-mediated signal pathways
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indicates that the expression of several Ephs and Ephrin ligands can be
altered by UFAs [17]. Thus, it is possible that OA may alter Eph expres-
sion through the transcriptional regulation of gene expression. On this
basis, we investigated the microenvironmental transcriptional mecha-
nisms of Ephs. As Ephs play crucial roles in facilitating skin regeneration
through epidermal cell migration, proliferation and adhesion [12], we
used a skin wound-healingmodel in this study to examine the relation-
ship between OA and Ephs on the promotion of the therapeutic effects
of MSCs.

Therapeutic applications of umbilical-cord-blood-derived MSCs
(UCB-MSCs) have been recognized as having promise in the treatment
of clinical diseases [18]. UCB-MSCs have multi-lineage differentiation
potential and low immunogenicity, and can be isolated from the umbil-
ical cord vein of the placenta after detachment from a newborn [19].
Recently, the transplantation of exogenous MSCs has been used in
wound-healing therapies [20,21]. Increased stem cell motility contrib-
utes to their therapeutic effects in skin wound-healing [22]; thus, treat-
ment with OA to improve the bioactivity of stem cells is a possible
strategy for improving the tissue-regenerative effects of UCB-MSCs.
In this study, we investigated the effect of OA on the motility of
UCB-MSCs, the skin wound-healing process, and on related signaling
pathways.

2. Materials and methods

2.1. Materials

Human UCB-MSCs were provided by Medipost (Seoul, Korea) and
use of humanUCB-MSCswas approved by the Seoul National University
Institutional Review Board (SNUIRB No. E1402/001-001). Isolation and
expansion of UCB-MSCs were accomplished according to previous re-
port [23]. OA, hematoxylin, EosinY, U73122, U73343, ethylene-glycol-
tetraacetic-acid (EGTA), BAPTA-AM, bisindolylmaleimide-1 (Bis), and
staurosporine (Sta), were obtained from Sigma-Aldrich (MO, USA).
GW1100 was obtained from Cayman Chemical (MI, USA). F-actin and
Cdc42 antibodies were obtained from Abcam (Cambridge, UK). Active-
β-catenin antibodywas obtained fromMillipore. Rac1 antibodywas ob-
tained from BD Biosciences (CA, USA). Phospho-pan PKC was acquired
from Cell Signaling (MA, USA). EphB2, β-actin, pan-cadherin, α-
tubulin, Lamin A/C, total-PKC, PKCα, phospho-PKCα, PKCδ, PKCζ,
RhoA, phospho-GSK3β, GSK3β, β-catenin, phospho-cofilin-1, cofilin-1,
and profilin-1 antibodies were purchased from Santa Cruz (CA, USA).
Oleic acid was diluted in absolute ethanol purchased from Merck
Millipore (Darmstadt, Germany). All preparations were made at the
moment of use, to avoid oxidation. All reagents were of the highest
purity commercially available.

2.2. Culture of UCB-MSCs and adipose tissue derived MSCs

UCB-MSCs were cultured inα-minimum essential medium (α-MEM;
Thermo, MA, USA) and penicillin–streptomycin (1%, Gibco, NY, USA), and
FBS (10%, Hyclone, UT, USA). Cells were grown in 60- and 100-mmdiam-
eter culture plates in an incubator (CO2 5%, air 95%) at 37 °C. Cells were
verified for positive (CD105, CD44, CD166, CD29) and negative (CD90,
CD14, CD45, CD34, HLA-DR, Stro-1) surface markers by flow cytometry.
We transplanted UCB-MSCs at passage 6 for mouse skin wound-healing
assay. Other in vitro experiments have been done at passages 6 to 8.
The differentiation potential and karyotypic stability of the UCB-MSCs
were confirmed in previous reports where UCB-MSCs provided by
Medipost were able to maintain their stemness up to the 11th passage
[24]. Culture medium was replaced with fresh α-MEM medium at least
24 h before. After incubation, the cells were rinsed twice with PBS and
then maintained in the α-MEM supplemented with indicated agents. To
examine the effect of OA on migration of human adipose tissue derived
MSCs (AD-MSCs), AD-MSCs were provided by Prof. Kyung Sun Kang
(Seoul National University). Cells were cultured in keratinocyte serum
free medium (Invitrogen, CA, USA) supplemented with 0.1 ng/ml EGF,
30 μg/ml bovine pituitary extract and 5% FBS. AD-MSCs at passage 6
were used for migration assay.

2.3. OrisTM cell migration assay

UCB-MSCs were cultured at density of 104 cells/0.1 ml in OrisTM

stopper well (Platypus Technologies, WI, USA), and incubated until
the cell reached around 90% confluence. After serum starvation for
24 h, the stoppers were detached and the wells were rinsed twice
with PBS. Cells were incubated with the indicated agents in α-MEM
for 24 h and stained with 5 μM calcein-AM (Wako, Osaka, Japan) in
PBS for 30 min. Cells that migrated into the detection zone were quan-
tified by measurement of fluorescence using a Victor3 (PerkinElmer,
MA, USA). The value of relative fluorescence unit (RFU) in control cells
that migrated into the detection zone from the cell seeding zone after
24 h was designed as a control. RFU (100%) represents the normalized
values from the control cells that migrated into the detection zone for
24 h.

