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Abstract

We extend our formulation of the covariant quantum superstring as a WZNW modeNwitl2 superconformal symmetry
to N = 4. The two anticommuting BRST charges in tNe= 4 multiplet of charges are the usual BRST cha@e and a
chargeQy proposed by Dijkgraaf, Verlinde and Verlinde for topological models. Using our recent work on “gauging cosets”,
we then construct a further chargg- which anticommutes witltQ~ + Qy and which is intended for the definition of the
physical spectrum.
0 2005 Published by Elsevier B.Wpen access under CC BY license

1. Introduction and conclusions

The past four years a new approach to the covariant quantization of the superstring has been developed. The
starting pointis a BRST operat@s = § A%d,, in the left-moving sector of the superstrifid, depending on free
spacetime coordinateg’, 6% and their conjugate momentdg6)., (m =0,...,9;a¢ =1,..., 16), and commuting
ghostsA”. The constraintg,, ~ 0 define the conjugate momentadsf, and this is the only information of the
classical Green—Schwarz string that is kEp8]. The OPEs produce further curren,, andd,0%, and these
currents form a closed affine Lie algebra. Nilpotency)gf can be achieved by imposing the pure spinor constraint
Ay™x = 0[1], butin our approacfd] we have relaxed this constraint, and this produced new ghost(péirs.,,)
(anticommuting) andx, ) (commuting), as well as a conjugate momentury for A* (we suppress from
now on the index most of the time). We discovered in this approach that the superstring is a “gauged” WZNW
model[5], based on a non-semisimple non-reductive superalgéhlwaich decomposes into coset generat@rs
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(associated with-id, andA®, w,) and Abelian subgroup generators, namejy(associated witli1,, and&™, 8,,)

and fermionic central chargds® (associated witld6* and x, «%). It is non-reductive becaug®,,, P,] is not
proportional toQg, but rather tok #. The matter current$y; = {—id,, IT,,, 39*} depend only o™, 6% and p,,

and generatel. From the ghost fields one can construct currents which also form a representaficnbivithout
double poles. The gauging leads to a second set of matter cumfgmispending on new variableg’, 6y and

p{; and also thesg-currents generate the algebdabut with opposite central charges (opposite double poles). In
terms of these currents a particular superconformal algebra was constructed, with BRS‘I}'%acgﬂaining the

sum of the currentdy; + JJ{; + %J,f}h, a stress tensor, a ghost current, and a spin 2 fieldvhich contains the
difference of the currentgy, — Jj’(l. The central charge of this system vanishes. The spin 2 Hgldatisfies the
relation § j;}’; (z) B,z (w) = T, (w). In our earlier work we had tried to find an expression fdd]t but only after
gauging the model did we finally succeed. The gauged WZNW model also improved our earlier work in another
respect: no longer was it necessary to introduce further ghosts and antighosts by hand, but only the minimal set of
ghostse™ = {1, ™ x.} is present, and still BRST nilpotency and vanishing of the central charge is achieved.
The next step concerned the definition of physical stgibgs. It became clear to us that in addition to the
usual conditioanV|phys) = 0 we needed further conditions, whose role was to remove the dependence of the
cohomology on the extra coordinate®”, 6" andpg. In addition, we expected to need a condition of the form
Bolphys = 0 whereBg is the zero mode oB;;(z). Also we knew from the work of6] that in purely topological
models there exists a second BRST chafige, which has the more familiar Virasoro for@y = ¢ ¢T;, + - - .
Indications that our approach has topological aspects were already encountered in our first paper on tl#] subject
Two BRST charges suggest the presence a¥an4 algebra and that is the subject of this Letter. It is desirable
to first discuss the motivations that have led to the present work, before commenting on the steps needed to obtain
our results.

(1) All the known models of string theory on flat Minkowskian space can be embedded ino=a# super-
conformal algebra. This suggests to investigate whether this also applies to the present formulation.

(2) The construction of the pure spinor formulatidh is based on a BRST charge and pure (first class) spinor
constraints. This means that the observables (BRST cohomology) of the theory are constructed on a functional
space with additional constraints. This construction is known as homological perturbation theory and it can be
reformulated as an unconstrained system with the help of more than one BRST [h@lgéhe reformulation
thus obtained has several advantages: it provides an unconstrained functional space with manifestly geometrical
properties such as supersymmetry and Lorentz covariance. However, since string theory is a conformal field theory,
it is necessary to extend the construction of the BRST charges to a complete set of generators forming a closed
algebra. We shall construct this algebra; it isNe= 4 superconformal algebra and this gives us a well established
context to study the correlation function of the theory.

