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Abstract Objective: This paper addresses numerical investigation of steady, magneto-

hydrodynamic boundary-layer slip flow of a nanofluid past a permeable stretching/shrinking sheet

with thermal radiation using RKF45 with shooting technique. The effect of viscous dissipation, suc-

tion/injection, Brownian motion, thermophoresis, partial velocity slip and thermal slip is taken into

account and controlled by the non-dimensional parameters.

Results and conclusions: The dual solutions are obtained for the skin friction, Nusselt number,

temperature and nanoparticle volume fraction with pertinent parameters in the domain vc;1ð Þ
and sc;1ð Þ. The study shows that the Nusselt number decreases with an increase in thermophoresis

parameter Nt and thermal slip parameter d but increases with thermal radiation R and Prandtl

number Pr.

Practice implications: The present problem has numerous applications in engineering and

petroleum industries such as glass blowing, annealing and thinning of copper wires. The study of

radiation heat transfer plays an important role in the industrial applications at high temperature.
� 2015 Faculty of Engineering, Ain Shams University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The vast study has been carried out by several researchers in
the field of boundary layer flow and convective heat transfer

over a stretching/shrinking sheet due to various applications
in the industries and engineering process such as glass blowing,
annealing and thinning of copper wires. It is obvious that the
desired quality of final sheet strongly depends on the stretching

rate and the rate of cooling (heat transfer) in the process of
stretching. First analysis on the boundary layer flow over a
stretching sheet was studied by Crane [1]. This study is
extended by many researchers to examine the various aspects

of flow and heat transfer characteristics. Khan and Pop [2]
studied the behavior of Nusselt number and Sherwood number
for the boundary layer flow of a nanofluid over a linearly

stretching sheet under the consideration of two-component
model. Instead of linear stretching of sheet, the quality of sheet
can also be controlled with nonlinear and exponentially
ble mag-
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Nomenclature

a constant

B0 magnetic field strength (A/m)
C nanoparticle volume fraction
C1 ambient volume fraction
BðxÞ variable magnetic field (A mm�2)

DB Brownian diffusion coefficient (m2/s)
DT thermophoretic diffusion coefficient (m2/s)
Ec Eckert number

f dimensionless stream function
k thermal conductivity (W/m K)
Sc Schmidt number

L velocity slip factor (m)
m power index
M dimensionless magnetic field
N thermal slip factor (m)

Nb Brownian motion parameter
Nt thermophoresis parameter
Pr Prandtl number

R dimensionless thermal radiation
s mass transfer parameter
T nanofluid temperature (K)

Tw nanofluid temperature at sheet (K)
T1 ambient temperature (K)
u; v velocity components along x- and y-axis (m/s)

uw velocity of sheet (m/s)
vw mass transfer velocity (m/s)

x; y Cartesian coordinates (m)

qr radiative heat flux (W/m2)

Greek symbol
g similarity variable
l dynamic viscosity (Ns/m2)

m kinematic viscosity (m2/s)
/ rescaled nanoparticle volume fraction
h dimensionless temperature

v stretching/shrinking parameter
r electric conductivity of base fluid (S/m)
qcð Þf heat capacity of base fluid (J/K)
qcð Þp effective heat capacity of nanoparticle material (J/

K)
r� Stefan–Boltzmann constant (W m�2 K�4)
b power-law parameter

sw shear stress at surface (N/m2)
d thermal slip parameter

Subscript
1 ambient condition

w condition on surface
r radiation
f base fluid

s slip condition
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stretching along with consideration of heat and mass transfer
characteristics. Motivated by this concept, Cortell [3] has dis-

cussed viscous flow and heat transfer over a nonlinearly
stretching sheet. Rana and Bhargava [4] have extended the idea
to nanofluids and employed finite element method for the

numerical computation of flow and heat transfer characteristic
over a nonlinearly stretching sheet. Moreover, analytical solu-
tion of the boundary layer flow over an exponential stretching

sheet has been investigated (Nadeem and Lee [5]) using homo-
topy analysis method.

Since last few years many researchers are attracted towards
nanofluid due to its enhanced thermal conductivity as com-

pared to base fluids that are responsible for heat transfer.
Nanofluid, which was first introduced by Choi [6], is dilute sus-
pension of nanometer sized solid particle (Cu, Al, Ag, etc.) in

base fluid such as water, oil and ethylene glycol. The novel
characteristics of nanofluids can be utilized to develop stable
suspensions with improved heat transfer. Many researchers

have tried to develop the convective transport models for
nanofluid. In 2006, Buongiorno [7] has presented non-
homogeneous model to understand the convective transport
phenomena in nanofluid and studied seven-slip mechanisms.

Among these mechanisms only Brownian diffusion and ther-
mophoresis diffusion are found most important. These two slip
mechanisms are also incorporated in the study of natural con-

vective boundary layer flow of a nanofluid over a vertical plate
by Kuznetsov and Nield [8].