2.4. In vitro cell migration assay and transwell migration assay

UCB-MSCs were seeded at density of 104 cells/0.1 ml on each IBIDI
insert dish, which are divided by a 500-μm thick silicone insert (IBIDI,
Munich, Germany) and incubated until the cells reached around 90%
confluence in culture medium. After serum starvation for 24 h, the sili-
cone inserts were detached and cells were incubated with OA (10 μM)
for 24h or treatedwith the indicated reagents. To visualize themigrated
cells, cells were fixed with 4% paraformaldehyde (PFA) in PBS and
stained with Alexa Fluor® 488-phalloidin (1:100, Invitrogen) and pic-
tured by an Olympus FluoView™ 300 confocal microscope with ×100
or ×200 objective. The representative pictures were captured in five
random fields of denuded area of triplicate experiments.

Transwell migration assays were carried out using Corning®
Transwell® polycarbonate membrane inserts (8 μm pore size,
Corning, MA, USA). UCB-MSCs were transfected with EphB2siRNA
or NTsiRNA for 24 h and then exposed to OA for 12 h. Trypsinized
cells (1 × 105 cells/200 μl) were plated on the upper well and the
α-MEM added with 5% FBS was filled in the lower wells. Cells were in-
cubated for 48 h and the cells that migrated to the lower side of the po-
rousmembranewerefixedwith 4%PFA in PBS and stainedwithGiemsa.
After removing the non-migrated cells with cotton swabs, cells on the
bottom side were counted at ×200 magnification and proportional
number of migrated cells was evaluated by the percentage of total
seeding cells.

2.5. Full thickness skin wound-healing assay

All animal experiments were conducted in accordance with the
National Institutes of Health (NIH) Guide for the Care and Use of Labo-
ratory Animals and permitted by Institutional Animal Care and Use
Committee (IACUC) of Seoul National University (SNU-140123-6).
Male ICR mice (8 weeks old) acquired from Orient Bio (Sungnam,
Korea) were used. Mice were anesthetized by 2:1 mixture of Zoletil
50® (20 mg/kg, Virbac, Seoul, Korea) and Rompun® (10 mg/kg, Bayer,
Ansan, Korea).Mouse excisional skinwoundswere created as described
in a report [25]. Two wounds were created separately on the back with
sterilized disposable 6-mm-diameter dermal biopsy punch. First, to find
the effect of OA-treatment on UCB-MSCs, wounded mice were treated
with vehicle or OA, andUCB-MSCs at passage 6were pre-exposed to ve-
hicle or OA. Second, to investigate the effect of EphB2 expression on
UCB-MSC motility in wound area, the cells transfected with NTsiRNA
or EphB2siRNA were exposed to vehicle or OA. We injected the same
number of cells (1 × 106) in 70 μl of a 1:1mixture of PBS andMatrigelTM

(Growth Factor Reduced, BD Biosciences, CA, USA) into the two sites of
dermis around the skin wound and administered topically 3 × 105 UCB-



1907Y.H. Jung et al. / Biochimica et Biophysica Acta 1853 (2015) 1905–1917
MSCs in 30 μl with the PBS and matrigel mixture (1:1) on the wound
bed on days 0 and 9. After transplantation of UCB-MSCs, the wounds
were coatedwith Tegaderm (3MHealthcare, Borken, Germany). To ex-
amine the extent of tissue repair, mice were anesthetized with
isoflurane on days 0, 5, 9, and 12, then, the images of wounds were cap-
tured by a camera (D50, Nikon, Japan) at the unchanged height (30 cm)
from the mice. The size of wound was determined using Image J with
free-hand-selection and represented as the percentage of the initial
wound area. For histological and molecular analysis, wound tissues
were obtained by using 8-mm-diameter dermal biopsy punch at desig-
nated time points. Half of the wound tissue sample was embedded in
O.C.T. (Sakura Finetek, CA, USA) and the other half was put in liquid ni-
trogen before storing in −80 °C freezer for RNA analysis.

2.6. Reverse transcription polymerase chain reaction (PCR) and real time
quantitative PCR

Total RNA of UCB-MSCs was extracted by the RNeasy Plus Mini Kit
(Qiagen, CA, USA) according to the manufacturer's instructions. To ob-
tain the RNA from skin wound tissue, 30 mg of tissue was minced
with blades and homogenized with Rotor-stator homogenizer in pro-
vided RLT buffer (Qiagen, CA, USA). Reverse transcription (RT)was con-
ducted with 1 μg of total RNA with a Maxime RT premix kit (iNtRON,
Sungnam, Korea). The cDNAwas amplified by PCR premix kit (iNtRON)
under the conditions: denaturation at 94 °C for 5 min, 32 cycles at 94 °C
for 20 s, annealing temperature (AT) for 20 s, and 72 °C for 30 s using
MyGenie™ 96 Thermal Block (Bioneer, Daejeon, Korea). Mouse and
human primer sequences used for reactions are listed in Supplementary
Table 1. β-actin was used for a normalization control gene. Real-time
quantification of EphrinB/EphB family was achieved using a Rotor-
Gene 6000 (Corbett Research, Cambridge, UK) with a QuantiMix SYBR
Kit (PhileKorea, Daejeon, Korea).

