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a b s t r a c t

The cultivation of crops outside the regular cropping calendar when supply is low and prices are high can
give farmers better profits and consumers more choice. However, off-season production may increase
pesticide risk if crops are more affected by pests and diseases and farmers do not handle pesticides
correctly. This study quantified the effect of training in off-season tomato production on the income
and pesticide use of smallholder vegetable farmers in southwestern Bangladesh. The study uses farm-
level data from 94 trained and 151 non-trained farm households and applies propensity score matching
and inverse probability weighting to correct for selection bias. For the average smallholder vegetable
farmer, training increased net household income by about 48%. We found that 31% of the trained farm
households who had initially adopted the technology continued its use in the second year, but farm
households who discontinued using the technology also experienced significant income gains from the
training. There was a significant increase in pesticide use (+56%) and although there was an improvement
in pesticide handling practices, trained farmers may have been more exposed to pesticide health risk. The
policy implication is that while off-season vegetable production can create dramatic income improve-
ments, it is important to emphasize safe and sustainable pest management methods as part of policies
promoting it.
� 2016 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Fruit and vegetables taste best when eaten in season. This is
also when they are cheapest. This is good for consumers, but a
problem for farmers, who would prefer producing and selling veg-
etables in the off-season—if they could. Modern technologies such
as protected cultivation and specially bred varieties increasingly
allow farmers to do this. These technologies can make an impor-
tant contribution to the year-round availability of nutrient-rich
food to consumers, and to the income of farmers. Yet high produc-
tion costs and increased risk make income gains uncertain, while
intensive pesticide use may pose a risk to farmers and consumers
alike.

This paper explores the effect of off-season cultivation of toma-
toes (Solanum lycopersicum) in southwestern Bangladesh. Off-
season (also called counter-season) vegetable cultivation is the
growing of vegetables under adverse climatic or economic condi-
tions. The agricultural cropping season in South Asia is generally
divided into two main seasons as determined by the South Asian
monsoon. The kharif season—often referred to as spring, summer,
rainy or simply monsoon season—is characterized by high temper-
atures, high rainfall and high humidity. Over 85% of the annual
rainfall typically falls in this period, which generally lasts from
May to November. Typical summer crops are rice, soybean, mung-
bean, and summer vegetables such as okra, amaranth, Indian spi-
nach and gourds. The rabi season—also referred to as autumn or
winter—has much cooler and drier conditions and lasts from
November to March. Typical rabi crops are wheat, maize, potatoes,
mustard, and winter vegetables such as cabbage, eggplant, and
tomato.

Previous studies have suggested that farmers growing tomatoes
during the kharif season have received high profits. Zaman et al.
(2006) analyzed on-station data from experimental plots and
showed that every dollar (USD) invested in off-season tomato pro-
duction gave revenues of 3.3 dollars (benefit cost ratio). In compar-
ison, growing tomatoes in the rabi season gave only a benefit cost
ratio of 1.7 (Zaman et al., 2010). Karim et al. (2009) estimated the
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benefit cost ratio for off-season tomato production from on-farm
data in Jessore district and estimated it to be 4.2. These estimates
are based on data from experimental plots or from adopting farm-
ers only, and thus are probably not representative for the average
vegetable farmer. Furthermore, these studies did not estimate the
profitability of a similar group of non-adopting farmers. To our
knowledge, there has been no ex-post evaluation of off-season
tomato production in Bangladesh, or elsewhere, that uses a valid
counterfactual. In fact, few studies have been conducted on the
impact of off-season vegetable production on incomes and pesti-
cide use in developing countries, despite the rapid spread of these
technologies (Kang et al., 2013; Nair and Barche, 2014).

To address this gap, this study aims to quantify the effect of
training in off-season cultivation of tomatoes on the income of
smallholder farmers and the intensity of pesticide use in
Bangladesh. It also identifies challenges to off-season tomato
production.

The paper starts by describing the intervention that is being
evaluated. It then describes how data were collected and how
the evaluation design minimized the confounding effects of selec-
tion bias and technology spillovers. After presenting the results, we
discuss the limitations of the study as well as the implications of
the findings for research and development of off-season vegetable
production in Bangladesh and elsewhere.
2. Background

Agricultural production in Bangladesh is changing from a single
focus on rice for food security to diversification with higher-value
crops (FAO, 2011). According to Rahman (2009), crop diversifica-
tion is the desired strategy for agricultural growth in Bangladesh.
Many international donors have invested in crop diversification
programs. Vegetables play a key role in these efforts, particularly
for smallholder farmers, as average farm size has declined over
time and higher returns per hectare are needed to improve the liv-
ing standards of a growing population. Previous studies have
shown that the adoption of improved vegetable technologies can
lead to dramatic improvements in economic well-being (e.g.
Weinberger and Genova II, 2005). Yet, Mahmoud and Shively
(2004) noted that some have questioned the promotion of vegeta-
bles because of the environmental and health effects of high pesti-
cide use. Tomatoes are the most important vegetable in
Bangladesh after eggplant and potato (which is considered a veg-
etable in Bangladesh).