The study of magnetohydrodynamic has numerous applica-

tions in engineering, agriculture and petroleum industries. The
problem of natural convection under the effect of a magnetic
field has also applications in geophysics and astrophysics [9].
Please cite this article in press as: Rana P et al., Radiative nanofluid flow and heat tr
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Due to this many studies were performed with the effect of
magnetic field. Fang and Zhang [10] have given exact solution

for MHD flow equation of fluid over a shrinking sheet. They
have reported two solution branches for M 2 ð0; 1Þ but for
M ¼ 1 single solution branch is obtained only in case of suc-

tion and when M > 1 there is also single branch of solution
for both suction and injection. In 2011, Hamad [11] investi-
gated the analytical solution of electrical conducting nanofluid

flow over a linearly stretching sheet under the influence of
magnetic field. He found that momentum boundary layer
thickness decreases but thermal boundary thickness increases
with magnetic field. Rana et al. [12] presented unsteady

MHD transport phenomena over a stretching sheet in a rotat-
ing nanofluid. Numerical investigation of the MHD flow and
heat transfer of nanofluid between two horizontal plates in

rotating system using Cu, Ag, Al2O3 and TiO2 nanoparticles
in water has been computed by Sheikholeslami et al. [13] and
it is noticed that heat transfer is the highest for TiO2 nanopar-

ticles. Currently, much attention has been devoted to work in
the presence of magnetic field [14–18].

Several engineering processes occur due to high tempera-
ture; therefore, the study of radiation heat transfer plays an

important role in the field of equipment designing [19]. Cortell
[20] analyzed the boundary layer flow and heat transfer of fluid
under the consideration of thermal radiation and viscous dissi-

pation over a nonlinear stretched sheet. This work is extended
by Hady et al. [21] in nanofluid and investigated the effect of
thermal radiation, viscous dissipation and nanoparticle vol-

ume fraction on velocity, temperature and the rate of heat
transfer at the surface. They noticed that an increase in ther-
mal radiation decreases temperature of nanofluid which leads
ansfer over a non-linear permeable sheet with slip conditions and variable mag-
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Figure 1 Physical model and the coordinate system.
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to increment in rate of heat transfer whereas temperature
increases with viscous dissipation which gives sudden fall in
rate of heat transfer. Motsumi and Makinde [22] have studied

the boundary layer flow over a permeable moving flat plate
under the effect of viscous dissipation and thermal radiation
by considering Cu-water and Al2O3-water nanofluids Further-

more, Pal et al. [23] have studied the heat transfer over non-
linear stretching and shrinking sheets under the influence of
magnetic field, thermal radiation and viscous dissipation by

considering copper (Cu), alumina (Al2O3), and titanium oxide
(TiO2) nanoparticles. Recently, Nandy and Pop [24] extended
the work of Khan and Pop [2] by examining the study of MHD
boundary layer stagnation flow and heat transfer over a

shrinking sheet incorporating the two component model under
the effect of radiation. Very recently, Sheikholeslami et al. [25]
studied the combined effect of magnetic field and thermal radi-

ation for nanofluid flow and heat transfer between two hori-
zontal parallel plates by considering two-component model.
Rashidi et al. [26] have also investigated the combined effect

of magnetic field and thermal radiation over a vertical stretch-
ing sheet for two dimensional water based nanofluid flow.
They observed that velocity decreases and temperature

increases in the presence of magnetic field and skin friction
increases with magnetic field and thermal radiation.

Most of the studies are carried out without slip condition,
i.e. it is assumed that fluid particles have zero velocity relative

to solid boundary. But literature shows that the characteristics
are different in case of micro- and nano-scale fluid flow. Thus,
the importance of slip boundary condition was first discussed

by Navier [27], which states that fluid slip is proportional to
shear stress. In 2002, Wang [28] has given the exact solution
of Navier–Stokes equations for the flow over a stretching sheet

by taking into account partial slip. Fang et al. [29] also inves-
tigated the analytical solution for slip effect over a shrinking
sheet considering magnetic field effect and noticed the multi-

ple, single and no solution exist for 0 < M < 1, M ¼ 1, and
M > 1, respectively. Recently, Das [30,31] investigated the par-
tial slip flow and convective heat transfer of nanofluids over a
linear and nonlinear stretching sheet. Moreover, Ibrahim and

Shankar [32] incorporated the effect of velocity, thermal and
solutal slip boundary condition over a stretching sheet to study
the MHD boundary layer flow and heat transfer of a nano-

fluid. Currently, Uddin et al. [33] have studied hydromagnetic
boundary layer slip flow of bio-nanofluid which is significant
to the synthesis of bio-magnetic nanofluids of potential interest

in skin repair, wound treatments and coatings for biological
devices. Multiple solutions for fluid flow and heat transfer
are also a point of attraction of various researchers. The survey
of recent literatures shows the existence of more than one solu-

tion for boundary layer flow over stretching/shrinking sheet
[34–38].

The main concern of current study is to investigate the

dual solution for the combined effects of thermal radiation,
magnetic field, mass suction transfer, and viscous dissipation
for steady boundary layer nanofluid flow over a power- law

stretching/shrinking sheet in the presence of partial slip by
using Nield and Kuznetsov revised nanofluid model [8]. As
authors knowledge no efforts are devoted for this kind of

problem. Motivated by this fact, present study analyzes the
variation of skin friction, Nusselt number, temperature and
nanoparticle concentration in the presence of abovemen-
tioned parameters numerically by using shooting method
Please cite this article in press as: Rana P et al., Radiative nanofluid flow and heat tr
netic field: Dual solutions, Ain Shams Eng J (2015), http://dx.doi.org/10.1016/j.asej
[39] with RKF45 method and presented graphically in this
paper.