2.7. Western blot analysis and subcellular fractionation

Protein concentration was determined by BCA Protein Assay Kit
(Pierce, IL, USA). Sample proteins were resolved by SDS-PAGE and
transferred to PVDF membranes. The membranes were incubated with
the primary antibody at 4 °C for overnight. The specific bandswere visu-
alized by ChemiDoc™ XRS+ System (Bio-Rad, CA, USA). Subcellular
fractionation was conducted by membrane protein extraction kit
(ProteoJET™ Membrane Protein Extraction Kit, Fermentas) according
to the manufacturer's instructions. The α-tubulin and pan-cadherin
were used as markers for cytosolic fraction and membrane fraction, re-
spectively. Nuclear fractionationwas performed as previously described
[26]. Lamin A/C was used as a marker of nuclear fraction.

2.8. Affinity precipitation

Rac1/Cdc42 Activation Assay and Rho Activation Assay (Millipore)
were performed in accordance with the manufacturer's manual.
Cells starved for 24 h were exposed to OA and cells were lysed with
1× MLB buffer. The sample (400 μg) was incubated with Cdc42/Rac
binding domain (GST-PAK-PBD) or with the Rho-binding domain of
rhotekin (GST-Rhotekin-RBD) at 4 °C overnight. The precipitated pro-
teins were eluted with 2× laemmli sample buffer and analyzed by
western blot.

2.9. Measurement of intracellular calcium mobilization

Changes in intracellular calcium concentrations were monitored
using Fluo-3-AM(Invitrogen). Cells cultured in 35-mm-diameter confo-
cal dishes (coverglass–bottom dish, SPL, Korea) were rinsed with PBS.
After incubation with Fluo-3-AM (5 μM) for 40 min, cells were rinsed
twicewith PBS and installed on a perfusion chamber. Fluorescent inten-
sity (488/515 nm) of each cell was attained at 1.8 s intervals using a
confocal microscope with ×200 objective. All analyses of calciummobi-
lization were analyzed in a single-cell, and the results are expressed as
the relative fluorescence intensity (F/F0).

2.10. Small interfering RNA (siRNA) transfection

Cellswere grownuntil 80%of confluency and transfected for 24hwith
target siRNA sequences provided by Dharmacon ON-TARGETplus-
SMART-pool siRNA specific for EphB2, β-catenin, Gαq, Gαi, Gα12, RhoA,
Rac1 and Cdc42 (Dharmacon, CO, USA), or a non-targeting (NT) siRNA
(Dharmacon) as a negative control with HiPerFect (Qiagen) according
to the manufacturer's guidelines. The siRNA sequences are described in
Supplementary Table 2.

2.11. Immunnofluorescence microscopy

Cells were cultured in 35-mm-diameter confocal dishes (SPL) and
fixedwith 4% PFA in PBS, permeabilized for 5minwith 0.1% (v/v) Triton
X-100, and washed each step for three times with PBS for 5 min. Cells
were blocked with 5% normal goat serum (NGS, Vector Lab, CA, USA)
in PBS for 30 min. Primary antibodies were diluted in 5% (v/v) NGS in
PBS at 4 °C overnight. After rinsing with PBS three times for 5 min,
cells were incubated with Alexa Fluor 488-(green) and Alexa Fluor
555-(red) secondary antibodies (Invitrogen) for 1 h in RT and counter-
stained with PI (Invitrogen). Immunostained cells were visualized with
a confocal microscope (×100 and ×200 magnification).

2.12. Immunohistochemical analysis

The OCT-embedded samples were cut into 10-μm thick frozen-
sections, and they were mounted on glass slide (Pre-Cleaned Micro
Slide Glass, Matsunami, Japan) for staining with hematoxylin and
eosin (H&E) and immunohistochemistry. All sections were fixed
with 4% PFA in PBS for 10min and permeabilized for 10minwith Triton
X-100 (0.1%) in PBS. 5%NGS in PBSwas used for blocking buffer and an-
tibody dilution buffer. Alexa Fluor® 488 conjugated anti-human nuclei
antibody (1:100) and PI (1:100) were incubated at RT for 3 h. After
washing three times with PBS, slides were coverslipped with Cytoseal-
XYL mounting medium (Thermo Fisher Scientific, MA, USA). Images
were captured by a confocal microscope (×200 magnification).

2.13. Cell number counting

UCB-MSCs were grown in 60-mm culture dish until 70% confluency.
Cells were synchronized by serum deprivation for 24 h and then ex-
posed to OA. After incubation for indicated time, cells were trypsinized
and resuspended in PBS. Cell number was calculated by using a
hemocytometer.

2.14. Statistical analysis

Data are presented asmeans± SE andwere analyzed by the Student
t test for comparing two groups. Results were considered to be statisti-
cally significant at P b 0.05.