Most tomato varieties are not well adapted to hot and humid
tropical conditions that characterize the kharif season. Flowers
tend to drop under heat stress, thereby reducing fruit set and yield.
High humidity and heavy rainfall can lead to more problems with
pests and diseases, particularly fungal diseases and physiological
disorders.

Since the early 1990s, the Bangladesh Agricultural Research
Institute (BARI) in collaboration with AVRDC – The World Vegeta-
ble Center developed a technology package that includes heat tol-
erant tomato varieties (BARI Hybrid Tomato-4 being the most
popular one), raised planting beds, low-cost rain shelters, hormone
sprays to improve fruit set, and integrated crop management
(pruning, staking, field sanitation, disease and pest management).1

Unfortunately, BARI Hybrid Tomato-4 is susceptible to the whitefly-
transmitted tomato yellow leaf curl virus. Farmers apply insecticides
frequently in often-futile attempts to kill whiteflies and reduce
tomato yellow leaf curl incidence. Various other insect pests are also
abundant during the kharif season and motivate farmers to spray.
1 BARI Hybrid Tomato-4 is a cross of AVRDC heat tolerant tomato lines CLN1621E
and CL9-0-0-1-3 and was released in 2002.
In 2012, AVRDC selected 104 farmers (50 from Jessore district
and 54 from Barisal district) and gave them two days of intensive
training in off-season tomato production. Off-season tomato pro-
duction is a complicated innovation because it requires a range
of parallel changes to farmers’ usual practices. The project imple-
menters therefore targeted relatively progressive farmers who
already had experience planting vegetables and an interest in off-
season tomato, but who had not grown it before. It was expected
that other farmers could observe and learn from them and adopt
later on. The project targeted smallholder farmers with less than
2.5 acres (1 ha) of farmland.

Training topics included healthy seedling production (prepara-
tion of potting mixtures for raising seedlings, double transplanting,
and use of plastic plug trays), cultivation techniques (field prepara-
tion, rain shelter construction and crop management), and pest and
disease management through integrated pest management (IPM).
Nearly all topics included hands-on practice sessions. Trainees vis-
ited existing off-season tomato farmers and tomato nurseries. After
the training, farmers received 3 g of quality seed (BARI Hybrid
Tomato-4) and partial input support for the purchase of plastic
sheets, bamboo, jute and nylon ropes, plant growth regulators
(hormones), nets, fertilizers and pesticides to an equivalent of
10,000 Taka (USD 130). These inputs were enough for growing 2
decimals (81 m2) of off-season tomato, though farmers were free
to plant a larger acreage if they wanted. Farmers received no reg-
ular support in the second year; data from that year were therefore
used for this study.

After the training, project staff visited most farmers nearly
every week during the kharif season to provide technical assis-
tance. When farmers had problems with pests and diseases, the
project staff would come and advise them how to deal with it. Most
farmers had cellphones and could easily contact project staff for
advice. Trained farmers were encouraged to share their knowledge
and skills with their peers.
3. Material and methods

3.1. Selection bias

This study evaluates impact using observational data for trained
and non-trained farmers. Selection bias is the main concern when
using observational data. There are two sources of selection bias.
The first is self-selection bias, which occurs when farmers with
favorable characteristics self-select into the training program. This
was not an issue in our study because the project implementers,
not the individual farmers, decided whom to invite for the training.
The second source of selection bias is program placement bias. This
is a potential source of bias in our study because project imple-
menters purposively selected relatively progressive farmers with
experience in planting vegetables and an interest in off-season
tomato. Farmers selected for the training are therefore likely to
have characteristics that could allow them to be more successful
in using the technology than the average vegetable farmer. It
would therefore be incorrect to directly compare trained farmers
to a randomly selected group of non-trained farmers. We mini-
mized the effect of program placement bias through the control
group selection procedure and the use of propensity score
estimators.

The first was achieved by applying exactly the same criteria to
select control farmers as had been used to select training partici-
pants. The enumerators did a random walk in each of the ten vil-
lages to select 4–5 farmers from each quarter of the village.
These farmers were asked for their help in making a list of other
farmers who met the selection criteria of being vegetable growers,
having no previous experience in off-season tomato, and having
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less than 1 ha of land. Farmers were randomly selected from this
list and then visited. Farmers were only included in the control
group if they had land suitable for off-season tomato production
and expressed an interest in adopting the technology.
3.2. Propensity score estimators

The study used propensity score matching and inverse probabil-
ity weighting as alternative methods to lend robustness to the
analysis. Both methods have been widely used in the impact eval-
uation literature (e.g. Gitonga et al., 2013; Fischer and Qaim, 2012;
Abebaw et al., 2010; Becerril and Abdulai, 2010). Both are non-
parametric methods, which, unlike parametric methods, make no
assumption about the functional relationship between outcomes
and predictors of outcomes.

