and emesis. In the present study, we investigated the anti-obesity effects and antioxidant activity of KE-06.

Methods: 3T3-L1 preadipocytes were differentiated into adipocytes with or without KE-06. After differentiation, we measured Oil Red O staining, glycerol-3-phosphate dehydrogenase (GPDH) activity and leptin production in 3T3-L1 adipocytes. In addition, we analyzed its effect on scavenging activities of 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2′-diphenyl-1-picrylhydrazyl (DPPH) radicals in in vitro systems. Its effect on low-density lipoprotein (LDL) oxidation was assessed by measuring production of malondialdehyde (MDA).

Results: KE-06 significantly inhibited lipid accumulation and triglyceride production, and mediated GPDH, a major enzyme in the process of adipogenesis. Consistent with this, KE-06 stimulation significantly decreased the amount of leptin in 3T3-L1 adipose cells. Furthermore, KE-06 enhanced the scavenging activities on ABTS and DPPH radicals. The generation of MDA during LDL oxidation was significantly reduced by KE-06 treatment.

Conclusion: Overall, our findings suggest that KE-06 has the potential for anti-adipogenic activity and antioxidant properties.

Contact: Sae-Rom Yoo, k2aori@kiom.re.kr

http://dx.doi.org/10.1016/j.imr.2015.04.016

P1.010

Development of Anti-hepatofibrotic Herbal Drug (CGX)

Chang-Gue Son, Hyeong-Geug Kim, Jong-Min Han, Jin-Seok Lee

Liver & Immunology Research Center, Daejeon Oriental Hospital of Daejeon University

Purpose: Liver fibrosis is the key pathological change which is arisen by most of chronic hepatic injuries. The progress of hepatic fibrosis determines the clinical outcome of patients, but no therapeutics for the disease exists yet. The objective of the present study is to present the overall status for CGX development regarding its clinical backgrounds, pharmacological studies in animal models, and current process of randomized clinical trial.

Methods: CGX has been used for patients suffering various liver diseases, including chronic viral hepatitis and alcoholic liver disorders. The safety study for CGX using rats and beagle dogs, and pharmacological actions in animal models using chemicals (CCl4, DMN, or TAA), chronic alcohol consumption, choline-deficient (MCD) diet, and bile duct ligation (BDL) were presented respectively. The objective of the present study is to present the overall status for CGX development regarding its clinical backgrounds, pharmacological studies in animal models, and current process of randomized clinical trial.

Results: CGX is a modification of a traditional Korean herbal medicine, which is under clinical trial phase III for hepatofibrosis therapeutic effect. The main mechanisms of CGX related to anti-hepatofibrotic effects involve the inhibition of hepatic stellate cells producing extracellular matrix (ECM), down-regulation of pro-fibrogenic cytokines (TGF-β, PDGF, CTGF), and modulation of oxidative stressors and enhancements of antioxidant components. In addition, microarray experiment revealed the regulative action of CGX on VEGF gene expression.

Conclusion: Various animal data strongly expected that multi-sites clinical trial evidences the fibro-therapeutic effects in patients with chronic viral or alcoholic liver diseases.

Contact: Chang-Gue Son, ckson@dju.ac.kr

http://dx.doi.org/10.1016/j.imr.2015.04.017

P1.011

Anti-tumor activity of Gleditsia sinensis thorns targeting angiogenesis

Jin-Mu Yi, Jun Lee, Jinhee Kim, Jong-Shik Park, You Jin Lee, Se-Mi Oh, Haejin Kim, Dal-Seok Oh, Ok-Sun Bang, No Soo Kim

Korea Institute of Oriental Medicine

Purpose: Gleditsia sinensis thorns have been used in Korean medicine to treat diverse diseases including thrombosis and relieve symptoms similar to cancer. The present study aims to (1) determine the anti-angiogenic effects of the ethanol extract of Gleditsia sinensis thorns (EEGS) in vitro and in vivo, (2) evaluate anti-tumor potential in vivo, (3) identify the active constituent of EEGS, and (4) understand its underlying mechanism.

Methods: EEGS was prepared by maceration of dried powder of Gleditsia sinensis thorns in 80% EtOH. Anti-angiogenic effects of EEGS were determined in vitro by quantifying HUVEC-mediated cell migration and tube formation, and in vivo by measuring new blood vessel formation into the pro-angiogenic factors-imbedded matrigel. Anti-tumor potential of EEGS was evaluated using a tumor-xenografted mouse model. Isolation and identification of active constituent from EEGS were carried out by activity-guided fractionation and NMR-Mass spectroscopy, respectively. Alteration of gene expression following drug treatment was determined by conventional molecular biological methods.

Results: EEGS inhibited proliferation of HUVEC without affecting cell viability. Angiogenic properties of HUVEC, such as cell migration and tube formation, were significantly inhibited by EEGS. Formation of new blood vessels induced by pro-angiogenic factors and growth of xenografted tumors were suppressed by EEGS as determined by in vivo animal models. HPLC-NMR-Mass spectroscopic analyses revealed that cytochalasin H is an active anti-angiogenic constituent of EEGS. Anti-angiogenic potential of EEGS and cytochalasin H was related with the reduced expression of pro-angiogenic factors, such as EDN1 and MMP2.

Conclusion: Taken together, our findings suggest that EEGS can inhibit angiogenesis as well as tumor growth by down-regulating expression of pro-angiogenic factors. Therefore, EEGS can be considered as a good starting material to develop a novel anti-cancer drug targeting angiogenesis. This study