3. Results

3.1. OA increased UCB-MSCs migration and enhanced skin wound-healing
effect of UCB-MSCs

To investigate the potential of OA enhancing the bioactivity of stem
cells, we initially explored the role of OA on UCB-MSC motility. As
shown in Fig. 1A, cells were treated with serial concentrations of OA
(0–100 μM) for 24 h. OA promoted the migration of UCB-MSCs at 0.1
to 10 μM compared to vehicle-treated UCB-MSCs. Also, OA stimulated
the migration of UCB-MSCs in a time-dependent manner in 12 to 48 h
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(Fig. 1B). To confirm the results of OA-enhanced cell migration, prolifer-
ation of UCB-MSCs was evaluated by counting the cell number for 72 h.
As shown in Supplementary Fig. 1, OA did not have any effect on UCB-
MSCs proliferation, indicating that the effect of OA on cell migration is
independent of cell proliferation. Moreover, to verify the effect of OA
on UCB-MSC motility and visualize the migrated cells, UCB-MSCs were
stained with Alexa Fluor® 488-phalloidin, which binds to F-actin. OA
significantly increased the number of migrated cells into the gap area
compared to the vehicle-treated UCB-MSCs (Fig. 1C). To prove the
maintenance of cellular phenotypes, we checked the mRNA expression
of differentiation markers for osteoblast (Osteopontin, Runx2), chon-
drocyte (Sox9, Col2a1), adipocyte (FABP4, PPARγ), and endothelial
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Fig. 4). This result indicates that the functional role of OA to induce mo-
tility is reproducible in another type of MSC. On the basis of the results
that motility of UCB-MSCs could be enhanced by OA, we planned to
evaluate the effect of UCB-MSCs and OA. Giving exogenous MSCs a pre-
treatment of biological molecules improves the efficacy of stem cell
transplantation and the skinwound-healing effect. Therefore,we exam-
ined the effect of UCB-MSCs pretreated with OA (10 μM) in a mouse
skin wound-healing experiment. The wound sizes were considerably
decreased in the group that received OA-treated UCB-MSCs compared
to the group treated with vehicle, OA and UCB-MSCs treated with vehi-
cle on days 9 and 12 (Fig. 1D). The group given OA-treated UCB-MSCs
showed an increased extent of wound closure compared to the other
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groups (Fig. 1E). In a histological analysis, thewound region in themice
group given OA-treated UCB-MSCs was recovered by re-epithelializa-
tion, and the granulation tissue had completely formed at the wound
sites, whereas the skin wound tissue sections of the mice given the ve-
hicle or OA alonewere not completely covered by epithelium or granu-
lation tissue (Fig. 1F). In the mouse wound-healing model, EphrinB2
activation is involved in wound-healing and angiogenesis [27]. We in-
vestigated the effect of exogenous UCB-MSCs on regulating the expres-
sion of Ephrins and their receptors using RT-PCR and real-time
quantitative PCR with mouse-specific primers. Among the Ephrins and
Eph receptors, EphrinB2 mRNA expression was dominant in mouse
skin wound tissue (Fig. 1G). The level of EphrinB2 mRNA expression

Image of Fig. 3
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was elevated in the group transplanted with OA-preconditioned UCB-
MSCs compared to the other groups (Fig. 1H). These results suggest
the involvement of EphB receptors in the migration of UCB-MSCs.

3.2. Effect of OA on the regulation of EphB2 expression in UCB-MSCs

To study the effects of exogenous OA-activated UCB-MSCs, we un-
dertook an initial examination of the endogenous expression levels of
EphBs and EphrinBs in UCB-MSCs. The results from the RT-PCR analysis
showed that the UCB-MSCs expressed EphB1, B2, B3, B4, and B6 as well
as EphrinB1 and B2. Among them, the EphB2 and EphrinB2 gene expres-
sion levels were high in the UCB-MSCs (Fig. 2A). Interestingly, OA in-
creased EphB2 expression in both the mRNA and protein levels,
whereas EphB3 was decreased in response to OA, but its expression
level was too low to detect in UCB-MSCs. In addition, themRNA expres-
sion of EphrinB2, a cognate ligand of EphB2, was unaffected by OA expo-
sure (Fig. 2B and C). Because the roles of EphB2 in regulating MSC
migration remain controversial [14,28], we examined the function of
EphB2 on the motility of UCB-MSCs. To knock down the expression
level of EphB2, UCB-MSCs were transfected with EphB2siRNA and
NTsiRNA and the analysis of EphB2siRNA efficacy is presented in
Supplementary Fig. 5. An in vitro cell migration assay showed that the
reduction of EphB2 expression resulted in decreased UCB-MSC motility
in response to OA (Fig. 2D). An Oris™ cell migration assay was also con-
ducted to confirm the role of EphB2 in regulating UCB-MSC migration
(Fig. 2E). Furthermore, a transwell migration assay showed that OApre-
treatment enhancedUCB-MSCmigration (1.6±0.07% of total cells) into
the lower compartmentwhich addedwith 5% FBS, whereas the number
of cells which migrated to the lower part was reduced by EphB2siRNA
transfection in spite of the OA pretreatment (0.88% ± 0.04% of total
cells) (Fig. 2F). These results indicate that OA regulates EphB2 expres-
sion and that EphB2 plays a key role in OA-inducedUCB-MSCmigration.