(3) In[5] we showed that the pure spinor formulation arizes if one quantizes WZNW models. In particular, we
showed how to select a physical space when the constraints are represented by the generators of a coset instea
of the usual construction of the BRST charge based on the generators of a sufajrdups unavoidably leads
to first class constraints on the ghost fields which can be treated in the context of homological perturbation theory
as discussed above. In addition, WZNW models are conformal field\aedl, 2 and N = 4 superconformal
symmetry is pivotal to derive some important result such as non-renormalization theorems, finiteness, computation
of correlation functions, computation of elliptic genera, and partition functions. So, besides applications to string
theory, the motivations to extend the results obtaing&jiio N = 4 algebra is to reproduce the known results of
gauged WZNW models in the new framework of “gauging” the coset of the underlying gauge algebra.

(4) An N = 4 structure has some important implications: it implies that there is a natural picture changing
operation, and it allows the construction of the measure for higher genus computations.
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(5) In the context of the pure spinor formulation, the role of the Virasoro constraints, which have been essential
for all the string models (bosonic, RNS, WZNW, String field theory) is obscure. The present formulation sheds
some light on the problem. In fact, the construction clearly shows that one needs to couple the theory to a topo-
logical gravity multiplet bringing in the ghosts for diffeomorphisms. A careful gauging of the present formalism
would lead to the present structure of BRST operators.

In the rest of the introduction, we explain the several steps needed to obtain the desired result. Starting form the
WZNW model, we found that the superconformal algebra is nat an2 algebra, but rather a Kazama algel@ja
such an algebra has extra higher spin currents (namely two spin 3 currents). However, it is known that one can add
a gravitational topological quartet (which we call the Koszul quarkgtbelow) and modify the Kazama currents
such that the sums of the currents of the combined system form a ge¥uin2 algebrg9,10]. In particular the
BRST charge of this combined system is the sum of the separate cthﬁes,Qf, but the spin 2 currenB”
of WZNW model is modified inta3" by adding terms depending on the fieldskot

The fact that such a Koszul quartet is a gravitational topological quartet was welcome news, because it enables
us to introduce worldsheet diffeomorphisms into our work. It is known from the work of Dijkgraaf—Verlinde—
Verlinde[6], that there exist two BRST charges in topological models: a ch@@éor the Koszul quartet and a
chargeQy which is related to diffeomorphisms and which has the form

1 Sy 1
Qv=7§c(TW+§TK>+)/<BW+§BK>+--~.

HereT" is the stress tensor of the matter topological system which in our case corresponds to the sum of WZNW
the K system, and?" is the modified spin 2 field mentioned above. The two cha@gsand Q§ anticommute.

However, as noticed recent§1], in order thatQy and Q?’ + Qf' anticommute, the Koszul quartet needed
to turn the Kazama algebra infé = 2 algebra cannot be the same as the Koszul quartet needed to cogstruct
Thus there are two Koszul quartets, which we already denoted aboké bgd K. The quartetk’ modifies the
currentBY of the WZNW model, whilek enters in the construction @y . At this point we have the following
BRST chargesQY + 0%, 0X and 0y . The first one is a spacetime object, while the latter two are worldsheet
objects. They are all nilpotent and anticommute with each other.

Although we had now constructed three BRST charges, none of them contained the information that the the-
ory originally contained the pure spinor constraints. So the problem of finding an additional BRST ¢harge
remained. We decided to start a study of general Lie algebras and constraints of the kind encountered in the
superstrind12]. In this study we divided generators into the commuting set of Cartan generators, and coset gen-
erators. The superstring is an example, with the coset generators, ag#,,, K*) the Abelian subalgebra. We
then “gauged the coset generators”. By this provocative statement we meant that we imposed constraints on the
ghosts associated to the coset generators (corresponding to the pure spinor cofidiyaams then relaxed these
constraints in such a way that the cohomology remained unchanged. In the process we found the second BRST
chargeQc, but one has to introduce a doubling of the subgroup ghosts as well as an another copy of the sub-
group ghosts which vanishing ghost number. In our case these new fields are den@&dAiy, x,,. «;*) and
(Dm» 9T, b, #7). There is a separate BRST charge for the coset fields which we deth%’bmd a contribution
of the coset fields t@y which we denote by)?.