Propensity score matching and inverse probability weighting
both start by regressing program placement (trained vs. non-
trained) on a set of independent farm and household characteris-
tics that simultaneously influence program placement and out-
comes. Credible covariates included in the model were: (a) the
number of working age adults in the household as vegetable pro-
duction is labor-intensive; (b) the number of non-working age
household members, which together with the number of working
age adults represents household size and is a driver of land use
intensity; (c) the amount of land owned, which is also a driver of
land use intensity as smaller farms are more likely to opt for more
intensive forms of land use such as vegetables; (d) age and educa-
tion of the farm manager, as proxy for know-how and willingness
to innovate; (e) years of experience in vegetable production, as
previous experience in vegetable growing was a selection criteria
used by the project; and finally (f) membership of a farmers’ orga-
nization (yes/no) as proxy for innovativeness.

Parameters were estimated using a logit model and the pre-
dicted values of program placement were calculated from all
covariates independent of significance levels. These predicted val-
ues are the propensity score variable and reflect the probability of a
household being included in the training, conditional on confound-
ing covariates. In effect it reduces a multi-dimensional set of
observable farm and household characteristics into a single
variable.

The propensity score matching method (Heckman et al., 1998
and implemented in Stata by Leuven and Sianesi, 2003) ranks
households according to their propensity score. Using nearest
neighbor matching, it finds the nearest ranked non-trained house-
hold while for each non-trained household it finds the nearest
ranked trained household. The difference in outcome variables is
calculated for each matched pair, after which these differences
are averaged over the entire sample to obtain the average treat-
ment effect. It is also possible to match each trained household
to more than one non-trained household and vice versa. We tested
if the results were sensitive to this.

Inverse probability weighting (Wooldridge, 2007; Imbens,
2004) uses the inverse of the propensity score variable as weights
in calculating the average value of the outcome variable. Different
from propensity score matching, inverse probability weighting
does not match trained with non-trained households. Households
with a low predicted probability of participating in the training
receive a lower weight, while those with a high predicted probabil-
ity receive a higher weight. The basic idea is that a household with
a low predicted probability of getting the training, but that was
actually trained, will represent a larger group of households that
did not receive the training, and thus get a higher weight in calcu-
lating the average. The average treatment effect is then calculated
as the difference between the weighted averages of trained and
non-trained households.
Nearly all households that received the training adopted the
technology afterwards, but not all continued its use in the second
year. It is therefore relevant to know if the training had a differen-
tial impact on farmers who continued and discontinued using the
technology. We therefore estimated the treatment effect for each
household and tested if the difference between the two groups
was statistically significant using a t-test.

3.3. Testing of assumptions

The use of propensity scores, in matching as well as in weight-
ing, requires that the distribution of covariates in the trained and
non-trained groups be similar (balanced). This was checked using
three methods as Lee (2013) showed that different methods can
show contradictory results. First, we tested the balancing require-
ment using an unpaired t-test: after matching there should be no
significant differences in mean values of the covariates between
the intervention and control groups. Second, we compared the
pseudo-R2 before and after matching, which should be fairly low
after matching. Finally, we interpreted the standardized percent-
age bias, which after matching should be less than 20% for each
covariate and less than 10% on average over all covariates
(Rosenbaum and Rubin, 1983).

Another requirement in the use of propensity scores is that
there is common support or overlap in the propensity scores of
the intervention and control groups. It ensures that for every
trained household there exists a non-trained household with
similar enough characteristics. This requirement was visually
checked by plotting the propensity score distributions of the two
groups.

The use of propensity score estimators assumes that the assign-
ment to the training only depends on observed covariates such as
age, farm size, and education level. Hidden bias arises if unob-
served covariates simultaneously affect program placement and
the outcome variable (Rosenbaum, 2002). Possible unobserved
covariates include entrepreneurial ability, work ethic, and risk
aversion. Some authors have argued that if it is plausible to assume
that unobserved and observed covariates are correlated, then the
effect of the unobserved covariates will be swept away, but this
assumption cannot be verified from data. We therefore checked
the sensitivity of our results to hidden bias using the Rosenbaum
bounds test (Rosenbaum, 2002 and implemented in Stata by
DiPrete and Gangl, 2004).

3.4. Outcome indicators

The impact of the training program was assessed on the follow-
ing outcome indicators, which all refer to the 6-month period of
the kharif season:

a. Crop output (USD): the sum of usable crop production valued
at farmgate selling prices. It includes cash revenues, home
consumption and the sharing of crops with people outside
the household.

b. Land productivity (USD/ha): the sum of crop output, livestock
output and aquaculture output divided by the area of the
farm. The farm area was calculated as the land owned, plus
land rented in, minus land rented out.

c. Farm profit (USD): the sum of crop output, livestock output,
aquaculture output and agricultural land rented out minus
the value of variable inputs (fertilizers, pesticides, seeds,
hired labor, and other inputs), land rental cost, annualized
fixed costs (using a straight-line depreciation and assuming
zero salvage value), and interest payments on outstanding
loans. This is the net income households receive from their
farm operations.
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d. Total per capita income (USD/capita): the sum of net farm,
non-farm and off-farm income divided by the number of
people in the household. Farm income included income from
crops, livestock and aquaculture and is in our case the same
as farm profits. A household was defined as persons regu-
larly sharing food during the previous six months.

e. Pesticide use: kilograms of formulated (undiluted) pesticide
products used per hectare of cultivated farmland.