3.3. Effect of OA on the activation of GPR40 and PKCα

To uncover the mechanism of the regulation of EphB2 expression of
UCB-MSCs, we verified the expressions of GPR40 and GPR120, which
are activated by long-chain fatty acids. A RT-PCR analysis showed that
GPR40, known to be a receptor of OA, was expressed in UCB-MSCs (Sup-
plementary Fig. 6). Given that GPR40 coupleswithGproteins [29], we an-
alyzed whether OA induces the phosphorylation and translocation of
protein kinase C (PKC) isotypes. Phosphorylation of hydrophobic sites
on PKC causes PKCs to become primed for activation, which is referred
to as PKC maturation [30]. OA increased the phosphorylation of PKC
from 15 to 60 min (Fig. 3A). PKC phosphorylation was attenuated by
U73122, an inhibitor of phospholipase C (PLC) (Fig. 3B), but U73343,
Fig. 3. Effect of OA on the activation of GPR40 and PKCα. (A) Phosphorylation of PKC in cells tr
density was normalized to corresponding total PKC and then the RODs were represented as rel
versus control. (B) Cells were pretreatedwith U73122 (1 μM) for 30min and then exposed to O
band densitywas normalized value to correspondingβ-actin and then the RODswere calculated
n= 3. *P b 0.05 versus control. #P b 0.05 versus OA alone. (C) Change of [Ca2+]i in cytosol was
were exposed to OA for 180 s (top panel on the left). Cells were incubated inmedia pretreated
were incubatedwith BAPTA-AM (10 μM, intracellular calcium chelator) andwashed twice with
exposed toOA (bottompanel on the right). The dishes incubatedwith GW1100werewashed tw
results from three independent experiments were expressed as relative fluorescence intensi
experiments. (D) Subcellular fraction was performed to examine the translocation of PKC iso
(membrane) and anti-α-tubulin (cytosol) was used as markers for each fraction. In the right
expressed as fold of control. Control is the corresponding fraction of cells treated with vehicle
membrane-vehicle. (E) PKCα translocation in cells treated with OA is shown by the confocal m
fication, ×200). n = 3 (F) Cells were pretreated with GW1100 for 30 min and exposed to OA fo
was normalized to corresponding PKCα and then the RODs were calculated as relative to cont
versus control. #P b 0.05 versus OA alone. (G) Cells were transfected with Gαq, Gαi, Gα12, and
in total cell lysates. The band density was normalized to corresponding PKCα and then the ROD
means±SE. n=3. *P b 0.05 versus control. #P b 0.05 versus OAalone. (H) In vitro cellmigration
for 30min and incubatedwith OA for 24 h. Cellswere stainedwith Alexa Fluor® 488-phalloidin
were calculated as described in Materials and methods. Control is the cells treated with vehicle
Abbreviations: PKC, protein kinase C; ROD, relative optical density; EGTA, ethylene glycol tetraa
staurosporine.
an inactive analogue of U73122, did not have any significant inhibitory
effect on OA-stimulated PKC maturation (Supplementary Fig. 7). Also,
OA increased the intracellular Ca2+ concentration ([Ca2+]i), as deter-
mined by Fluo-3-AM staining (Fig. 3C, top panel on the left). We
changed themedium-treated EGTA (0.5mM) to eliminate the extracel-
lular Ca2+ (Ca2+-free) prior to checking the Ca2+ influx caused by the
OA treatment (Fig. 3C, middle panel on the left). EGTA did not show
an inhibitory effect on Ca2+ mobilization induced by OA. Moreover,
BAPTA-AM was pretreated for 30 min to chelate intracellular Ca2+

and the dishes were washed twice with PBS prior to checking
the intracellular Ca2+ influx by the OA treatment (Fig. 3C, middle
panel on the right). BAPTA-AM significantly attenuated OA-induced
Ca2+ mobilization. These results indicate that intracellular Ca2+ mobi-
lization released from endoplasmic reticulum is mainly involved in
the OA-mediated signal transduction in UCB-MSCs. Furthermore, we
performed experiments to verify the inhibitory effect of GW1100
(GPR40 antagonist) on the OA-mediated intracellular Ca2+ mobiliza-
tion. Interestingly, OA could not induce Ca2+ mobilization in the pres-
ence of GW1100 (Fig. 3C, bottom panel on the left). However, when
GW1100waswashed twicewith PBS, OAprovoked amobilization of in-
tracellular Ca2+ (Fig. 3C, bottom panel on the right). Thus, these results
indicate that the OA-induced intracellular Ca2+mobilizationwasmedi-
ated by the GPR40 activation. In a subcellular fractionation and immu-
nostaining analysis, the membrane translocation of PKCα was
observed, whereas those of PKCδ and PKCζ did not occur after an OA
treatment for 30 min (Fig. 3D and E). Additionally, OA induced PKCα
phosphorylation, which was blocked by GW1100 and GαqsiRNA but
not by GαisiRNA or Gα12siRNA (Fig. 3F and G). This indicates that the
activation of Gαq-coupled GPR40 results in the phosphorylation of
PKCα. To examine the effects of GPR40 during UCB-MSC migration,
cells were pretreated with GPR40 and PKC inhibitors. GPR40 with PKC
inhibition blocked OA-induced UCB-MSC migration (Fig. 3H and I).
Hence, these results suggest that GPR40-facilitated PKC maturation is
involved in OA-mediated signaling pathways and enhances UCB-MSC
motility.

