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In this Letter, we find suitable potentials in the multiple scalar fields scenario by using the Noether
symmetry approach. We discussed three models with multiple scalar fields: N-quintessence with positive
kinetic terms, N-phantom with negative kinetic terms and N-quintom with both positive and negative
kinetic terms. In the N-quintessence case, the exponential potential which could be derived from several
theoretic models is obtained from the Noether conditions. In the N-phantom case, the potential V 0

2 (1 −
cos(

√
3N
2

φ
mpl

)), which could be derived from the Pseudo Nambu–Goldstone boson model, is chosen as

the Noether conditions required. In the N-quintom case, we derive a relation D V ′
φq = −D̃ V ′

φp between
the potential forms for the quintessence-like fields and the phantom-like fields by using the Noether
symmetry.

© 2010 Elsevier B.V. Open access under CC BY license.
1. Introduction

Scalar field theory which is related to particle physics has be-
come the generic playground for building cosmological models,
both in the early and late accelerating periods of our universe [1,2].
Although the dynamics of these accelerations is likely to contain
several scalar fields, it is normally assumed that only one of these
fields remained dynamically significant for a long time. However,
realistic theoretical models, embedded in grand unified or super
symmetric theories, must necessarily be theories of multiple fields.
The simplest multiple scalar fields scenario which we will consider
is first originated from the assisted inflation scenario [3]. The es-
sential point of this scenario is that inflation is not driven by any
single field, but a collection of N fields. These fields have the same
initial conditions and potentials. This idea can be applied in vector
field models as well [4].

Meanwhile, the observations suggest the equation of state (EoS)
parameter of dark energy is in the range of −1.21 � ω � −0.89
[5]. Since the quintessence type of matter could not give the pos-
sibility that ω < −1, the extended paradigms (e.g. phantom and
quintom) are proposed. Phantom type of matter with negative
kinetic energy has well-known problems, but, nevertheless, was
implicitly suggested in cosmological models and have also been
widely studied as dark energy. It is phenomenologically significant
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and worthy of putting other theoretical difficulties aside tempo-
rally. Then, it is natural to ask why don’t we discuss the mul-
tiple scalar fields with different kinetic terms. According to the
classification of the scalar fields,1 we can discuss three types of
fields in the simplest multiple scalar fields scenario, which are the
quintessence type of fields with positive kinetic terms, the phan-
tom type of fields with negative kinetic terms, the quintom type of
fields with both positive and negative kinetic terms. In this Letter,
we call them N-quintessence, N-phantom, N-quintom for conve-
nience.

But, as in the single scalar field case, we have to ask how to
choose the potentials from the various models for those multiple
scalar fields. In this Letter, we will deal with this problem of choice
from a point of view of symmetry. The Noether symmetry has been
revealed as a useful tool for finding out exact solutions in cosmol-
ogy. This is an interesting method to select models motivated at a
fundamental level.

This Letter is organized as follows. In Section 2, we intro-
duce the multiple scalar fields models. In Section 3, the Noether
symmetry approach will be introduced and applied to both N-
quintessence and N-phantom cases to get exact solutions. In Sec-
tion 4, we discuss the application of Noether symmetry approach
to N-quintom case in connection with its solution. In Section 5,
we give out the evolution of our universe in N-quintessence and

1 The quintessence with positive kinetic term was proposed in Ref. [6]; the phan-
tom with negative kinetic term was suggested in Ref. [7]; and the quintom with
both positive and negative kinetic terms was proposed in Ref. [8].
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N-phantom cases. Finally, a short summary will be presented in
Section 6.

2. N-quintessence, N-phantom and N-quintom scalar field
model scenario

As stated in the introduction, usually, only one scalar field is
enough to accelerate the universe, but a single field is not natural.
The application of the multiple scalar fields in cosmology should
be seriously considered. Here, we assume that the geometry of
space–time is described by the flat FRW (Friedmann–Robertson–
Walker) metric which seems to be consistent with today’s cosmo-
logical observations

ds2 = −dt2 + a2(t)
3∑

i=1

(
dxi)2

, (1)

where a is the scale factor. After setting the number of the scalar
fields as N , the action of the multiple scalar fields can be written
as

Sφ =
∫

d4x
√−g

[
R

16πG
+

N∑
i=1

(
ε

φ̇2
i

2
− V (φi)

)]
, (2)

where ε = 1 denotes the quintessence fields with the positive ki-
netic terms, ε = −1 denotes the phantom fields with the negative
kinetic term. Meanwhile, as we consider both the vector fields and
the matter in the system, the total action is

Stot = Sφ + Sm, (3)

where Sm is the action for matter. The density of the matter can
be expressed as ρm = ρm0(a0/a)3γ , where ρm0 is an initial con-
stant and 0 < γ � 2. Here, we limit our analysis to γ = 1 which
corresponds to the pressureless matter with Pm = 0.