3.5. Data collection

All farmers trained in 2012 were selected for this study. After
visiting each of them it appeared that four households had sent
twomembers to the training, one trainee hadmigrated, one trainee
could not be identified, and four trainees had not tried to grow off-
season tomato after the training. The sample of 104 project bene-
ficiaries was therefore reduced to 94 farm households. Of these, 52
came from Barisal district and 42 from Jessore district in south-
western Bangladesh. They were distributed over 24 villages.

The control group was selected from nearby villages that were
not included in the project to avoid possible spillover effects likely
to occur between farmers within the same village. We started by
creating a list of sub-districts where the project had worked and
then divided the list in intervention and non-intervention villages.
From the list we randomly selected five villages in each district
(ten in total). If it appeared that a randomly selected village was
not growing vegetables or if agroecological or socioeconomic con-
ditions were obviously different from the intervention villages,
then it was replaced with another randomly selected village. Six-
teen villages had to be replaced this way.

Data were collected using a structured questionnaire. Enumer-
ator training and field practice took one week. Interviews were
conducted by 16 enumerators and completed within 10 days in
mid-November 2013. A large number of enumerators ensured
the data collection was completed quickly because of the tense
political situation in Bangladesh at the time of the survey, which
made travel difficult and unsafe.

The questionnaire consisted of a household-level and a crop-
level module and used a 6-month recall period covering the kharif
season. We used a 6-month rather than the more usual 12-month
period because it would have been difficult to recall inputs and
outputs from the preceding rabi season, particularly because farm-
ers grow many crops on relatively small areas. The crop module
was completed for each crop separately and recorded all inputs
and outputs. This was time-consuming and it took 3–4 h to com-
plete an interview.

We included all seasonal crops planted between April and
August and all annual and perennial crops that were harvested
between April and October. Cropping calendars do not perfectly
follow the kharif season from May to October. For example, most
rice is planted during the peak of the monsoon in August and
September and the harvest was largely incomplete at the time of
the survey. We asked for the share of harvest completed and used
this together with the average price per district to estimate the
total output. The total output was then multiplied by a factor cap-
turing the proportion of the cropping cycle completed. For exam-
ple, if the revenue from selling eggplant was USD 100 and 50% of
the harvest was complete and the growing period was 75% com-
plete, then the estimated output value for the kharif season was
100 � 100/50 � 75/100 = 150. Missing values, which for instance
occurred if harvesting had not yet started, were replaced by sample
averages per district.

The household module of the questionnaire recorded socio-
demographic characteristics of the household, pesticide use
practices, fixed costs, interest payments, non-farm income, and
revenues and costs of livestock and aquaculture. Data were entered
into a customized data entry form using MS Access to check for
completeness and consistency. Monetary values were converted
to 2013 USD values using the average official exchange rate at time
of the survey (1 USD = 77.63 Bangladesh Taka).
4. Results

4.1. Farm characteristics

The average trained and non-trained household is very similar
in terms of the area of land owned, household size, and household
composition (Table 1). Yet, the two groups show marked differ-
ences in the characteristics of the person managing farm opera-
tions. For the trained households, this person is younger, more
literate, better educated and more often a member of a farmers’
organization. This suggests that, in spite of the careful selection
of control households aimed at minimizing program placement
bias, the two groups are not directly comparable. This justifies
the use of the propensity score estimators.
4.2. Technology adoption and discontinuation

Of the 94 households that initially adopted off-season tomato
production after the training in 2012, 29 households (31%) had
continued its use in 2013 when data for this study were collected.
Nearly all the trained farmers said that their main constraint was
the high incidence of pests and diseases (Table 2). They felt that
they had to spend a lot of money on pesticides and some were con-
cerned about the impact on their health. Farmers also mentioned
the high investment costs on rain shelters and lack of access to
quality tomato seed. Many farmers felt that off-season tomato pro-
duction required a lot of their time when they were already occu-
pied with other crops. Many farmers also felt that profits were
lower than what they had expected because yields were disap-
pointing and costs were higher than anticipated. We note that
none of the household characteristics listed in Table 1 were signif-
icantly different between continuing and discontinuing farmers.

For those farmers continuing off-season tomato production in
the second year (2013), nearly all applied all six components of
the technology package, including the heat tolerant variety, seed-
ling nursery, raised planting beds, chemical fertilizers, rain shel-
ters, and plant growth regulators. One farmer did not use a
seedling nursery and raised planting beds, while another farmer
did not apply plant growth regulator.