Following the procedure di.2] the BRST charg@é" for the WZNW model withK andK’ quartets and coset
fields was recently constructed|ihl], but it was found not to anticommute with the total cha@e+ Qv where
Qs = QEV + Qg(’ + 0% + 0% andQy = Qv + 0SP. We construct below a charg@c which does anticommute
with Qg + Qy. Our construction is based on the observation that all currents so far have been constructed without

1 This quartet consists of the ghosté?, bl,.v'%, B.,) with conformal sping—1, 2, —1, 2) and the ghost charges, —1, 2, —2). Later we
introduce a second quart&t= (c*, b, y*, Bzz) with same quantum numbers in order to construct the topological BRST ctigrge
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bosonization, so that the zero modes, and¢ . due to bosonization of the superghosts of the two Koszul quartets
K andK’ trivially anticommute with all the other currents. We propose to take the zero figtland to make a
similarity transformation with the whole BRST char@g as follows

QY :e_R%n;eR, whereR = {QS, %E/X:V}.

Here ¢’ is the partner ofy. and X;" is defined by[QS,fXZW] = Q}/Y with Qg’ the charge given ifj12]. Of
course Qg itself remains unchanged under this similarity transformation(ag’dis of the form¢ n, + Qg’ 4+
and is independent ok . The extra terms denoted by follow straightforwardly the double- and higher-order
commutators, and are needed in order tbgt anticommute withQyg.

Having constructed the extra char@%’ which we expect to be needed to define the correct physical spectrum,
we return to the issue of ai = 4 superconformal algebra. A small = 4 superconformal algebra needs a triplet
of SU(2) currents, which for a twisted model (the case we are considering) have(6pin®) and ghost numbers
(2,0,-2) [13].

We use the free fields of th€ quartet to construct the Wakimoto representation of tigeb@) currentg14].
There are now at least two ways to proceed:Qs@andQy, or useQSW + Qfé’ +0¢ anng’ to construct another
N =4 algebra. In this Letter we perform the first construction. It may clarify if we summarize the various charges
in a diagram, and indicate the variods= 2 and N = 4 subalgebras which could conceivably be constructed.
Those whose existence is only conjectured are indicated by a question mark. From this picture another conjecture
emerges: the various = 4 algebras are all subalgebras of an enveloping 8 superconformal algebra.

Without coset fields With coset fields
w
SPACETIME{ f 772 Qc

) w / N =47
N=4? | oV 4+ QK'IN =2 QS+Q§+Q§°}
N=4}N=8?

WORLDSHEET{ of +0oviN=2 08 + 0v+0f

N=4?
N=4 f’?z té)p }

Mutually anticommuting BRST charges o8f = 2, 4 subalgebras

In the spacetime sector we begin with the BRST chaQQ’eof the WZNW model5] (see the left upper part of
the diagram). The BRST charg}e‘s"’ + Q§’ belongs to av = 2 algebrd5]. The BRST charg?egf 1, anticommutes
Q?’ + Qg(’ and these two charges might be part a¥ &= 4 algebra. The coset fields are needed to consQl‘Lﬁf:t
according to[12] and hence one finds the BRST charg€’ for the coset fields in the right upper part of the
diagram. Comparing the left- and right-hand side of the diagram, we conjecture that the BRST Qg’argek:h
we discussed above ag@l! + QX" + 0 are part of anotheN = 4 algebra.

In the worldsheet sector we find the BRST cha@§ + Qv which is part anV = 2 algebra, as discussed
in [6], see the lower left part of the diagram. The zero méae forms another anticommuting BRST charge, and
together these two BRST charges form&in= 4 superconformal algebra as shown by Berkovits and &34
We can repeat our procedure of the spacetime sector and make a similarity transformgtipnvaith the BRST

charge of the worldsheet sector to obt@'k?p, see the lower right part of the diagram. The formula reads

QP = R ?ﬁ n-e®",  whereR'©P = {Q§ +Qv. yg SXiop},

2 The bosonization formulas fdt arey? = n.e~% andg,, = d&e? with p(z)p(w) ~ — In(z — w). Similarly for K’
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and XEOp = ¢'b. The construction oXEOp follows along the lines of12]: one starts with a BRST operator which
is nilpotent up to term which are a Lie derivative alopd15]. One requires that these terms vanish, which is the
analog of the constraints involving,, and then one relaxes this constrdit®]. In this contexty plays the role

of A%, ¢ plays the role of ™, xo), while ¢’ corresponds t@&'™, x.,), andy’ corresponds tde™, ¢,). Note that
“gauging” of the coset of the topological quart€tbrings in the quarteK’ of the spacetime sector. This is the
more fundamental reason that one needs two quartets. PerhapsQ@aier and thp are part of anvV =4
algebra (see the lower right part of the diagram).