2. Nanofluid transport model

We consider a steady, laminar, two dimensional boundary
layer flow of incompressible and electrically conducting nano-

fluid along a horizontal nonlinear stretching/shrinking sheet
under the effect of viscous dissipation and thermal radiation.
The coordinate system is considered as, x-axis is taken along

the sheet and y-axis perpendicular to the sheet (see Fig. 1).
The fluid is moving due to nonlinear stretching/shrinking of
the sheet caused by two parallel forces act in opposite direction

along the x-axis. The sheet is stretched/shrunk with velocity
uw xð Þ ¼ axm, where a is a constant, m is a power index and
wall mass suction/injection velocity is vw ¼ vwðxÞ, by keeping

the origin ‘O’ fixed. The variable magnetic field BðxÞ is
assumed to be applied along y-axis. The radiative heat flux
qr is also taken perpendicular (y-axis) to the sheet. The temper-
ature at sheet Tw is assumed to be constant and the ambient

temperature is T1, as y ! 1 where T1 < Tw. The nanoparti-
cle volume fraction is assumed to be controlled passively on
the sheet by the temperature gradient. The ambient nanoparti-

cle volume fraction is C1. The external forces and pressure
gradient are assumed to be zero. Under these hypotheses, the
steady conservation equations for proposed nanofluid model

are presented in Cartesian coordinates x; y as (see
[7,8,21,31,40])

@u

@x
þ @v

@y
¼ 0 ð1Þ
ansfer over a non-linear permeable sheet with slip conditions and variable mag-
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u
@u

@x
þ v

@u

@y
¼ m

@2u

@y2
� rB2

q
u ð2Þ

qcð Þf u
@T

@x
þ v

@T

@y

� �
¼ k

@2T

@y2
� @qr

@y
þ qcð Þp DB

@C

@y

� �
@T

@y

� ��

þDT

T1

@T

@y

� �2
!

þ l
@u

@y

� �2
ð3Þ

u
@C

@x
þ v

@C

@y
¼ DB

@2C

@y2
þ DT

T1

@2T

@y2
ð4Þ

In Eq. (2), we have ignored the induced magnetic field because

of small magnetic Reynolds number for fluid motion. The
external electric field and electric field due to polarization of
charges are also neglected and the magnetic field is of the form

[41]:

B xð Þ ¼ B0x
m�1ð Þ=2 ð5Þ

where m is power index.
Here u and v are the velocity components along the x- and

y-axis, respectively, qf and qp are the base fluid and nanopar-

ticle densities respectively. l is the dynamic viscosity, m is the
kinematic viscosity, r is the electrical conductivity of the base
fluid, T is the temperature, cf and cp are the specific heat of

base fluid and nanoparticle at fixed pressure, respectively and

k is the thermal conductivity. C is concentration of nanoparti-
cles, DB is Brownian motion and DT is thermophoretic diffu-
sion coefficient. The boundary conditions are as follows (see

[8,32,38]):

u ¼ vuw xð Þ þ us; v ¼ vwðxÞ; T ¼ Tw þ Ts;

DB

@C

@y
þ DT

T1

@T

@y
¼ 0 at y ¼ 0 ð6aÞ

u ¼ 0; v ¼ 0; T ¼ T1; C ¼ C1 as y ! 1 ð6bÞ
where v is stretching (for positive)/shrinking (for negative)

parameter, us is slip velocity which is assumed equal to L @u
@y

and Ts is thermal slip equal to N @T
@y
.

qr is considered insignificant in x-direction and defined by

applying Rosseland approximation for optically thick media,
as (see [21,42,43]):

qr ¼
�4

3k�
grad ebð Þ ð7Þ

where k� is the Rosseland mean spectral absorption coefficient
and eb is the blackbody emission power, defined by the Stefan–

Boltzmann radiation law eb ¼ r�T4. Hence

qr ¼
�4r�

3k�
@T4

@y
: ð8Þ

The temperature difference inside the flow is assumed to be

very small so T4 can be expressed as a linear function of tem-

perature, by applying Taylor series expansion about T1 such
that

T4 ¼ T4
1 þ 4T3

1 T� T1ð Þ þ 6T2
1 T� T1ð Þ2 þ . . . ð9Þ

higher order terms of T� T1ð Þ in above Eq. (9) are neglected,
then we get

T4 � 4T3
1T� 3T4

1: ð10Þ
Please cite this article in press as: Rana P et al., Radiative nanofluid flow and heat tr
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Using Eq. (10) in Eq. (8), we obtain

qr ¼ � 4r�

3k�
@

@y
4T3

1T� 3T4
1

� � ¼ � 16r�T3
1

3k�
@T

@y
: ð11Þ

and

@qr
@y

¼ � 16r�T3
1

3k�
@2T

@y2
: ð12Þ

Now we introduce the following similarity variables for Eqs.
(1)–(4) with boundary conditions (6):

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2ma

mþ 1

r
x

mþ1
2 f gð Þ; g ¼ y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðmþ 1Þ

2m

r
x

m�1
2 ;

h gð Þ ¼ T� T1
Tw � T1

; / gð Þ ¼ C� C1
C1

;

where w is the stream function, which is defined as u ¼ @w
@y

and

v ¼ � @w
@x
. Thus, we have

u ¼ axmf0ðgÞ; v ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
amðmþ 1Þ

2

r
x

m�1
2 fðgÞ þm� 1

mþ 1
gf0ðgÞ

� �
:

ð13Þ
Hence using similarity variables the governing Eqs. (2)–(4)

transform to

f000 þ ff00 � bf02 �M2f0 ¼ 0 ð14Þ

1þ 4R

3

� �
h00 þNbh0/0 þNth02 þ Pr fh0 þ Ecf002

� � ¼ 0 ð15Þ

/00 þ Scf/0 þ Nt

Nb
h00 ¼ 0 ð16Þ

and boundary conditions become

at g¼ 0; f¼ s; f0 ¼ vþ kf00; h¼ 1þ dh0; Nb/0 þNth0 ¼ 0;

as g ! 1; f0 ¼ 0; h ¼ 0; / ¼ 0; ð17Þ
where prime denotes the differentiation with respect to g only

and b ¼ 2m
mþ1

power-law parameter, M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2rB2
0

aqf mþ1ð Þ

r
is Hartman

number or magnetic field parameter, Pr ¼ qcð Þfm
k

is Prandtl num-

ber, Sc ¼ m
DB

is Schmidt number, Ec ¼ u2w
cf Tw�T1ð Þ is Eckert num-

ber, R ¼ 4r�T31
k�k is radiation parameter, Nb ¼ qcð ÞpDBC1

qcð Þfa is

Brownian motion parameter, Nt ¼ qcð ÞpDT Tw�T1ð Þ
qcð ÞfaT1

is ther-

mophoresis parameter, s ¼ � vwffiffiffiffiffiffiffiffiffi
amðmþ1Þ

2

p
x
m�1
2

is mass transfer

parameter, i.e. suction for (vw < 0) and injection for (vw > 0),

k ¼ L
ffiffiffiffiffiffiffiffiffiffiffi
aðmþ1Þ

2m

q
x

m�1
2 is the velocity slip parameter, and

d ¼ N
ffiffiffiffiffiffiffiffiffiffiffi
a mþ1ð Þ

2m

q
x

m�1
2 is the thermal slip parameter.

The important physical quantities in this study are the skin
friction coefficient and the local Nusselt number which are
defined as

Cf ¼ sw
qu2w

; Nux ¼ xqw
k Tw � T1ð Þ ; ð18Þ

where sw is shear stress at wall and qw is the wall heat flux
which are given below:
ansfer over a non-linear permeable sheet with slip conditions and variable mag-
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sw ¼ l
@u

@y

� �
y¼0

; qw ¼ � kþ 16r�T3
1

3k�

� �
@T

@y

� �
y¼0

: ð19Þ

Using Eqs. (13) and (19) in Eq. (18), we get

CfRe
1=2 ¼ f00 0ð Þ and

Nux

Re1=2
¼ � 1þ 4

3
R

� �
h0 0ð Þ;

where Re ¼ a mþ1ð Þ
2t xmþ1 is Local Reynolds number and Reduced

Nusselt number is given by

Nur ¼ � 1þ 4

3
R

� �
h0 0ð Þ: ð20Þ

A closed analytical solution for MHD slip flow

f000 þ ff00 � f02 �M2f0 ¼ 0 over a shrinking sheet has been
obtained by Fang et al. [29], which is given as

f gð Þ ¼ s� 1

fþ kf2
þ 1

fþ kf2
e�fg; ð21Þ

and

f0 gð Þ ¼ � 1

1þ kf
e�fg; f00 0ð Þ ¼ f

1þ kf
; ð22Þ

where s is mass transfer parameter, k is velocity slip parameter

and f is root of the Eq. kf3 þ 1� skð Þf2 � sþ kM2
� �

fþ
1�M2 ¼ 0. Only positive real roots of f are physically feasible
solutions. There may be either three real roots or one real and
two complex conjugate roots or one simple real and two two-
fold real roots or one threefold real roots depending on the val-
ues of M; s and k. For M < 1 multiple solutions are observed

for all values of k and the domain of multiple solutions is chan-
ged with k. For M ¼ 1, only one solution branch exists and
when M > 1, there is one solution for both mass suction and

injection [29].

3. Stability analysis

The stability of the solutions is investigated by considering
unsteady flow of present nanofluid model which is given as

@u

@x
þ @v

@y
¼ 0; ð23Þ

@u

@t
þ u

@u

@x
þ v

@u

@y
¼ m

@2u

@y2
� rB2

q
u; ð24Þ

qcð Þf
@T

@t
þu

@T

@r
þw

@T

@z

� �

¼k
@2T

@y2
�@qr

@y
þ qcð Þp DB

@C

@y

@T

@y
þDT

T1

@T

@y

� �2
" #

þl
@u

@y

� �2

; ð25Þ

@C

@t
þ u

@C

@x
þ v

@C

@y
¼ DB

@2C

@y2
þ DT

T1

@2T

@y2
; ð26Þ

and new similarity transformations are

w¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2ma
mþ1

r
x

mþ1
2 f g;sð Þ; g¼ y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðmþ1Þ

2m

r
x

m�1
2 ;

s¼ aðmþ1Þ
2

xm�1t; h g;sð Þ¼ T�T1
Tw�T1

; / g;sð Þ¼C�C1
C1

: ð27Þ

Using Eq. (27) into Eqs. (24)–(26) we obtain,
Please cite this article in press as: Rana P et al., Radiative nanofluid flow and heat tr
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@3f