On average, trained households planted 66 m2 of off-season
tomato in 2013 (Table 3), but this includes 65 households that
did not plant tomato. Households that continued the technology
planted 214 m2 on average. This is a relatively small area (about
15 � 15 m), yet much larger than the 81 m2 most had planted in
the previous year. The main cultivated crops included paddy rice,
jute, gourds and papaya.

The results suggest that trained households planted a signifi-
cantly (p < 0.01) larger area of off-season cabbage and (in-season)
gourds, but planted a smaller area of paddy rice and jute. It is likely
that the training in off-season tomato production stimulated farm-
ers’ interests in growing more vegetables, including other off-
season vegetables. It is also possible that farmers applied what
they had learned in the training to other crops.

Table 4 compares the average gross margin for the ten most
widely cultivated kharif crops. Jute and paddy rice have a low aver-
age profitability. This is in line with the observation of Hassan et al.
(2005) for Pakistan that net returns from vegetables are several
times higher than from rice. Our data suggest that profits from
tomato and papaya are high, yet we note that these are relatively
long-duration crops compared to beans, eggplant, cabbages and



Table 1
Average characteristics of the sampled households and farm managers.

Characteristic Trained households (n = 94) Non-trained households (n = 151)

Sample mean Standard deviation Sample mean Standard deviation

Household characteristics
Household size (persons) 5.06 1.58 4.83 1.42 ns
Persons of working agea 3.30 1.20 3.07 1.19 ns
Dependent personsa 1.79 1.28 1.76 1.21 ns
Land owned (ha) 0.48 0.40 0.48 0.32 ns

Farm manager characteristics
Age (years) 41.45 12.05 45.64 12.86***

Can read and write (proportion)b 0.85 0.36 0.74 0.44**

Education (years) 7.60 4.13 5.70 3.85***

Vegetable growing experience (years) 11.61 6.71 10.69 6.83 ns
Member of farmers’ organization (proportion)b 0.61 0.49 0.29 0.46***

Notes: ⁄, ⁄⁄, and ⁄⁄⁄ denote significance of mean difference at the 10%, 5%, and 1% level, respectively; ns = not significant at 10%.
a Persons of working age defined as 16–60 years old. Dependents are persons outside this age range.
b Difference in means tested using chi2, unpaired t-test used otherwise.

Table 2
Main constraints to off-season tomato production according to farmers who had
participated in the training, in % of farmers per group.

Constraint Continued using
the technology
(n = 29)

Discontinued
using the
technology
(n = 65)

Insect pests and diseases 97 87
High investment costs for rain shelters 35 32
Lack of quality seed 29 37
High input costs 16 38
Low selling price 3 16
Flooding 6 3
Difficulty finding a buyer 3 8

Table 4
Average value of output and inputs per crop, in US dollar per hectare.

Crop n Crop output Crop input use Gross margin

Beans and pulses 41 4,268 978 3,290
Cabbages 16 4,952 1,417 3,534
Chili 25 5,272 1,217 4,054
Eggplant 43 5,086 1,021 4,065
Gourds (various) 55 2,634 833 1,801
Jute 84 1,414 593 821
Papaya 27 9,037 791 8,245
Paddy rice 207 1,260 857 403
Tomato 29 11,859 3,071 8,788
Other crops 65 7,350 1,391 5,959

Note: n = Number of observations.
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gourds. Tomato growers often remove the shelters and continue
the crop in early rabi when prices remain high through October.
Our data show the average gross margin of off-season tomato is
8,788 USD/ha. Zaman et al. (2006) estimated its gross margin to
be 8,959 USD/ha (in 2013 USD equivalents). The results suggest
that farmers have many crops from which to choose, and there is
a substantial opportunity cost to cultivating off-season tomato.

4.3. Average treatment effects

The balancing requirement was satisfied in the three tests we
used (see Table A.1 in Appendix A): the unpaired t-test showed
no significant differences in mean values of the covariates of the
intervention and control groups; the pseudo-R2 was 0.16 before
matching but only 0.01 after matching; and the standard percent-
Table 3
Average area planted during the 2013 kharif season, in m2 per household.

Crop Trained households (n = 94)

Sample mean Stan

Beans and pulses (various species) 115
Cabbages (various species) 146
Chili 81
Eggplant 141
Gourds (various species) 248
Jute 246
Papaya 227
Paddy rice 1,508
Tomato 67
Other crops 267

All crops 3,046

Notes: ⁄, ⁄⁄, and ⁄⁄⁄ denote significance of mean difference at the 10%, 5%, and 1% level, r
age bias was less than 20% for each covariate and the mean abso-
lute standardized bias was less than 10%. This shows that the use
of propensity score estimators effectively reduced the bias in
observable characteristics between the trained and non-trained
groups. The propensity score distributions of the trained and
non-trained farmers shows that there might be a lack of overlap
at the left- and right-hand side of the distributions (Fig. B.1 in
Appendix B). We will therefore test if average treatment effects
are sensitive to dropping observations outside the area of common
support.