Finally, we come to the contents of this Letter. We show @gtand Qv do indeed belong to awv =4
superconformal algebra. We construct this algebra in steps. In S&cti@nconstruct ariv = 4 algebra for the
quartetk with the Wakimoto triplet, in Sectio we add the coset fields, and in Sectibmwe add the WZNW
model coupled to the quarté&t’. The final result is given by E¢45).

It is also easy to construct a char@e which anticommute witlQs + Qy, namelyQ¢c = e $rn+ sn')eR
with arbitraryr, s, andR = {Qg + Qv, ¢ X}. One choice forx is X = (S/X?’ + §X§°p). In order that physics after
the similarity transformation is different from physics before, we expect that a suitable filtration (grading condition
[4])2 is needed.

Despite several important results of the pure spinor forma]jisrh obtained by N. Berkovits and the Stony
Brook group, a deeper understanding of the formalism and its geometrical origins are still lacking. Several issues
such as the relation with the kappa symmetry of Green—Schwarz string theory, the Virasoro constraints (and there-
fore the diffeomorphism invariance), and the role of picture changing operators in a path-integral construction have
to be explored and the present Letter might shed some light on these aspects. We mention that the details how to
combine the left-moving sector with the right-moving sector have recently been workgdlgut

2. The N =4 gravitational Koszul quartet

The quantization of the superstring as a particular WZNW model based on a non-semisimple Lie algebra has
led us in[5] to a twistedN = 2 superconformal field theory. Followir{§] we introduced a gravitationa&¥ = 2
Koszul quartet which can be considered as the twisted version of the familiai2spid, 3/2, —1/2) ghost quartet
(b, c*, Bz, v*) of the N = 1 RNS spinning string. The introduction of this quartet achieved two goals:

(i) it allowed the construction of a second BRST cha@e as in topological models, and
(ii) it coupled our spacetime-supersymmetric superstring to worldsheet gravity.

The two BRST chargeQ?’ and Qf are present in any topological model, so they cannot be used to eliminate the
dependence ary, andg;,. We need another anticommuting operator, like an antighost, to eliminate this dependence.
Moreover, if one has two BRST charges, it seems likely that one is dealing with-ad model.

An N = 2 model with two spin-one BRST charges suggest that it is part of a twigted4 model, which
should consist of two spin-one BRST currei$ (z) and Gt (z), two spin 2B-fields G~ (z) and G (), a stress
tensorT,, with vanishing anomaly, and furth&J(2) currents. In a twisted = 4 model theSU (2) currents have
spin Q 1, 2, rather than spin [iL3]. We thus need a spi®, 1, 2) triplet of currents which separately form a closed
algebra.

At this point we may recall that the well-known Wakimoto representafi@gh of currents constructed from
ghost fields satisfies these properties. One is thus led to study the orgina® gravitational Koszul quartet
together with the Wakimoto triplet of currents, and try to extend this model 18 an4d model.

3 see[12] for a geometrical interpretation of the grading.
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This quartet(b,, c*, B;;, y*) has sping2, —1, 2, —1) and ghost charges-1, 1, —2, 2). The ghost$,, andc?
are anticommuting with propagatoz)b(w) ~ (z — w)~%, while y? andg,, are commuting and satisfy the OPE
y(2)B(z) ~ (z — w)~L. The currents of thisv = 2 model are given by

T,; = —2b;0,¢° — ;b .c° — 2B,,0,y° — 3. B, ¥°, 1)
JZB =—b.y%, Jo=—b " =28 y%, (2)
By =2:,0.c° + c*0; Bz + by 3)

The stress tensor is simply the sum of the stress tensors of twgZpirl) doublets, and the factor 2 in the ghost
current yields the ghost chargés —2) for y* and ;.. The B field B, has spin 2 and ghost numbef, and the
parametey is a free parameter (to be fixed o= 1 later). The spin-1 BRST curregif and the spin-2 field_,
are the twists of the two spiry2 currents of an untwisted = 2 multiplet. From now on we shall drop the super-
and subscriptg when no confusion is possible.