3.4. OA regulates EphB2 expression in relation to the GSK3β/β-catenin
signaling pathway

Given that calcium-dependent PKC activation leads to glycogen syn-
thase kinase-3β (GSK3β) inactivation andβ-cateninnuclear translocation
[31],we investigatedwhetherβ-catenin signalingmaybe involved inOA-
mediated signal pathways inUCB-MSCs. The accumulation ofβ-catenin in
the nucleus plays important roles in the regulating functions of MSCs,
such as proliferation, migration, and differentiation [32], and their effects
on EphB expression have been reported [33]. Thus, we further
eated with OA for 0 to 60 min is shown, which was analyzed in total cell lysates. The band
ative value to the control. Control is untreated cells. Data are means± SE. n = 3. *P b 0.05
A for 30min. Phosphorylation of PKCwas analyzed bywestern blot in total cell lysates. The
as relative to control. Control is cells treatedwith vehicle for 30min. Data aremeans± SE.
determined by Fluo-3-AM (5 μM) staining and captured with a confocal microscope. Cells
with EGTA (0.5 mM, calcium chelator) and exposed to OA (middle panel on the left). Cells
PBS and exposed to OA (middle panel on the right). GW1100 (10 μM) for 30min and then
icewith PBS and cellswere exposed to OA (bottom panel on the right). The representative
ty at every time point to fluorescence intensity at time 0 (F/F0) from three independent
forms. Anti-PKCα, δ, and ζ antibodies were used for immunoblotting. Anti-pan-cadherin
panel, band intensity of PKC isoforms was normalized to pan-cadherin or α-tubulin and
for 30 min. Data are means ± SE. n = 3. *P b 0.05 versus cytosol-vehicle, #P b 0.05 versus
icroscope using immunofluorescence staining with anti-PKCα. Scale bar, 100 μm (magni-
r 30min. Phosphorylation of PKCαwas investigated in total cell lysates. The band density
rol. Control is cells treated with vehicle for 30 min. Data are means ± SE. n = 3. *P b 0.05
NTsiRNA for 24 h and exposed to OA for 30 min. Phosphorylation of PKCα was examined
s were calculated as relative to control. Control is cells treatedwith vehicle for 30. Data are
assaywas done. Cellswere pretreatedwith GW1100 (10 μM), Bis (1 μM) and Sta (100nM)
. n= 3. Scale bar, 500 μm(magnification, × 100). (I) OrisTMmigration assaywas done. Data
for 24 h. Data are means ± SE. n = 3. *P b 0.05 versus vehicle. #P b 0.05 versus OA alone.
cetic acid; RFU, relativefluorescence unit; NT, non-targeting; Bis, bisindolylmaleimide; Sta,
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investigated the effect of OA on β-catenin nuclear translocation. GSK3β
phosphorylation and the active form of β-catenin (ABC) were increased
for 15 to 60 min in response to OA (Fig. 4A). A fractionation assay of nu-
clear and non-nuclear fractions showed that the nuclear accumulation
of β-catenin was triggered by the OA treatment after 60 min (Fig. 4B).
To confirm the effect of OA on β-catenin nuclear translocation, immuno-
fluorescence stainingwas conducted by stainingwith PI andABC. After an
OA treatment for 60 min, ABC was detected in the nucleus part (Fig. 4C),
but OA-induced GSK3β phosphorylation and the nuclear translocation of
β-catenin were inhibited by the PKC inhibitors bisindolylmaleimide-1
(Bis) and staurosporine (Sta) (Fig. 4D). To verify the transcriptional regu-
lation of β-catenin during EphB2 expression, UCB-MSCs were transfected
with β-cateninsiRNA before the OA treatment. As indicated in Fig. 4E, the
expression of EphB2was reduced by the knock-downofβ-catenindespite
the OA treatment. In addition, OA-induced UCB-MSCs migration was
blocked by the suppression of β-catenin expression in both the in vitro
cell migration assay (Fig. 4F) and the Oris™ migration assay (Fig. 4G).
These results suggest that OA-induced EphB2 expression is regulated via
GSK3β/β-catenin signaling and plays a role in enhancing the migration
of UCB-MSCs.

3.5. EphB2 regulates F-actin expression and the migration of UCB-MSCs

EphB2 forward signaling affects cytoskeletal reorganization bymod-
ulating Rho GTPases, such as RhoA, Rac1 and Cdc42, which are impor-
tant for assembling branches of actin filaments in motile cells [34]. To
examine the role of EphB2 on F-actin polymerization, we evaluated
the F-actin expression and activity of the actin-binding protein in
UCB-MSCs. F-actin was increased after 8 h incubation. Also, the expres-
sions of profilin-1 and phosphorylation of cofilin-1 arose in conjunction
with F-actin expression after 8 h of incubation (Fig. 5A). OA also in-
creased the translocation of EphB2 into themembrane with the expres-
sion of F-actin in the UCB-MSCs (Fig. 5B). However, the silencing of
EphB2 expression by EphB2siRNA hindered OA-induced F-actin expres-
sion (Fig. 5C). To determine the role of OA in the activation of Rho
GTPases, UCB-MSCswere stimulated byOA for 12 h and then precipitat-
ed with GST-PAK-PKB and GST-Rhoteckin-RBD. The GTP-bound Rac1
was specifically increased by OA, but Cdc42 or RhoA were not involved
in promoting F-actin reorganization in response to OA (Fig. 5D). To con-
firm the role of EphB2 in regulating the activity of Rho GTPases, UCB-
MSCs were transfected with EphB2siRNA and the cells were exposed
to OA for 12 h. Interestingly, OA-induced Rac1 activation was compro-
mised in the EphB2siRNA transfected UCB-MSCs regardless of the OA
treatment (Fig. 5E). After an OA treatment for 12 h, Rac1 translocation
to the leading edges and the lamellipodia region was observed
(Fig. 5F). To determine the involvement of Rac1 activation in the OA-
induced migration of UCB-MSCs, the UCB-MSCs were transfected with
Rac1siRNA. The OA-induced migration of UCB-MSCs was blocked by
the transfection of Rac1siRNA, but this was independent of RhoA or
Cdc42 expression levels (Fig. 5G and H). Therefore, these data suggest
that OA-induced EphB2 expression contributes to the rearrangement
of F-actin and the UCB-MSC migration via Rac1 activation.