@g3
þ f

@2f

@g2
� b

@f

@g

� �2

�M2 @f

@g
� @2f

@s@g
¼ 0; ð28Þ

1þ 4R

3

� �
@2h
@g2

þNb
@h
@g

@/
@g

þNt
@h
@g

� �2

þ Pr Ec
@2f

@g2

� �2

þ f
@h
@g

� @h
@s

" #
¼ 0; ð29Þ

@2/
@g2

þ Scf
@/
@g

þ Nt

Nb

@2h
@g2

� @/
@s

¼ 0; ð30Þ

along with boundary conditions

f 0; sð Þ ¼ s;
@f

@g
0; sð Þ ¼ vþ k

@2f

@g2
0; sð Þ;

hð0; sÞ ¼ 1þ d
@h
@g

0; sð Þ; Nb
@/
@g

0; sð Þ þNt
@h
@g

0; sð Þ ¼ 0;

as g ! 1;
@f

@g
g; sð Þ ¼ 0; h g; sð Þ ¼ 0; / g; sð Þ ¼ 0: ð31Þ

As suggested by Merkin [44], and Harris et al. [45], the sta-

bility of the steady flow solution f gð Þ ¼ f0 gð Þ, h gð Þ ¼ h0 gð Þ and
/ gð Þ ¼ /0 gð Þ which satisfies the boundary value problem (14)–
(17), can be investigated by considering eigenvalue parameter a
with the following relations:

fðg; sÞ ¼ f0ðgÞ þ e�asFðg; sÞ;
hðg; sÞ ¼ h0ðgÞ þ e�asGðg; sÞ;
/ðg; sÞ ¼ /0ðgÞ þ e�asHðg; sÞ;

ð32Þ

where Fðg; sÞ;Gðg; sÞ and Hðg; sÞ are small relative to
f0ðgÞ; h0ðgÞ and /0ðgÞ, respectively.

Using relations (32) into Eqs. (28)–(31) we get the following
linear system:

@3F

@g3
þ @2f0

@g2
Fþ f0

@2F

@g2
� 2b

@f0
@g

@F

@g
�M2 @F

@g
� @2F

@s@g
þ a

@F

@g
¼ 0;

ð33Þ

1þ4R

3

� �
@2G

@g2
þNb

@/0

@g
@G

@g
þ@h0

@g
@H

@g

� �
þ2Nt

@h0
@g

@G

@g
þ@h0

@g
F

þPr f0
@G

@g
þ2Ec

@2f0
@g2

@2F

@g2
�@G

@s
þaG

� �
¼ 0; ð34Þ

@2H

@g2
þ Sc f0

@H

@g
þ @/0

@g

� �
þ Nt

Nb

@2G

@g2
þ� @H

@s
þ aH ¼ 0; ð35Þ

F 0; sð Þ ¼ s;
@F

@g
0; sð Þ ¼ k

@2F

@g2
0; sð Þ; Gð0; sÞ ¼ d

@G

@g
0; sð Þ;

Nb
@H

@g
0; sð Þ þNt

@G

@g
0; sð Þ ¼ 0;

as g ! 1;
@F

@g
g; sð Þ ¼ 0; G g; sð Þ ¼ 0; H g; sð Þ ¼ 0: ð36Þ

Now the stability of the solutions f gð Þ ¼ f0 gð Þ; h gð Þ ¼ h0 gð Þ
and / gð Þ ¼ /0 gð Þ of steady problem (14)–(17) can be discussed

by putting s ¼ 0 and then we obtain

F000
0 þ f000F0 þ f0F

00 � 2bf00F
0
0 �M2F0

0 þ aF0
0 ¼ 0; ð37Þ
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Table 1 Comparison of results for �h0 0ð Þ and �/0 0ð Þ when

M ¼ s ¼ R ¼ Ec ¼ 0, Pr = 10 = Sc, and d ¼ 0 for different

values of Nb, Nt and k for linear stretching sheet v ¼ 1.

Nb Nt k ¼ 0 k ¼ 1

Noghrehabadi

et al. [46]

Present

results

Noghrehabadi

et al. [46]

Present

results

�h0 0ð Þ
0.1 0.1 0.952377 0.952377 0.718928 0.718928

0.3 0.520079 0.520079 0.392596 0.392596

0.5 0.321054 0.321054 0.242357 0.242357

0.3 0.1 0.252156 0.252155 0.190347 0.190346

0.3 0.135514 0.135514 0.102297 0.102296

0.5 0.083298 0.083298 0.062880 0.062880

�/0 0ð Þ
0.1 0.1 2.129394 2.129395 1.607430 1.607431

0.3 2.528638 2.528639 1.908809 1.908810

0.5 3.035142 3.035144 2.291156 2.291157

0.3 0.1 2.410019 2.410019 1.819268 1.819269

0.3 2.608819 2.608820 1.969337 1.969338

0.5 2.751875 2.751877 2.077327 2.077328

Table 2 Comparison of �h0 0ð Þf g and �/0 0ð Þf g for different

values of Nt and Nb with fixed nanoparticle concentration and

no slip condition on the surface, when Pr = 10 = Sc,

Ec = 0 =M ¼ s ¼ R for linear stretching sheet v ¼ 1.