The Wakimoto representation is given by

J++:—bcy+gay—ﬁw, 4)
J3=—bc — 2By, ()
I~ =8. (6)

The superscripts denote the ghost number. The ghost current is identifiedswithese currents satisfy the fol-
lowing OPE

++ —

T3 I (w) ~ 2 J3(2) J3(w) ~ 732 (7)
Z—w (z—w)

T @Iy~ 2 S o py~ 2 B (8)

Z—w)? z—w z—w)d  (z—w)?
Closure of the algebra fixes all coefficients in the currents. We could rescale these currents such that the terms with
double poles iVt J** andJ3J3 become equal, but the formulas are simpler by keeping the present normaliza-
tion.

We now present they = 4 extension of theéV = 2 Koszul model. This result has been obtained befofé&h
with © = 0, but we keepu arbitrary. The stress tensor aBd (2) triplet are unchanged, while we have the following
anticommuting currents

Jtt g =~

Gt=—-by «+— > G~ =—b, 9)
- 3
G~ =2Bdc+cif +ub «—— Gt = —Eazc + bede + 20cBy + cdBy + uby. (10)
J——J

The currentsG* are equal to the BRST current and thdield of the N = 2 model. As the notation indicates the
currents/*t+ andJ~~ map the current&* andG~ into each other, and als6~ andG* are mapped into each
other byJ ™ andJ——

JTT ()G (w) ~0, J7 ()G (w) ~0, (12)

JtH ()G T (w) ~0, J"7 ()G (w) ~0, (12)
—_C+ - —G—

FHOG )~ @G~ e, (13)
_ Gt -

I @G (w) ~ % JTT(@G T (w) ~ %Uw) (14)

Only the calculation off *+(z) G (w) is involved.
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The superscripts of these currents denote their ghost number

+ ~+
B@GEw ~ M oGty ~ £ (15)
Z—w Z—Ww

The conformal spin ozt andG~ is 1 and 2, respectivelfs], while it is straightforward to verify thaG* (w)
have the same conformal spin@s
Gtw) aGT(w)
z—w?  z-w '

The crucial test is whether the OPEs of two fermionic currents close. They do indeed close. We find the following
OPEs

T(2)Gt(w) ~

(16)

20 (w)  9J(w)

Gt ()Gt (w) ~ 5 (17)

(z—w) Z—w
- 2J -

G- (G (w)~ 2 W) 2T W) (18)

(z —w) Z—w
_ -3 J3(w) Tz (w)
+ ~
GrQG W)~ gt T e T (19)
G+ (Z)Gi(w) - 3 —J3(w) _Tzz(w) ‘ (20)

z—w)d  (z—w)? Z—w

For our work it is important that the two BRSFG* and§ G* charges are nilpotent and anticommute. This is
indeed the case

GT ()G (w)~0, G @G Tw)~0, G ()G (w)~0, (21)
G )G T(w)~0, G (G (w)~0, G 2)GT(w)~0. (22)

For Gt (z)G*(w) we directly checked that the terms with cancel, but the vanishing of this OPE follows
already from(13) and(23).

We conclude that we have constructedMa= 4 extension of the gravitation& = 2 Koszul quartet. We end
this section with a few comments:

(1) The parameten of the termub in G~ remains arbitrary; it is not fixed when one extends ahe- 2 Koszul
model with a freeu to the N = 4 Koszul model.

(2) BothT, J3,Gt,G~ andT, J3, G, G~ are N = 2 multiplets. Since obviously for both the anomalyZinz
is opposite to the anomaly ¥z J3, both are topologicaN = 2 multiplets. The anomaly in the stress tensor
indeed vanishes.

(3) The OPEs of a twiste®d = 4 model are, for example, given jh3]. We obtain agrement with these OPEs if
we rescale our current by factots.

(4) Foru =0 this N = 4 superconformal algebra has been derived befof&d]) specifically equatio33).