We assume the vector fields are non-interacting, their influ-
ences on each other are through their effects on the expansion.
Considering all the scalar fields have the same potentials and ini-
tial conditions, action (2) could be simplified as

Sφ1 =
∫

d4x
√−g

[
R

16πG
+ N

(
ε

φ̇2

2
− V (φ)

)]
. (4)

When ε = 1, we call the related scenario N-quintessence. While
ε = −1, we call the related scenario N-phantom.

For the N-quintom case, we assume the fields with same ki-
netic terms have the same potentials and initial conditions, the
action can be written as

Sφ2 =
∫

d4x
√−g

[
R

16πG
+ Nq

(
φ̇2

q

2
− V (φq)

)

+ Np

(
− φ̇2

p

2
− V (φp)

)]
, (5)

where φq is the scalar field with the positive kinetic terms, Nq is
the number of the corresponding quintessence type fields; φp is
the scalar field with the negative kinetic terms, N p is the number
of the corresponding phantom type fields. This paradigm has been
proved of crossing ωφ = −1 when Nq = N p = 1 [8].

3. The Noether symmetry approach in N-quintessence and
N-phantom

In the case of N-quintessence and N-phantom, we take the
scale factor a and the scalar field φ as independent dynamical
variables in the system which the action (4) represents. Then the
configuration space could be chosen as Q = (a, φ), while the re-
lated tangent space is T Q = (a, φ, ȧ, φ̇). To study the symmetries
of the space under consideration, we need an effective point-like
Lagrangian for the model whose variation with respect to its dy-
namical variables yields the correct equations of motion. However,
based on action (4), it is proper to make the point-like Lagrangian
as

L1 = Lφ1 + Lm = 3aȧ2 − N

m2
pl

(
ε

a3φ̇2

2
− a3 V (φ)

)
+ ρm0

m2
pl

, (6)

where the Planck mass is m2
pl = (8πG)−1, and the term ρm0

m2
pl

corre-

sponds to the effects from matter.
Therefore, the total energy of the system E Lφ1 , could be written

in this way

E L1 = ∂L1

∂q̇i
q̇i − L1

= a3
(

εNφ̇2

2
+ N V (φ) + ρm0a−3 − 3m2

pl H
2
)

. (7)

If the above equation being considered as a constraint, with the
vanishing of the “energy function”, it is just the Friedmann equa-
tion

H2 = 1

3m2
pl

[
εNφ̇2

2
+ N V (φ) + ρm0a−3

]
. (8)

Furthermore, for a dynamical system, the Euler–Lagrangian
equation is

d

dt

(
∂L1

∂q̇i

)
− ∂L1

∂qi
= 0. (9)

Based on the Lagrangian, in the N-quintessence and N-phantom
case, the variable qi is a and φ, respectively. When qi = a, the Ray-
chaudhuri equation could be gotten

Ḣ = −m2
pl

2
(ρφ + Pφ + ρm) = −εNm2

pl

2
φ̇2 − m2

pl

2
ρm, (10)

where the energy density and the pressure of scalar fields are

ρφ = εN

2
φ̇2 + N V (φ), (11)

Pφ = εN

2
φ̇2 − N V (φ). (12)

What is more, the equation of state could also be obtained

ωφ = Pφ

ρφ

= εφ̇2/2 − V (φ)

εφ̇2/2 + V (φ)
. (13)

Obviously, in the N-quintessence case where ε = 1, ωφ > −1; in
the N-phantom case where ε = −1, ωφ < −1. Both of them could
not cross ωφ = −1, that is why we also consider N-quintom. In
the case of qi = φ, the Euler–Lagrangian equation is the equation
of motion

φ̈ + 3Hφ̇ + εV ′
φ = 0, (14)

where the prime means V ′
φ = dV /dφ. For the different value of ε ,

the quintessence makes the fields roll down the potential, while
the phantom makes them roll up.