Nt Nb �h0 0ð Þ �/0 0ð Þ
Khan and Pop

[2]

Present Khan and Pop

[2]

Present

0.1 0.1 0.9524 0.952376 2.1294 2.129388

0.3 0.2522 0.252155 2.4100 2.410015

0.5 0.0543 0.054253 2.3836 2.383567

0.3 0.1 0.5201 0.520079 2.5286 2.528625

0.3 0.1355 0.135514 2.6088 2.608812

0.5 0.0291 0.029135 2.4984 2.498367

0.5 0.1 0.3211 0.321054 3.0351 3.035120

0.3 0.0833 0.083298 2.7519 2.751866

0.5 0.0179 0.017922 2.5731 2.573099
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1þ 4R

3

� �
G00

0 þNb /0
0G

0
0 þ h00H

0
0

� �þ 2Nth00G
0
0

þ Pr f0G
0
0 þ h00Fþ 2Ecf000F

00
0 þ aG0

� � ¼ 0; ð38Þ

H00
0 þ Sc /0

0F0 þ f0H
0
0

� �þ Nt

Nb
G00

0 þ aH0 ¼ 0; ð39Þ

along with boundary conditions

F0 0ð Þ ¼ 0; F0
0 0ð Þ ¼ kF00

0 0ð Þ; G0ð0Þ ¼ dG0
0ð0Þ;

NbH0
0 0ð Þ þNtG0

0 0ð Þ ¼ 0;

as g ! 1;F0
0 gð Þ ¼ 0;G0 gð Þ ¼ 0;H0 gð Þ ¼ 0; ð40Þ

where F ¼ F0ðgÞ, G ¼ G0ðgÞ and H ¼ H0ðgÞ characterize the
initial growth and decay of the solution (32). To solve the lin-
ear eigenvalue problem (37)–(39) with boundary conditions

(40), we relax the condition F0
0 gð Þ ! 0 as g ! 1 and use

new boundary condition F00
0 0ð Þ ¼ 1, [45].

4. Numerical solution and validation

The nonlinear ordinary differential Eqs. (14)–(16) along with

boundary conditions (17) are solved numerically using shoot-
ing technique by converting into initial value problem (IVP).
We have placed Eqs. (14)–(16) as first order differential

equations by assuming f; f0; f00; h; h0;/;/0ð Þ ¼ U1;U2;U3;ð
U4;U5;U6;U7Þ ¼ U, as given below:

U0
1

U0
2

U0
3

U0
4

U0
5

U0
6

U0
7

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

¼

U2

U3

�U1U3 þ bU2
2 þM2U2

U5

� 1
1þ4R

3

Pr U1U5 þ EcU2
3

� �þNbU5U7 þNtU2
5

	 

U7

� ScU1U7 þ Nt
Nb
U0

5

� �

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
;

ð41Þ
with the initial conditions

UT ¼ s; vþ kU3;U3; 1þ dU5;U5;U6;� Nt

Nb
U5

� �T

: ð42Þ

Here it is noticed that without knowing the values ofU3;U5 and

U6, i.e. f
00 0ð Þ; h0 0ð Þ and / 0ð Þ, we are not able to solve above sys-

tem of Eq. (41) with initial conditions (42), which are unknown
in this problem; therefore, the most important step of this tech-
nique is to pick the suitable values of these unknowns. For this

we choose initial values for f00 0ð Þ, h0 0ð Þ and / 0ð Þ, such that far

field conditions, i.e. f0 1ð Þ ¼ 0; h 1ð Þ ¼ 0;/ 1ð Þ ¼ 0, are satis-

fied with appropriate domain length g1 and improve chosen
values iteratively by Newton-Raphson method. After getting
all the initial conditions, we solve the initial value problem
using MATLAB code for RKF45 method. An iterative process

is assumed to give a convergent solution when the following
condition is satisfied:X
i

Xn
i � Xn�1

i

�� �� 6 10�6:

We have compared the �h0 0ð Þf g and �/0 0ð Þf g with earlier
published results by [46,2] in Tables 1 and 2 respectively, to
validate the accuracy of present numerical results. Skin friction
Please cite this article in press as: Rana P et al., Radiative nanofluid flow and heat tr
netic field: Dual solutions, Ain Shams Eng J (2015), http://dx.doi.org/10.1016/j.asej
is also compared with exact solution for without slip condition

in Table 3. The graphical validation for velocity profile f0 gð Þ
between exact and numerical solution demonstrated by Fang
et al. [29], is shown in Fig. 2. The outstanding agreement is
reported for all the results.