3.6. OA-induced EphB2 expression enhances the skin wound-healing effect
of UCB-MSCs

Wehave shown that themigration of OA-treated UCB-MSCs is related
to EphB2 expression in vitro. To examine the direct relationship between
EphB2 expression and the skin wound-healing effect, an in vivo skin
wound-healing assay was conducted through the transplantation of
UCB-MSCs transfected with EphB2siRNA or NTsiRNA. The UCB-MSCs
were transplanted into the wound sites. From day 9, the remaining
wound size of the OA-treated NTsiRNA + UCB-MSC group was signifi-
cantly smaller than that of the OA-treated EphB2siRNA + UCB-MSC
group, as determined by gross examinations of the wound sizes (Fig. 6A
and B). Consistent with this, a histological examination on day 12
indicated that the wound beds were filled with granulation tissues in
the OA-treated NTsiRNA + UCB-MSC group, whereas the structures of
the epidermis and dermis were not completely repaired in the OA-
treated EphB2siRNA + UCB-MSC group (Fig. 6C). On day 12, to confirm
the relationship between EphB2 expression and OA-induced UCB-MSC
migration in vivo, frozen sections of wound tissue were stained with
Alexa Fluor® 488 conjugated anti-human nuclei antibody (MAB1281A4,
clone 235-1,Millipore)which is a human-specific antibody. Precondition-
ing UCB-MSCswith OA increased the number ofNTsiRNA+UCB-MSCs in
the wound bed as compared to the number of EphB2siRNA+UCB-MSCs
(Fig. 6D). These results signify the involvement of EphB2 in the enhance-
ment of UCB-MSC migration into the wound bed and promoting the
wound-healing effect of UCB-MSCs through preconditioning with OA.

4. Discussion

Our results show that OA enhances UCB-MSC motility through
EphB2-dependent F-actin expression. In this study, we investigated
the effect of OA-treated UCB-MSCs on stem cell migration to wound
sites during skin wound-healing using an in vivo skin wound-healing
model. The results indicate that UCB-MSCs pretreated with OA enhance
re-epithelialization andmore efficiently repair the epidermis compared
to those obtained from UCB-MSCs pretreated with vehicle. Through an
mRNA expression analysis, we observed that EphrinB2 expression was
dominant within the EphB/EphrinB family in mouse skin tissue. More-
over, the level of expression increased with the degree of wound repair.
EphrinB2 is required for vascular development and plays crucial roles in
angiogenesis, which is regulated bymicroenvironmental factors such as
changes in oxygen tension andwhich is affected by angiogenic factors in
the wound region [35–37]. Therefore, an increase in EphrinB2 expres-
sion can promote wound recovery, and EphrinB2 and EphB interaction
may play an important role in the skin wound-healing process. On
this basis, we investigated the effect of OA on UCB-MSC migration and
the association between OA and the expression of EphBs. The results re-
vealed that EphB2 expression was the highest among the EphBs
expressed in UCB-MSCs. Moreover, OA uniquely increased EphB2 ex-
pression, which was involved in OA-induced UCB-MSC migration. Our
results are supported by a report showing that EphB/EphrinB regulates
the migration of neural progenitor cells and that controlling their ex-
pressionmay be useful in the treatment of brain injuries or neurodegen-
erative diseases [38]. In addition, the EphB2 expression level determines
the functional activity levels of stem cell migration and proliferation
[39]. However, the mechanism of the OA-mediated migration of UCB-
MSCs has not been fully elucidated.