3. An N =4 model for one Koszul quartet and coset fields

In this section we extend the construction to “coset fields”. These coset fields were first introduced in our paper
[12], in order to construct a second BRST change for the superstring @@lledubsequently these fields were
added to outv = 2 WZNW model for the superstring if11]. The result of these articles is &h= 2 conformal
field theory containing two Koszul quartets, coset fields, and the fields of the WZNW model. In this section we
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construct arV = 4 conformal field theory containing one Koszul quartet and the coset fields. This will pave the
way to anN = 4 formulation of the WZNW model.
The coset fields for the superstring consist of second set of gl&)sts.”, x.,. «.*), and a corresponding set of

fields (¢m, 9™, o, ¢%). The fields(E,,, B,,, ¢«. *) are anticommuting, whiléx,, ., ¢,,, ") are commuting.

m>

The propagators are the standard ones
/ n n l / l
&, (B (w) ~ 4, p— Xeo (Z)Kzﬂ(w) ~ 55 . (23)

_ 1 _ 1
o @QPE (W) ~ 8 ———, @ ()PP (w) ~ 8L ——. (24)
Z—w —w

From these fields one can constructn= 2 algebra.
Following [5,11,12]the stress tensor, ghost aBdcurrents are easily written down. F@y, we have the usual
free field expression
Ttk — _ﬂ;maz‘i:/m - Kéaazxt; - @zmazﬁon - @?az(pa
= 2by70;¢° — 0;bypct — 25,0,y — 9. By With crr =0. (25)

The central charges of the: and 8y system (26 and 26) cancel each other, and also those of the coset fields
cancel because the primed fields have opposite statistics fropfiblels. The ghost current is the sum of the ghost
currents of the two systems

JZCO+K = _ﬂémslm - KéaXéz — bz = 2By witheyy =-9. (26)

Its anomaly isc;; = —9. (Twisting yields this anomaly in théJ OPE, while the conformal anomaly iiT
vanishes after twisting.) The BRST current is the sum of the two BRST currents of the coset and Koszul systems

JSTK ==, — 6% xl, — bayv”. 27)

Finally, the B, field reads
BZCZO-FK = ﬂém A" + Kéaaz‘/)a +2B:0;¢° + ¢, Bz + by, (28)

where we recall that is a free parameter.
The coset currentg?°, J°, % and B form separately aw = 2 superconformal algebra. In particular,

_6 JCO TCO
Jg° (@) B (w) ~ IRl a— (29)
co co ~ —
IR W) ~ . (30)
co co
TO(2) J%(y) ~ 6 J*P(w) aJ (u))' (31)

z-w3P (-w? z-w
However, in the extension to a¥ = 4 system, couplings arise between the coset and the Koszul system, as we
now show.

To obtain the extension to av = 4 system we need to extend tti€1) ghost current to aBU (2) current triplet
with conformal spin(0, 1, 2). The following is such a system

9
J++ — choyz + §3zVZ _ VZVZ,Bzz _ )/szzcz _ Czjgo’ (32)
J3= _:Bém‘i:/m _KéaX& — by ¢t = 2B, v°, (33)

J T =8... (34)
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The ghost values of these currents &g0, —2), respectively,

+4+
T (@) Ja(w) ~ ¢2JZ _(;‘)’), (35)
T @I () ~ —2 . 3w), (36)
(z —w) Z—w
J3(z) J3(w) ~ w2 (37)

All coefficients in theSU (2) current are fixed by requiring closure, in particular the coefficient of the total derivative
9
50,9°.
29z
We can now construct the currer@@s§ andG ~ by acting with/ *+ andJ =~ on jZCgJ“K =Gl andB®K =G,
One finds easily

J~ (@G (w) ~

7_G__(w) = G~ =—b. (38)

The calculation of5* is more involved. We start from
Gt(w)

~JTT ()G~ (w)
Z—w

9
= (JCOy — i+ 58)/ —yyB— ybc) (2)(B®+2Bdc + cop + ub)(w). (39)
We obtain
- 9
Gt =cT®+yB®— 3(CJCO) — iy — EBZC + bcdc + 2yBac + ycdp + uyb. (40)

Triple and double poles nicely cancel here, confirming the coefficighbdthe term withdy in J**. The crucial
question is whether the simple structuretf in the coset sector also holds in the Koszul sector. We find

1 1 1
bedc + 2yBdc+ ycdpf = c<§T’<> +y (EBK) - a<c5ﬂ<> n %j{;. (41)
Hence, the total; * is indeed of a simple form

- 1 1 1 1 9
GT=c(T4 27K ) 4y B+ ZBX ) —d(c( IO+ 27K ) ) =l i+ ZjK) - Zb%. (42)