5. Results and discussion

The analysis of the present problem has been done numeri-

cally. Numerical results of skin friction f00 0ð Þ, Nusselt Number,
temperature h gð Þ and nanoparticle concentration / gð Þ are pre-
sented graphically for different values of governing parameters

in Figs. 3–12. We have fixed default values for governing
parameters as R ¼ 0:1, b ¼ 1:5, M ¼ 0:1, Ec = 0.1, s = 3.0,
Pr ¼ 6:8, Sc= 10, Nb = 0.5, Nt = 0.5, k ¼ 0:1 and d ¼ 0:1
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Table 3 Comparison of skin friction at the wall f00 0ð Þ with

exact solution in case of shrinking sheet v ¼ �1 for no slip flow

(k ¼ 0; d ¼ 0).

s M Exact solution [10] Present result

First Second First Second

3.0 0.1 2.622497 0.377503 2.622498 0.377503

0.3 2.657584 0.342416 2.657584 0.342416

0.5 2.724745 0.275255 2.724745 0.275255

4.0 0.1 3.734935 0.265065 3.734935 0.265065

0.3 3.757840 0.242160 3.757840 0.242160

0.5 3.802776 0.197224 3.802776 0.197224

Fang et al. [29] 

Present Results

Figure 2 The graphical comparison with exact solution of

velocity profile given by Fang et al. [29] at magnetic field M= 0.5

and mass transfer parameter s = 2.0 for different values of

velocity slip parameter k for shrinking sheet v ¼ �1.

Figure 3 Skin friction f00 0ð Þ with stretching parameter v for

different values of power-law parameter b.

Figure 4 The Nusselt number at the surface with stretching

parameter v for different values of power-law parameter b.

Figure 5 The nanoparticle volume fraction at the surface with

stretching parameter v for different values of power-law parameter

b.
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throughout the computations. First and second solutions are
displayed with solid and dotted lines respectively. Since the
study considers the dual solutions for the present problem,
the physical existence of both first and second solutions is
Please cite this article in press as: Rana P et al., Radiative nanofluid flow and heat tr
netic field: Dual solutions, Ain Shams Eng J (2015), http://dx.doi.org/10.1016/j.asej
investigated by performing stability analysis. We have found
the smallest eigenvalues a for some values of involving param-

eters and results are shown in Table 4. It can be seen that the
smallest eigenvalues are positive and negative for the first and
second solutions, respectively. The positive eigenvalue corre-
sponds to physically stable solution whereas negative to unsta-

ble [44,45]. Hence the first solution is physically stable and

second is unstable. Numerical results of �h0 0ð Þf g have been

shown in Table 5 for different values of governing parameters.
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Figure 6 The Nusselt number at surface with stretching param-

eter v for different values of thermal slip parameter d.

Figure 7 The Nusselt number at surface with stretching param-

eter v for different values of thermal radiation parameter R.

Figure 8 The Nusselt number with mass transfer parameter s for

different values of thermal slip parameter d.
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Figs. 3–5 present the influences of power-law parameter b
and velocity slip parameter k, on the skin friction f00 0ð Þ, Nusselt
number and nanoparticle volume fraction / 0ð Þ for different
values of stretching parameter v. The dual solutions are

obtained for b > 0 while only single solution is obtained when
b goes to negative and these solutions are terminated by criti-
cal value vc. It can also be seen that beyond vc (v < vc), no
solution exists and this critical value shifts on left side with b
and k. It is observed that for skin friction, both the solutions
are decreasing with an increase in b but opposite behavior is
Please cite this article in press as: Rana P et al., Radiative nanofluid flow and heat tr
netic field: Dual solutions, Ain Shams Eng J (2015), http://dx.doi.org/10.1016/j.asej
observed for increasing value of k. The Nusselt number
increases with k and attains maximum value near v ¼ 0 (static)
after that it goes down to the Nusselt number at critical value

vc. The Nusselt number at the surface enhances as an increase
in power-law parameter. Nanoparticle volume fraction
increases as power-law parameter increases whereas decreases

with increasing value of velocity slip parameter.
The effects of thermal slip parameter d and thermal radia-

tion R on the Nusselt number are shown in Figs. 6 and 7. It

can be seen that the solution does not exist beyond the critical
value vc ¼ �2:2535 and the first and second both the solutions
are decreasing with increasing values of thermal slip parameter
d and increasing with thermal radiation R. Here it can also be

noted that for particular value of v near to �1 the Nusselt
number has unique value and first and second solutions have
opposite behavior on left and right of this particular value.

For d= 0.1, 0.2 and 0.3, the particular value vpv is �0.9365,

�0.9161 and �0.9090 respectively. Similarly, for R= 0.1, 0.3

and 0.5, vpv is �0.9365, �1.0047 and �1.0350 respectively.

Further, the effect of mass transfer parameter s on the Nus-
selt number for different values of thermal slip parameter d is

investigated (see Fig. 8) and observed that the Nusselt number
is decreasing with d and s. The critical value sc remains
unchanged with d such that no solution exists for s < sc and

first solution is found lower than second solution.
The variation of the Nusselt number with R for various val-

ues of Nt and s is shown in Fig. 9 in the presence and absence

of thermal slip parameter d. The Dual solutions are captured
such that first solution is always higher than second solution.
As Nusselt number is ratio of convective and conductive heat
transfer so for large Nusselt number, heat convection rises.

The Nusselt number is decreasing with Nt and d but increasing
with thermal radiation R and mass transfer parameter s.

Fig. 10 gives the effect of viscous dissipation parameter Ec

(Eckert number, which controls the fluid flow), on the local
Nusselt number for several values of Prandtl number Pr and
Schmidt number Sc. It is observed that for both solutions,

the local Nusselt number is decreasing, with Ec and Sc but
increasing with Pr. Here it is interesting to see that the first
solution is higher than second solution in the absence of vis-

cous dissipation (Ec = 0) while opposite trend is observed in
the presence of viscous dissipation (Ec = 0.1, 0.2).