The results in Table 5 show that training in off-season tomato
production significantly (p < 0.01) increased the value of crop out-
put per farm by 39%, based on propensity score matching and
Non-trained households (n = 151)

dard deviation Sample mean Standard deviation

321 122 375 ns
495 24 178***

244 54 208 ns
370 135 372 ns
415 113 320***

722 501 872**

855 235 845 ns
1,521 1,953 1,346**

142 0 0***

594 195 426 ns

2,380 3,332 1,724 ns

espectively; ns = not significant at 10%.



Table 5
Average treatment effects of off-season tomato production for the kharif season.

Outcome variable Average treatment effect (ATE) Standard error z-score (sign.) Potential outcome (PO) mean ATE as % of PO mean

Crop output (USD)
– PSM 285.9 101.0 2.83*** 736.1 38.8
– IPW 286.4 108.1 2.65*** 722.9 39.6

Land productivity (USD/ha)
– PSM 766.9 301.6 2.54** 1584.2 48.4
– IPW 661.0 340.8 1.94** 1474.8 44.8

Farm profitability (USD/farm)
– PSM 290.2 125.3 2.32** 581.2 49.9
– IPW 274.6 117.9 2.33** 551.0 49.8

Total income (USD/capita)
– PSM 85.9 33.4 2.57** 170.0 50.5
– IPW 75.3 32.1 2.35** 166.7 45.2

Pesticide use (kg/ha)
– PSM 2.0 0.9 2.13** 3.4 58.4
– IPW 1.7 0.8 2.12** 3.3 53.0

Notes: PSM = propensity score matching; IPW = inverse probability weighting. ⁄, ⁄⁄, and ⁄⁄⁄ denote significance of mean difference at the 10%, 5%, and 1% level, respectively;
ns = not significant at 10%.
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inverse probability weighting. The two methods gave nearly iden-
tical results. The average treatment effect for land productivity was
also significant (p < 0.05). The effect was 48% for propensity score
matching and 45% for inverse probability weighting. The effect
on net farm profit was 50% for both methods. Average treatment
effects on per capita income were 51% for propensity score match-
ing and 45% for inverse probability weighting.

Farmers trained in off-season tomato production used a signif-
icantly (p < 0.05) greater quantity of pesticides per hectare of farm-
land than the control farmers. Average usage was higher by about
53–58% from an initial average level of 3.3 kg/ha. This appears con-
sistent with the earlier observation that farmers identified pests
and diseases as the main constraint to off-season tomato
production.

The results were moderately sensitive to hidden bias (Table A.2
in Appendix A). All lower bounds had significance levels of p < 0.01,
but the upper bounds became insignificant (p > 0.10) if the gamma
was increased by a factor 2 for crop output, 2.2 for land productiv-
ity, and 1.6 for farm profitability, per capita income and pesticide
use. This does not prove that any of the assumptions are violated
but some caution is needed in interpreting the results.

Inverse probability weighting and propensity score matching
gave very similar results in terms of size and significance of the aver-
age treatment effects. However, the weighting method gave about
5% lower estimates of average treatment effects than the matching
method for land productivity, total income and pesticide use. We
further tested the sensitivity of the results to seven alternative
options in the matching method, such as varying the number of
matching neighbors and excluding 13 households (10 control and
3 intervention) that lay outside the area of common support
(Table A.3 in Appendix A). We used the coefficient of variation as a
measure of sensitivity. The results show that crop output, farmprof-
itability and per capita incomewere not very sensitive to alternative
matching methods as their average treatment effect varied by less
than 5% around the mean. Land productivity was somewhat more
sensitive at 8% while pesticide use was the most sensitive, showing
19% variation around themean. For both variables the average treat-
ment effect was higher when using a smaller number of neighbors
for the matching. The results with regard to pesticide use must
therefore be interpretedwithmore caution than the other variables.

Heterogeneous effects were analyzed by estimating the treat-
ment effect for each household that had received the training.
The two-sample t-test showed that the average treatment effect
on per capita income for the group that continued using technol-
ogy was USD 189 while it was USD 62 for those that discontinued
using it (p < 0.05). Still, the average treatment effect for those that
discontinued using technology is significantly greater than zero
(p < 0.05), which confirms that both groups benefitted from the
training. There were no significant differences between the two
groups for any of the other outcome variables. The limited number
of samples (n = 94) constrained us from doing a more detailed
analysis of the variation in treatment effects.

4.4. Pesticide risk

Higher average pesticide use does not necessarily imply higher
pesticide risk because pesticide risk is a function of toxicity and
exposure as well as dose. Pesticide exposure depends on how farm-
ers handle pesticides such as wearing protective gear during spray-
ing and following proper sanitation methods after spraying. If the
training program can be shown to have improved handling prac-
tices, then the pesticide risk might be lower even if application
rates are higher.