The above equations coincide with the results calculated from
the Einstein equations, and prove that the point-like Lagrangian is
consistent with the dynamical system.
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As is well known in [10–12], Noether symmetry approach is a
powerful tool in finding the solution for a given Lagrangian. From
this method, it is possible to obtain a reduction, and possibly get a
full integration of the system, whenever the cyclic variable of the
system is found. The key point related to the Noether symmetry
is a Lie algebra presented in the tangent space. Following [10–12],
for the Lagrangian (6), firstly we define the Noether symmetry in-
duced by a vector X on the tangent space T Q = (a, φ, ȧ, φ̇) which
is

X = α
∂

∂a
+ β

∂

∂φ
+ α̇

∂

∂ȧ
+ β̇

∂

∂φ̇
, (15)

where α and β are generic functions of a and φ. The Lagrangian is
invariant under the transformation X if

L X L1 = α
∂L1

∂a
+ dα

dt

∂L1

∂ȧ
+ β

∂L1

∂a
+ dβ

dt

∂L1

∂ȧ
= 0. (16)

Given L X L1 = 0 satisfied, there exists a Noether symmetry. Com-
bined with the Lagrangian, this symmetry gives out

α + 2a
∂α

∂a
= 0, (17)

6
∂α

∂φ
− εN

a2

m2
pl

∂β

∂a
= 0, (18)

3α + 2a
∂β

∂φ
= 0, (19)

3V (φ)α + aV ′
φ(φ)β = 0, (20)

which we call Noether conditions. The difference between the N-
quintessence and N-phantom is in Eq. (18) as the parameter ε
denotes.

What is more, the momentum potential can be defined as be-
low

pa = ∂L1

∂ȧ
= 6aȧ, (21)

pφ = ∂L1

∂φ̇
= − εN

m2
pl

a3φ̇. (22)

Then we can express the constant of motion which is reproduced
by the Noether symmetry

αpa + βpφ = Q = μ0, (23)

where Q is called conserved charge and μ0 is the related constant.
The Noether constant of motion on shell gives a possibility of solv-
ing the system. More specifically, a symmetry exists if at least one
of the functions α or β is different from zero. As a byproduct, the
form of V (φ) is determined in correspondence with such a sym-
metry.

The cyclic variable can be regarded as a helpful tool of getting
the exact description about the dynamical system. A point trans-
formation (a, φ) → (z, w) is effective to find the cyclic variable. It
is

i X z = α
∂z

∂ȧ
+ β

∂z

∂φ̇
= 1, (24)

i X w = α
∂ w

∂ȧ
+ β

∂ w

∂φ̇
= 0, (25)

then the Lagrangian could be rewritten in term of the cyclic vari-
ables. After the transformation, the cyclic variable is z, and the
constant of motion can be rewritten as Q = pz . This will simplify
our calculation effectively. A general discussion of this issue could
be found in [10–12]. After introducing the Noether symmetry ap-
proach, we will discuss the solutions for the Noether conditions
both in the N-quintessence and N-phantom in the following.
3.1. Exact solutions for N-quintessence

In the N-quintessence case where the sign of the kinetic terms
takes the value ε = 1, the Noether conditions are

α + 2a
∂α

∂a
= 0, (26)

6
∂α

∂φ
− N

a2

m2
pl

∂β

∂a
= 0, (27)

3α + 2a
∂β

∂φ
= 0, (28)

3αV (φ) + aβV ′
φ(φ) = 0. (29)

When N = 1, the Noether conditions reduce to the single field case
[11]. As indicated by Eq. (27), the effects of the multiple scalar
fields are manifested by the number of the scalar fields N .

An obvious constant potential solution is

α = 0, β = constant, V = constant. (30)

In this solution, a is the cyclic variable. And the subsequent con-
stant of motion gives out

βpφ = − εN

m2
pl

a3φ̇ = Q = μ0. (31)

The discussions could be divided into two cases simply. Firstly,
when μ0 = 0, φ = constant, this is a cosmological constant solu-
tion. Secondly, when μ0 �= 0, the kinetic term φ̇ ∝ a3. The scalar
fields decay fast, even faster than the corresponding vector field
solution [9]. These two cases are trivial respectively. In the follow-
ing, we will concentrate our discussions on another solution which
is

α = σ+√
a
, β = −3λσ−

2a
√

a
, (32)

V = V 0σ
2− = V 0

(
A2e2λφ + B2e−2λφ − 2AB

)
, (33)

where σ± = Aeλφ ± Be−λφ , λ =
√

3N/8m2
pl , A and B are constants.