Extracellular OA activates GPR40 [40], but the role of GPR40 in UCB-
MSCs has not been investigated. Recent reports have shown that OA
regulates gene expression via GPR40-dependent conventional PKC acti-
vation [41,42]. In addition, GPR40 induces diverse signaling across the
plasma membrane, and it has been reported that GPR40 couples with
the heterotrimeric G proteins Gαq, Gαi, and Gαs tomodulate insulin se-
cretion [43]. The Gαq-dependent PLC activation leads to the cleavage of
phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol triphosphate
(IP3) and diacylglycerol (DAG), which results in a release of Ca2+ from
the ER into the cytosol [45]. Newly synthesized PKCs should bematured
to be activated via a series of phosphorylation at the activation loop site
and hydrophobic motif in the C-terminal of the PKC [44]. In this study,
we found that OA phosphorylates the hydrophobic sites of the PKCs in
a time-dependent manner, which determines the final step of matura-
tion for reachingmaximal enzymatic effects. Especially, PKCmaturation
was also regulated by OA-induced PLC activation dependently. Among
the PKC isoforms, OA provoked the translocation of conventional
PKCα. Consistently, we showed that the OA-induced intracellular
Ca2+mobilization was initiated by GPR40 receptor activation and inde-
pendently regulated by the extracellular Ca2+ concentration. Because
PKCα is a conventional PKC that requires both Ca2+ and DAG for activa-
tion [46], Ca2+ binding to the C2 domain of matured PKCα initiates
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Fig. 4.OA regulates EphB2 expression in relation to the GSK3β/β-catenin signaling pathway. (A) Phosphorylation of GSK3β and activation of β-cateninwere analyzed bywestern blot. The
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Cellswere transfectedwithβ-cateninsiRNA orNTsiRNA for 24h and incubatedwithOA for 24 h. Scale bar, 500 μm(magnification,×100). n=3. (G)OrisTMmigration assaywas carried out.
Data were calculated as described inMaterials and methods. Control is the cells treated with NTsiRNA+ vehicle for 24 h. Cells were transfected with β-cateninsiRNA or NTsiRNA for 24 h
and incubated with OA for 24 h. Data were normalized to fluorescent signal of the NTsiRNA + vehicle. Data are means ± SE. n = 3. *P b 0.05 versus NTsiRNA + vehicle. #P b 0.05 versus
NTsiRNA+OA. Abbreviations: GSK, glycogen synthase kinase; ABC, active-β-catenin; PI, propiodium iodide; Bis, bisindolylmaleimide; Sta, staurosporine; NT, non-targeting; ROD, relative
optical density; RFU, relative fluorescence unit.
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translocation to the membrane. And several studies have reported that
PKCα activation plays a crucial role in the migration of cord-blood-
derived stem cells [47,48]. Related to this, OA-induced PKCα phosphor-
ylation was inhibited by a GPR40 antagonist, GW1100, and controlled
by Gαq, but not by Gαi or Gα12. Our results suggest that OA-induced
GPR40 activation leads to Ca2+/DAG-dependent PKCα membrane
translocation and regulates the gene expression of UCB-MSCs. Subse-
quently, PKC regulates GSK3β phosphorylation and results in the
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gene expression in UCB-MSCs. In addition, it has been reported that
Wnt/β-catenin signaling regulates EphB2 expression [33]. In this
study, we showed that OA-induced EphB2 expression was suppressed
by β-cateninsiRNA transfection in UCB-MSCs and that their motility
was reduced by the knock-down of β-catenin. Therefore, we suggest
that an OA signaling axis of PKCα/GSK3β/β-catenin mediates the tran-
scriptional regulation of EphB2 expression. Our results indicate that
when UCB-MSCs are pretreated with OA, their bioactivity is enhanced
through changes in EphB2 expression.

The roles of EphB2 in the developmental process and during neuro-
nalmigration have been studied [52], but determining the role of EphB2
in promoting the migration of UCB-MSCs has remained elusive. Thus,
we attempted to identify how EphB2 regulates the migration of UCB-
MSCs by investigating the effect of EphB2 expression on cytoskeletal
changes. Our results showed that cofilin-1 and profilin-1 were involved
in OA-induced F-actin reorganization. A recent study of the importance
of EphB2 in regulating cytoskeletal rearrangements showed that EphB2
overexpression, in cooperation with focal adhesion kinase activation, is
related to the migration and invasiveness of glioblastomas [34]. Our re-
sults show that the functional effects of OA-induced EphB2 on F-actin
reorganization are related to cell motility. When we knocked down
EphB2 expression, F-actin expression was reduced. In addition, our re-
sults showed that OA-induced EphB2 expression results in the activa-
tion of Rac1, but not RhoA or Cdc42, in UCB-MSCs. Localized Rac1
activation controlled by RTKs causes the formation of lamellipodia and
directed cell migration [53,54]. In particular, the EphB2-dependent
0 3

W
o

u
n

d
 a

re
a 

(%
)

0

20

40

60

80

100

D

BA

Fig. 6.OA-induced EphB2 expression enhances the skinwound-healing effect of UCB-MSCs. (A)
are shown. n=8. Scale bar, 6mm. (B) Percentages ofwound size relative to the initialwound siz
MSCs. (C) On day 12, histological assessmentwas done by H&E staining. Representative images
epidermis; D, dermis; GT, granulation tissue. (D) Detection of UCB-MSCs transplanted in the m
Frozen sections were stained with Alexa Fluor® 488 conjugated anti-human nuclei antibody (
shown. Scale bar, 200 μm (magnification, ×200). (E) A proposed model for OA-induced signali
recruitment of kalirin-7, one of the guanine nucleotide exchange factors
(GEFs), is associated with the activation of Rac1 and regulates actin po-
lymerization via the Arp2/3 complex in hippocampal neurons [55]. Our
results suggest that OA-induced EphB2 expression mediates the down-
stream signal pathways involved in the activation of Rac1; however, the
precise mechanism requires further investigation. Furthermore, a cyto-
skeletal rearrangement accompanies stem cell migration to an injury
site in response to wound-healing mediators such as proinflammatory
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and increased the number of UCB-MSCs at wound sites. Thus, we sug-
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factors involved in cutaneous wound-healing. Our results indicate that
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the pre-activation of UCB-MSCs with an OA treatment can be useful in a
wide range of stem cell therapies and can increase the rate of engraft-
ment of UCB-MSCs.

4.1. Conclusion

Collectively, our results suggest that OA is a promising natural lipid
metabolite, as it can promote the motility of UCB-MSCs, which results
in the promotion of tissue regeneration. OA enhances UCB-MSCmotility
through EphB2-dependent F-actin formation involving the PKCα/
GSK3β/β-catenin and Rac1 signaling pathway (Fig. 6E). Accordingly,
an OA pretreatment can enhance the therapeutic potency of UCB-
MSCs. In conclusion, we have identified EphB2 as a crucial factor in
OA-mediated functions that improve UCB-MSC migration and thera-
peutic potency levels while also enhancing the skin wound-healing
process.
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