Table 6 compares handling practices between trained and non-
trained households. The results show that trained farmers better
covered different parts of their body such as the mouth, head,
hands, legs, and feet, whereas such practices were less common
among non-trained farmers. This suggests that they might have a
better understanding of the routes of entry of pesticides into the
body. A higher percentage of trained farmers indicated that they
changed clothes and washed themselves immediately after spray-
ing, which also suggests a lower risk behavior. However, the results
also show that a higher percentage of the trained farmers mixed
different pesticides together for a single spray. The use of such
mixtures is a common practice in Bangladesh (e.g. Kabir et al.,
1996) but not recommended because it may increase the toxicity
to humans and reduce their effectiveness in controlling pests.

Finally, the results show that the average trained farmer
observed more symptoms of pesticide poisoning after spraying,
such as eye irritations, skin rashes, and vomiting than the average
non-trained farmer. Yet, the average treatment effects are largely
insignificant for both propensity score estimators. We can there-
fore not conclude that trained farmers experienced more pesticide
poisoning symptoms.

5. Discussion

Diversification of agricultural production in Bangladesh from
rice and jute to high value fruits and vegetables is important to
sustain and improve rural livelihoods that are under pressure from



Table 6
Pesticide handling practices of trained versus non-trained farmers, in proportion of
the total number of farmers per category.

Meansa Average treatment
effects

Non-
trained
households
(n = 151)

Trained
households
(n = 94)

Propensity
score
matching

Inverse
probability
weighting

Body parts usually covered while spraying
– Mouth 0.31 0.79*** 0.40*** 0.46***

– Head 0.23 0.65*** 0.47*** 0.41***

– Arms 0.92 0.93 0.00 �0.07
– Hands 0.40 0.65*** 0.20** 0.25***

– Legs 0.59 0.78*** 0.16* 0.21***

– Feet 0.07 0.16** 0.14** 0.09**

Usual practice after spraying
– Wash hands 0.88 0.90 0.02 0.00
– Change clothes 0.79 0.93*** 0.09* 0.10*

– Wash body 0.77 0.99*** 0.20*** 0.17***

Mixing different
pesticide products

0.81 0.90** 0.13** 0.12***

Symptoms regularly experienced after spraying
– Eye irritation 0.19 0.30** 0.06 0.09
– Skin rashes 0.05 0.13** 0.01 0.04
– Upset stomach 0.07 0.15* 0.06 0.04
– Headache 0.17 0.21 0.05 0.08
– Dizziness 0.17 0.27* 0.10* 0.09
– Vomiting 0.09 0.17* 0.07 0.05

Notes: ⁄, ⁄⁄, and ⁄⁄⁄ denote significance of mean difference at the 10%, 5%, and 1%
level, respectively.

a Difference in means tested using a Mann–Whitney two-sample statistic.
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land fragmentation and population growth. Our study showed that
diversification into vegetables can lead to dramatic increases in
land productivity, farm profits and per capita incomes. Our results
are consistent with Weinberger and Genova II (2005) who esti-
mated that training in improved vegetable production methods
increased annual incomes by 30%, though their study did not cor-
rect for selection bias. However, it must be noted that the results of
this study only apply to a rather specialized group of smallholder
vegetable farmers with an existing interest in off-season tomato
production and not to the average farm household.

Another key finding of our study is that households that did not
continue using the off-season tomato technology also benefitted
from the training, though their benefit in terms of total income
was lower. Casual observation confirmed that before the training
many of the farmers did not use improved vegetable varieties,
but the training convinced them about the importance of using
good varieties and high quality seed. We also observed that farm-
ers benefitted from better crop management practices such as
planting bed preparation and drainage, fertilization, and adopted
other off-season vegetables. The follow-up visits in the first year
were intensive and the farmers gained much agricultural know-
how from the regular visits of experts, although we are unable to
pinpoint precisely what new knowledge and consequent behav-
ioral changes contributed to the higher income.

The results also showed that training farmers in off-season
tomato production significantly increased the intensity of pesticide
use. This confirms some of the concerns noted in other studies (e.g.
Mahmoud and Shively, 2004). Our own field observations confirm
that farmers relied heavily on the use of synthetic pesticides
although the trainers had not suggested that they use more pesti-
cides. Yet, when farmers saw that their investment was at risk of
damage by insects or diseases, they did not want to take any risk
of losing output. The project, in the scope of which this study
was conducted, has taken steps to improve the intervention design
to put more emphasis on integrated pest management and to teach
farmers to use pesticides as little as possible and with precaution if
they do. Yellow sticky traps and sex pheromone traps for fruit
borer also have been included in the intervention package and
farmers have begun to use them, albeit at limited scale. New
heat-tolerant tomato yellow leaf curl-resistant tomato lines and
hybrids are also in the pipeline for release to farmers. Accompanied
by sufficient training and awareness raising, such technologies can
help reduce pesticide risk.

However, the finding that land use intensification increases pes-
ticide use is certainly not unique to off-season tomato production
and can be generalized to diversification into high value crops
(e.g. Riwthong et al., 2015 for Thailand). In a study on land use
intensification and pesticide use for 119 high-, middle- and low-
income countries, Schreinemachers and Tipraqsa (2012) found that
a 1% increase in agricultural output per hectare was on average
associated with a 1.8% increase in pesticide use per hectare. In
comparison, our study (Table 5) showed that a 1% increase in agri-
cultural output per hectare was associated with a 1.2% increase in
pesticide use per hectare.