We can see that the potential is a combined exponential func-
tion. Indeed, there are some physical origins about this kind of
potential. In higher-dimensional gravitational theories such as su-
perstring and Kaluza–Klein theories [13], exponential potentials
often appear from the curvature of internal spaces associated with
the geometry of extra dimensions [14]. Moreover, it is known that
exponential potential can arise in gaugino condensation as a non-
perturbative effect and in the presence of supergravity corrections
to global supersymmetric theories [15]. However, this kind of po-
tential is picked up by Noether symmetry.

In particular, when A = 0, the Noether conditions show

V (φ) = V 0 exp

(
−

√
3N

2

φ

mpl

)
. (34)

This kind of potential leads to a power-law expanding universe,
with a ∝ t4/3, ωφ = −1/2. The quintessence with an exponen-
tial potential was widely studied in cosmology, see, for example,
Ref. [16]. It even has a scaling solution. In the following, based on
the value of A, we will get the exact solutions from the point of
view of Noether symmetry.

3.1.1. When A �= 0 and B �= 0
If we put Eqs. (21), (22), (32) and (33) into Eq. (23), we find

that the constant of motion is hard to obtain. Therefore, we search
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the cyclic variable for help. By calculating Eqs. (24) and (25), we
can get the following expressions for the new variables

z = a3/2σ+
6AB

, w = a3/2σ−
6AB

, (35)

where z is the cyclic variable. Correspondingly, φ and a could be
expressed as

φ = 1

2λ
ln

z + w

z − w
, a = [

9AB
(
z2 − w2)]1/3

. (36)

The resulting forms of potential and Lagrangian are

V (φ) = V 0
4w2

z2 − w2
, (37)

Lφ1 = 12AB

[(
ż2 − ẇ2) + 3N V 0

m2
pl

w2
]
. (38)

Using the Euler–Lagrangian equations, the above Lagrangian leads
to the equations of motion for z and w ,

z̈ = 0, ẅ = −3N V 0

m2
pl

w. (39)

The solutions are

z = z1t + z0, (40)

w = w1 sin

(√
3N V 0

m2
pl

t + w0

)
, (41)

where z0, z1, w0, w1 are constants. Therefore, the exact evolution
of the field and the scale factor could be given out as below

φ = 1

2λ
ln

z1t + z0 + w1 sin(

√
3N V 0
m2

pl
t + w0)

z1t + z0 − [w1 sin(

√
3N V 0
m2

pl
t + w0)]

, (42)

a =
[

9AB

(
(z1t + z0)

2 − w2
1 sin2

(√
3N V 0

m2
pl

t + w0

))]1/3

. (43)

If z � w , we could not get a physical value of φ, through the scale
factor seems oscillate. And if z 	 w , φ is very small, but the uni-
verse will evolve as a ∝ t2/3. It is similar to the matter-dominated
phase.

3.1.2. When A = 0 and B �= 0
In this subsection, we continue to search the cyclic variables but

for a different potential where A = 0 while B �= 0. By calculating
Eqs. (24) and (25), the expressions of the new variables are

z = a3/2

3σ+
, w = a3/2

3σ+
, (44)

where z is the cyclic variable. Then φ and a can be rewritten as

φ = 1

2λ
ln

(
B2zw

9

)
, a =

(
z

w

)1/3

. (45)

As a result, we get the potential and the Lagrangian in term of z
and w

V (φ) = V 0

9zw
, (46)

Lφ1 = −4

3

żẇ

w2
+ N

m2

V 0

9w2
. (47)
pl
Apply the new Lagrangian to the Euler–Lagrangian equations, we
obtain

z̈ = 3V 0

2m2
pl w

, ẅ = 2ẇ2

w
. (48)