The influence of thermal radiation on temperature h gð Þ and
nanoparticle volume fraction / gð Þ is displayed in Fig. 11. As

the value of thermal radiation R increases, temperature and
nanoparticle volume fraction increase. Moreover, temperature
gradient and thermal boundary layer thickness decrease.

Further, the effect of nanofluid parameters (Brownian
motion parameter Nb and thermophoresis parameter Nt) on
nanoparticle volume fraction has been investigated. The gradi-

ent of nanoparticle concentration at the surface is controlled
passively by the product of temperature gradient and (�Nt/
Nb) therefore nanoparticle concentration gradient increases
with Nt and decreases with Nb for fixed temperature gradient.

From Fig. 12 it can be observed that nanoparticle volume frac-
tion is increasing with Nt, which is due to the fact that ther-
mophoretic force takes away the fluid from the surface

quickly, which leads to an increase in the concentration bound-
ary layer thickness. On the other hand nanoparticle volume
fraction decreases with an increasing value of Nb and concen-

tration boundary layer thickness reduces.
ansfer over a non-linear permeable sheet with slip conditions and variable mag-
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Figure 9 The effect of thermophoresis parameter Nt and mass transfer parameter s on the Nusselt number with thermal radiation R for

different values of thermal slip parameter d.

Figure 10 The influence of Eckert number Ec on Nusselt number for different values of Prandtl number Pr and Schmidt number Sc.

Figure 11 The effect of thermal radiation R on temperature h gð Þ and nanoparticle volume fraction / gð Þ.
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Figure 12 The effect of nanofluid parameters (Nb and Nt) on nanoparticle concentration / gð Þ.

Table 4 The smallest eigenvalues a for first and second solutions with different values of s; v; k and b, while other parameters are fixed.

s k ¼ 0 s k ¼ 0:1

First solution Second solution First solution Second solution

2.2 0.4131 �0.3887 2.05 0.1808 �0.1766

2.14 0.1635 �0.1602 2.04 0.1013 �0.1001

2.13 0.0630 �0.0629 2.038 0.0759 �0.0757

v b ¼ 0:5 v b ¼ 1:5

�3.07 0.2023 �0.1853 �2.15 0.6793 �0.6510

�3.08 0.1522 �0.1430 �2.20 0.4890 �0.4758

�3.085 0.1203 �0.1148 �2.22 �0.3783 �0.3780

Table 5 Numerical values of first and second solution (given in brackets) of �h0 0ð Þf g for different values of M; k; d;R and Nt for

power-law shrinking sheet v ¼ �1 when other parameters are fixed.

M R (k; d) Nt

0.1 0.3 0.5

0.2 0.1 (0.1, 0.1) 6.189207 6.141767 6.092976

(6.195208) (6.149257) (6.102025)

(0.1, 0.2) 3.782973 3.771844 3.760436

(3.779945) (3.780431) (3.769725)

(0.2, 0.1) 6.253965 6.206668 6.158027

(6.188265) (6.142379) (6.095217)

0.2 0.1 (0.1, 0.1) 6.189207 6.141767 6.092976

(6.195208) (6.149257) (6.102025)

0.3 5.696319 5.647115 5.596775

(5.691942) (5.644108) (5.595198)

0.5 5.274784 5.225663 5.175644

(5.259762) (5.211896) (5.163182)

0 0.1 (0.1, 0.1) 6.189786 6.142357 6.093578

(6.202492) (6.156475) (6.109174)

0.2 6.189207 6.141767 6.092976

(6.195208) (6.149257) (6.102025)

0.5 6.186358 6.138862 6.090012

(6.146766) (6.101274) (6.054522)

10 P. Rana et al.

Please cite this article in press as: Rana P et al., Radiative nanofluid flow and heat transfer over a non-linear permeable sheet with slip conditions and variable mag-
netic field: Dual solutions, Ain Shams Eng J (2015), http://dx.doi.org/10.1016/j.asej.2015.08.016

http://dx.doi.org/10.1016/j.asej.2015.08.016


Radiative nanofluid flow and heat transfer 11
6. Conclusion

The numerical investigation has been carried out in this study
to analyze the influence of governing over a stretching/shrink-

ing sheet under the slip flow of nanofluid. The governing par-
tial differential equations are formulated into nonlinear
ordinary differential equations of non-dimensional parameters

by using similarity variables and being solved numerically by
RKF45 method with shooting technique. We have acquired
interesting observations graphically for these pertinent param-
eters which are summarized below:

� The critical values (vc and sc) are found for the existence of
both first and second solutions.

� At the surface, Skin friction decreases whereas Nusselt
number and nanoparticle volume fraction increase with
increasing value of power-law parameter. Skin friction

increases as velocity slip parameter increases.
� The Nusselt number decreases with an increase of ther-
mophoresis parameter, thermal slip parameter, viscous dis-

sipation and Schmidt number but increases with thermal
radiation, mass transfer parameter and Prandtl number.

� It is observed that temperature and nanoparticle volume
fraction enhance with thermal radiation. Moreover,

nanoparticle volume fraction increases with thermophoresis
parameter and decreases with Brownian motion parameter.
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