Nevertheless, our results show that there is trade-off between
higher financial returns and higher health risk from pesticides (as
well as environmental risk to ecosystems and financial risk from
increased expenditure on inputs). Policies promoting agricultural
diversification must therefore include a strategy how to minimize
these risks. The promotion of vegetable production, particularly in
the off-season, requires particular and careful attention to pest and
disease management.
6. Conclusions

Agriculture in Bangladesh is in the process of diversifying from
subsistence rice production into higher value crops such as vegeta-
bles. The hot and humid kharif season is traditionally the main per-
iod for growing paddy rice. Our study shows that the training of
smallholder vegetable farmers in off-season tomato production
can dramatically improve their crop output (+39%), land productiv-
ity (+47%), profitability (+50%) and net household income (+48%) in
the kharif season. Farmers who discontinued the technology in the
second year also benefitted from the training through an increased
net household income, but at a lower level than those who contin-
ued using the technology. The main constraint to off-season
tomato production as identified in this study is the high incidence
of pests and diseases. The study estimated a 56% increase in pesti-
cide use during the kharif season from an initial rate of 3.3 kg/ha.
Yet, trained farmers protected themselves better during spraying,
although compliance with good agricultural practices remained
incomplete and farmers tended to mix pesticides together. Effec-
tive and low-risk methods of pest and disease control are needed
to protect farmers’ health and the environment and avoid a
trade-off between income and health.
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Appendix A
Table A.1
Logit regression results and results of balancing test after matching.

Covariate Logit regression (n = 245) Balancing tests after matching

Coefficient Standard error Sign. t-value Sign. % bias

Persons of working age 0.087 0.133 ns 0.24 ns 3.6
Dependent persons 0.037 0.126 ns �0.34 ns �5.1
Land owned (ha) �0.321 0.462 ns 0.17 ns 2.4
Age (years) �0.042 0.014 ⁄⁄⁄ �0.98 ns �13.7
Education (years) 0.139 0.042 ⁄⁄⁄ 0.78 ns 10.9
Vegetable growing experience (years) 0.058 0.025 ⁄⁄ �0.80 ns �13.0
Member of farmers’ organization 1.540 0.318 ⁄⁄⁄ �0.60 ns �9.0
Constant �1.079 0.753 ns

Pseudo R2 0.159 0.007
Mean absolute bias 8.3

Table A.2
Sensitivity of the average treatment effects to hidden bias as based on the bounds
test, p-values.

Gamma Crop
output

Land
productivity

Farm
profitability

Total
income

Pesticide
use

1.0 0.000 0.000 0.001 0.002 0.001
1.2 0.001 0.000 0.008 0.015 0.012
1.4 0.007 0.001 0.036 0.062 0.050
1.6 0.025 0.007 0.103 0.158 0.132
1.8 0.066 0.022 0.211 0.297 0.257
2.0 0.135 0.052 0.349 0.453 0.405
2.2 0.228 0.102 0.493 0.602 0.553
2.4 0.338 0.170 0.626 0.727 0.682
2.6 0.453 0.254 0.737 0.821 0.785
2.8 0.563 0.347 0.822 0.888 0.860
3.0 0.662 0.442 0.884 0.932 0.912

Notes: gamma is the log odds of differential assignment due to unobserved
covariates. The p-values refer to the upper bound significance levels for overesti-
mation of the treatment effects (all lower bound significance levels had p < 0.001)

Table A.3
Sensitivity tests for average treatment effects to alternative matching methods.

Outcome variable Crop output (USD) Land productivity (USD/ha

IPW 286.4 661.0
PSM (NN, n = 1) 285.9 766.9
PSM (NN, n = 3) 287.4 756.5
PSM (NN, n = 5) 296.6 660.5
PSM (NN, n = 1, overlap) 301.0 749.4
PSM (NN, n = 3, overlap) 301.5 742.3
PSM (NN, n = 5, overlap) 300.7 633.4

Coefficient of variation (%) 2.5 7.9

Notes: IPW = inverse probability weighting; PSM = propensity score matching; NN
trained farmer. Overlap means that trained households are dropped whose propens
non-trained farmers, and vice versa. All options for PSM are with replacement and
.

Fig. B.1. Kernel density distribution showing overlap between trained and non-
trained farmers.
) Farm profitability (USD/farm) Total income (USD/cap.) Pesticide use (kg/ha)

274.6 75.3 1.7
290.2 85.9 2.0
276.7 85.4 1.4
297.8 83.7 1.3
304.5 86.7 1.7
288.3 87.3 1.3
300.0 82.7 1.2

3.9 4.9 19.4

= nearest neighbor method; n = minimum number of non-trained matching neighbors per
ity score is higher than the maximum or lower than the minimum propensity score of the
tied propensity scores.
Appendix B
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