They lead to

z = −
[

V 0 w2

4m2
pl

t3 + 3V 0 w3

4m2
pl

t2 + 3V 0 w4

4m2
pl

t + w5

]
, (49)

w = −1

w2t + w3
, (50)

where w2, w3, w4 are constants. Putting the above equations into
Eq. (44), the evolutions of a and φ are

φ =
√

2

3N
mpl ln

(
B2

V 0 w2
4m2

pl
t3 + 3V 0 w3

4m2
pl

t2 + 3V 0 w4
4m2

pl
t + w5

w2t + w3

)
, (51)

a =
[
(w2t + w3)

(
V 0 w2

4m2
pl

t3 + 3V 0 w3

4m2
pl

t2 + 3V 0 w4

4m2
pl

t + w5

)]1/3

.

(52)

When z ∝ t , the scale factor evolves as a ∝ t2/3 which is similar
to the matter-dominated phase. When z ∝ t3, the scale factor is
a ∝ t4/3 which may accelerate the universe. This is an interesting
solution that we need. We will discuss this solution in Section 5 in
detail.

However, the N-quintessence scenario could be replaced by a
single field paradigm with the similar evolutions a ∝ t4/3. We just
need to change the corresponding parameter in the single field
case as

V 0s = N V 0, λs = λ√
N

. (53)

The reason for this behavior is that each field experiences the
‘downhill’ force from its own potential, it feels the friction from
all the scalar fields via their contribution to the expansion rate.

The case B = 0, A �= 0 is treated exactly in the same way and
the results are the same, except for the substitution of A for B . In
summary, it must be noted that our results include some already
known models. The exponential potential not only make the accel-
eration last a long time, but also satisfy the Noether conditions.

As for the comparison with the observations, one field results
have been derived by Ref. [10]. In the N-quintessence case, the
range of parameter will be changed because of N . Considering our
purpose is on the choice of the potential, we will not discuss this
subject in detail.

3.2. Exact solutions for N-phantom

For the N-phantom case where ε = −1, the Noether conditions
are

α + 2a
∂α

∂a
= 0, (54)

6
∂α

∂φ
+ N

a2

m2
pl

∂β

∂a
= 0, (55)

3α + 2a
∂β

∂φ
= 0, (56)

3αV (φ) + aβV ′
phi(φ) = 0. (57)

Compared to the N-quintessence case, the difference arises in
Eq. (55) by the sign of the kinetic terms.
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Obviously, the simplest solution is

α = 0, β = constant, V = constant. (58)

This constant potential solution is similar to the corresponding
solution in the N-quintessence case, we don’t discuss this fast de-
caying case.

However, another interesting solution is

α =
2C cos( 1

2

√
3N
2

φ
mpl

)
√

a
, (59)

β =
−2

√
6C sin(

√
−3N

8
φ

mpl
)

a
√

a
, (60)

V (φ) = V 0 sin2
(

1

2

√
3N

2
φ

)
= V 0

2

(
1 − cos

(√
3N

2

φ

mpl

))
,

(61)

where C is a constant. When N = 1, there are some differences
between the results in Ref. [17] and ours. The form of the potential
could be called PNGB (Pseudo Nambu–Goldstone Bosons) potential
resulting from explicit breaking of a shift symmetry [18].

To find the exact evolution of the universe, as the calculations
in the N-quintessence case, we need the help of the cyclic vari-
ables. According to Eqs. (24) and (25), a transformation could be
done from (a, φ) to (z, w),

φ = arctan
w

z
, a = (3C)2/3(z2 + w2)1/3

, (62)

then we can rewrite the potential and the Lagrangian as

V = V 0 w2

z2 + w2
, (63)

Lφ1 = 9C2
[

4

3

(
ż2 + ẇ2) + V 0

N w2

m2
pl

]
. (64)

The Lagrangian leads to the equations of motion for the new vari-
ables

z̈ = 0, ẅ = 3

4

N V 0 w

m2
pl

. (65)

The solutions are

z = z3t + z2, (66)

w = w6 exp

(√
3

4

N V 0

m2
pl

t

)
, (67)

where z2, z3 and w6 are constant. However, by using the cyclic
variable z, we get the evolutions of the field and the scale factor,

φ = arctan

w6 exp(

√
3
4

N V 0
m2

pl
t)

z3t + z2
, (68)

a = (3C)2/3
[
(z3t + z2)

2 + w2
6 exp

(√
3N V 0

m2
pl

t

)]1/3

. (69)

If z 	 w , the values of fields are nearly zero, a ∝ t2/3, it is the
matter-dominated solution. When z � w , the universe evolves as

a ∝ exp(

√
3N V 0
m2

pl
t), this is the de Sitter solution. We will discuss this

solution in Section 5 in detail.
As for the comparison with the observations, one field results
have been derived by Ref. [17]. In the N-phantom case, the range
of parameter will be changed because of N . Considering our pur-
pose is on the choice of the potential, we will not discuss this
subject in detail.