2 2 2 2 2

Also J*™* can be written in this way
1 1 9

J++=y<J°°+§JK>—c(j§°+§j§)+§8y. (43)

4. The WZWN model coupled to two Koszul quartets and coset fields

In the previous section we saw how ah= 2 “matter” system (the coset fields) could be coupled to a Koszul
guartet such that av = 4 model resulted. We only needed the OPEs of the currents of the matter system. This
reveals how to couple the WZWN model to these fields such that it becomes parNoEahmodel

(i) Use a first Koszul quartet denoted by, ¢, ', y') to construct a bona fid&/ = 2 system for the WZWN
model with currentg™¥, 7%, ;W BW [5]. This fixes theu parameter of the first quartet to= 1.
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(ii) Couple thisN = 2 system to a second Koszul quartet, denote@by, 8, ), to obtain arv =4 model in the
same way as for the coset fields. Tlhearameter of this Koszul quartet is arbitrary. Instead of coupling only
to the second Koszul quartet we shall couple to the sum of the second Koszul multiplet and the coset fields.
This combined system was discussed in the previous section and is what is needed below.

Thus we obtain the followingv = 4 superconformal currents for the WZWN model coupled to coset fields and
two Koszul quartets

T=(T" +7X)+7%°+ 7% with crr =0,

Ja= Y +7K) 40+ JK withcyy=—22-3-6-3=-34,
Gt =jp=(jy +if ) +iF¥+ i,

G~ =B=(BY +BX) +B®+ B,

, 1 , 1
J++=;/(JW+J’< +J%O 4 éJ’<) —c(j;ujg +jg,°+§j§> + x0y,

s , 1 - , 1
G+=c(TW—|—TK +T°°+§TK> +y<BW+BK +B°°+§BK)

/ 1 / 1
—M(Jévﬂz’f +ig+ 5]‘[5) —a<c(1W + 7K e+ EJK)> +yoZe,

J T =8, G =-b. (44)

The current/*+X contains a termxdy while the currentG* contains a termyd2c. The same analysis as
performed for the coset fields shows that also these currents satigfy-ad superconformal algebra. The only
parameters to be fixed are the values ahdy. We fix x by requiring that the double poles within the numerator
cancel in the following OPE

Jtt 1
7@ Iy ~ 22—y o2 (45)
Z—w (z—w)
We find
’ 1 ’ l !/
[y(JW—i-JK +J%04+ EJK> —c<j§V+j§ +jS0+ Ej{{) +x8y](z)[]W+JK + IO+ 7K (w)
2xy (w) [-22-3-6—(3+4- )]
~—+ SE 46
w2 Y (@) P (46)
This yields the value
x=17. (47)
Confirmation is obtained from
—-34 — J-
J3(2) J3(w) ~ QI )~ — g S (48)

z—w)? z-w

(z —w)?’
which reproduces = 17.
Finally we complete the construction of the= 4 WZNW model by determining the value of We consider
the OPEJ3(z)G(w) ~ GT(w)/z — w and require that all terms of the foratw)/(z — w)2 cancel. We find the
following contributions



PA. Grassi, P. van Nieuwenhuizen / Physics Letters B 610 (2005) 129-140 139

(—=be)(2) (bede + yd?c)(w) — (2By)(2)(2Bydc + 3By c)(w)
+ (I + I+ I ((TY + T + TO)) ) — (1Y + 75 + T @d(c(" + 75 + T)) (w)
~[142y +24(=22—-3-6) —2(—22—-3—6)]c(w)/(z — w)*. (49)
Thus
y=-17. (50)
As a check we determine the term withc in Gt from J ™+ (2) G~ (w) ~ =G (w)/(z — w). We find
yUW +IK £ %) + 1y (—bc —28y)
[ —c(y + K + i) + dcby +xdy
~ (cby — Byy +x0y)(2)(2Bc + cp)(w)
—c@[jf @BY )+ jf @) BX () + j§@) BPw)] + -

3c(z) 2xc(w)  2xdc(w) c(z)
(Z_ U))3 a (Z—w)3 N (Z_ w)z - (Z_w)s[_22_3—6]—|— (51)

The triple poles cancel for = 17, confirming again the result far Then also the double poles cancel, while from
the simple poles we find th&t* contains a term-173%¢. This yields agairn = —17.

](z)[éw + BX 4+ B4 288¢ + cap + pub](w)
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