4. Noether symmetry in N-quintom case

The quintom scenario is proposed to fit the observable data [5].
N-quintessence and N-phantom could not cross ωφ = −1 as we
see. However, N-quintom has an attractive feature that it may
cross ωφ = −1 which is a possibility implied by the data. After
adding the Noether symmetry, this property should be rechecked.
Though in the “cosmic triad” vector field case, Noether symme-
try provides an interesting constraint on the potentials [9] for the
quintom case with ωφ crossing −1. However, it is worthy of trying
the Noether symmetry approach in the N-quintom case. According
to the action (5), the point-like Lagrangian is

L2 = 3aȧ2 − Nq

m2
pl

(
a3φ̇2

q

2
− a3 Vq

)

− Np

m2
pl

(−a3φ̇2
p

2
− a3 V p

)
+ ρm0. (70)

Based on the above point-like Lagrangian, the total energy and
the Euler–Lagrangian equation will give out the Friedmann equa-
tion, the Raychaudhuri equation and the equations of motion

H2 = 1

3m2
pl

[
Nq

(
φ2

q

2
+ Vq

)
+ Np

(
−φ2

p

2
+ V p

)
+ ρm

]
, (71)

Ḣ = −m2
pl

2
(ρφ + Pφ + ρm)

= −m2
pl Nq

2
φ̇2

q + m2
pl Np

2
φ̇2

p − m2
pl

2
ρm, (72)

φ̈q + 3Hφ̇q + V ′
φq = 0, (73)

φ̈p + 3Hφ̇p − V ′
p = 0, (74)

where the primes mean V ′
φq = dVq/dφq and V ′

φp = dV p/dφp . The
energy density and the pressure which could be derived from the
action (5) are

ρφ = Nq

(
φ̇2

q

2
+ Vq

)
+ Np

(
− φ̇2

p

2
+ V p

)
, (75)

Pφ = Nq

(
φ̇2

q

2
− Vq

)
− Np

(
φ̇2

p

2
+ V p

)
. (76)

So the EoS parameter is

ωφ = Nq(
φ̇2

q
2 − Vq) − Np(

φ̇2
p

2 + V p)

Nq(
φ̇2

q
2 + Vq) + Np(− φ̇2

p
2 + V p)

. (77)

Now, we should choose a new configuration space Q =
(a, φq, φp) with the corresponding tangent space T Q = (a, φq, φp,

ȧ, φ̇q, φ̇p). And the vector generator which induce the Noether
symmetry is changed to

X̃ = α̃
∂

∂a
+ β̃

∂

∂φq
+ γ

∂

∂φp
+ ˙̃α ∂

∂ȧ
+ ˙̃

β
∂

∂φ̇q
+ γ̇

∂

∂φ̇p
, (78)

where α̃, β̃ and γ are generic functions of the variables a,
φq and φp . The Noether symmetry requires the Lie derivative
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of the Lagrangian vanishes which means L X̃ L2 = 0. Following
Refs. [10–12], the Noether conditions can be obtained

α̃ + 2a
∂α̃

∂a
= 0, (79)

6
∂α̃

∂φq
− Nqa2

m2
pl

∂β̃

∂a
= 0, (80)

6
∂α̃

∂φp
+ Npa2

m2
pl

∂γ

∂a
= 0, (81)

3α̃ + 2a
∂β̃

∂φq
= 0, (82)

3α̃ + 2a
∂γ

∂φp
= 0, (83)

3(Vq + V p)α̃ + aV ′
φqβ̃ + aV ′

φpγ = 0. (84)

There is an obvious solution that is

α̃ = 0, β̃ = D, γ = D̃, (85)

where D and D̃ are integral constants. The symmetry exists, if and
only if at least one of the parameter α̃, β̃ , γ is not zero. Based on
the Noether conditions, we find a condition relating the potential
forms of the quintessence-like fields and the phantom-like fields,
that is

D V ′
φq = −D̃ V ′

φp . (86)

And the constant of motion corresponding to this solution is

−DNqa3φ̇q + D̃Npa3φ̇p = Q = μ0. (87)

In the following discussion, based on the value of D , D̃ and
μ0, we try to discuss the solutions, especially for the value of EoS
parameter.

4.1. When D �= 0 and D̃ = 0

If D �= 0 and D̃ = 0, we can get V ′
φq = 0, the quintessence-like

matter has a constant potential. And from the constant of motion,
we can get φ̇2

q ∝ μ2
0a−6. However, based on the value of μ0, we

divide the situation into two cases to discuss.
Case a), when μ0 �= 0, the kinetic terms of the quintessence

decay fast, while their potentials are constant, and no constraint
on the phantom type of matter, which leads to w < −1 at last.

Case b), when μ0 = 0, the quintessence scalar filed is a con-
stant. This case is similar to a phantom model with cosmological
constant. The interesting thing is that we could not give any con-
straint on the phantom-like matters.

The case D = 0 and D̃ �= 0 could be treated exactly in the same
way. And the results are the same, except for the non-constrained
field is changed to the quintessence-like type.

4.2. When D �= 0 and D̃ �= 0

4.2.1. The μ0 �= 0 case
In this case, the conserved charge is not zero. From Eq. (87),

we get that φ̇q = Dφ̇p/D̃ ∝ a−3. It means that the kinetic terms
of the scalar field decay fast. The equations of motion leads to
V ′

φp = V ′
φq = 0, i.e., the potentials are constant. However, the EoS

parameter evolves to ωφ = −1 until the kinetic terms of the scalar
fields vanish.
4.2.2. The μ0 = 0 case
In this case, the conserved charge vanishes, so DNqφ̇q =

D̃N pφ̇p , combined with Eq. (86) and the equations of motion,
Nq = N p is obtained. We put these results into Eq. (77), and get

ωφ =
(1−D2/D̃2)φ̇2

q
2 − Vq − V p

(1−D2/D̃2)φ̇2
q

2 + Vq + V p

. (88)

If D/D̃ < 1, φ̇2
p < φ̇2

q , ωφ > −1. The physical meaning is that if
the quintessence type fields slowly vary compared with the phan-
tom type fields, the quintessence will take the dominating role,
and make ωφ > −1. And we can discuss the D/D̃ > 1 case in
the same way, where the phantom type fields will take the dom-
inating role and ωφ < −1. However, this solution is new. And if
it cross ωφ = −1, the ratio D/D̃ should be variable. However, as
Noether symmetry approach required, D/D̃ is constant. It means
in N-quintom case, after adding Noether symmetry, we could not
make this scenario cross ωφ = −1.

In a short summary, even the Noether symmetry does not give
an explicit potential in N-quintom case, it gives a constraint on the
forms of the scalar field potentials. If we try to connect this model
to the observations such as SNIa data, we must choose a proper
potential. Unfortunately, the observations will give constraints to
the potential parameter not the parameter related to Noether sym-
metry which we are interested here. And this symmetry restricts
the EoS parameter of crossing ωφ = −1.

5. From deceleration to acceleration

Based on the exact potential forms given by Noether sym-
metry in N-quintessence and N-phantom models, the evolution
of our universe could be analyzed. Firstly, two new variables
y = φ/mpl , u = ln(a/a0) are needed. Then we can define the
fractional energy density of dust matter as Ωm = ρm/3H2m2

pl =
Ωm0(H0/H)2 exp(−3u), and the fractional energy density of scalar
fields Ωφ = ρφ/3H2m2

pl which depends on the exact potential
form.

In N-quintessence model, we discuss the possible accelerating
solution which is presented in Eq. (33) with A = 0, B �= 0 and
λ = √

3/2. Ωφ can be written down as

Ωφ = y′2

6
+ ΩV exp(−λy), (89)

where ΩV = V 0 B2/3H2m2
pl = ΩV 0(H0/H)2. Then, we can simplify

Eq. (8) and (14) as(
H

H0

)2

= Ωm0 exp(−3u) + ΩV 0 exp(−λy)

1 − y′2/6
, (90)

y′′ = 3λΩV exp(−λy) −
[

3

2
Ωm + 3ΩV exp(−λy)

]
y′, (91)

where a prime denotes the derivative with respect to u. Following
the numerical calculation method used in Refs. [17,19], the evolu-
tion of the fractional energy densities can be plotted. We choose
Ωm = 1 in the matter dominated epoch around a/a0 ≈ 1/12 or
u = −2.5 as initial condition. Fig. 1 shows today’s fractional den-
sity Ωm0 is nearly 0.6 which is contradictable with the widest
observational results Ωm0 = 0.3 ± 0.1 [20].

Furthermore, setting N = 1 and using the potential in Eq. (61),
Ωφ in N-phantom case reads

Ωφ = y′2

+ ΩV

(
1 − cos

(√
3N

y

))
, (92)
6 2
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Fig. 1. The evolutions of fractional energy densities Ωφ and Ωm in N-quintessence
model.

Fig. 2. The evolutions of fractional energy densities Ωφ and Ωm in N-phantom
model.

Fig. 3. The evolutions of the minus of the deceleration factor −q in N-quintessence
and N-phantom cases.

where ΩV = V 0/3H2m2
pl = ΩV 0(H0/H)2. Then, the evolutions of

scale factor and scalar field in N-phantom case are

(
H

H0

)2

=
Ωm0 exp(−3u) + ΩV 0(1 − cos(

√
3N
2 y))

1 − y′2/6
, (93)

y′′ = −3

2
λΩV sin

(√
3N

2
y

)

−
[

3

2
Ωm + 3ΩV

2

(
1 − cos

(√
3N

2
y

))]
y′. (94)

We can also start from the matter dominated epoch around a/a0 ≈
1/12 or u = −2.5, and give out the evolutions of the fractional
energy densities. Fig. 2 shows today’s fractional density of dust
matter Ωm0 is nearly 0.23 which is consistent with the observa-
tional results Ωm0 = 0.3 ± 0.1.

Specifically speaking, we can write down the acceleration (the
minus of the deceleration factor)

ä

aH2
= −q = Ωφ − 1

3
y′2 − 1

2
Ωm, (95)

and plot its evolutions in N-quintessence and N-phantom cases.
Fig. 3 shows N-quintessence with exponential potential chosen by
Noether symmetry cannot make our universe accelerate (−q � 0),
while N-phantom with the cosine potential can make our universe
accelerate (−q > 0). These results coincide with the evolutions of
the fractional energy densities in Figs. 1 and 2. In conclusion, to-
day’s acceleration heavily depends on the choice of potentials. This
is the reason why we don’t discuss the evolution of our universe
in the N-quintom case where the Noether symmetry doesn’t give
out the exact form of potentials.

6. Conclusion

There is no immediate physical justification for the choice of
V (φ) in multiple scalar fields. In this Letter, to choose proper
potentials for multiple scalar fields scenario, and to be consis-
tent with the observations which indicates the EoS parameter
in the range of −1.21 � ωφ � −0.89, we have studied the N-
quintessence, N-phantom, N-quintom scalar fields models by the
Noether symmetry approach. The existence of Noether symme-
try implies that with respect to the infinitesimal generator of the
desired symmetry, the Lie derivative of the related Lagrangian van-
ishes. As we have considered a flat FRW metric, the phase space
in the N-quintessence and N-phantom was then constructed by
taking the scale factor a and the scalar field φ as independent dy-
namical variables. In the N-quintom case, we have to expand the
configuration space to Q = (a, φq, φp).

Specifically speaking, on the one hand, the Noether condi-
tions depend on the cosmological dynamics which is determined
by the potentials. On the other hand, the main consequence by
adding the Noether symmetry is that we have selected the class
of potentials and indicated the most reasonable, specific ones di-
rectly from the physical interpretation. In the N-quintessence case,
we find the exponential potentials from the Noether conditions
which could be derived from several theoretic models. In the N-
phantom case, the suitable potential required by the Noether con-

ditions is V 0
2 (1−cos(

√
3N
2

φ
mpl

)) which is related to pseudo Nambu–

Goldstone boson. The case of the N-quintom is very interesting.
Although it does not give an explicit potential, it gives a constraint
on the forms of the scalar field potentials.
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