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Abstract

Klazar defined and studied a notion of pattern avoidance for set partitions, which is an analogue of pattern
avoidance for permutations. Sagan considered partitions which avoid a single partition of three elements.
We enumerate partitions which avoid any family of partitions of a 3-element set as was done by Simion and
Schmidt for permutations. We also consider even and odd set partitions. We provide enumerative results for
set partitions restricted by generalized partition patterns, which are an analogue of the generalized permuta-
tion patterns of Babson and Steingrímsson. Finally, in the spirit of work done by Babson and Steingrímsson,
we will show how these generalized partition patterns can be used to describe set partition statistics.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Pattern avoidance in permutations was first introduced by Knuth in [18], and is currently
an area of very active research. An approach to studying pattern avoidance and containment that
deals with set partitions was introduced and studied by Klazar in [15–17] and continued by Sagan
in [22]. The extensively studied non-crossing partitions defined by Kreweras [19] can be viewed
as those which avoid a specific pattern with four elements. We will focus on the enumeration of
all partitions of an n-element set which avoid a family of partitions of a 3-element set. To make
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these notions of pattern containment for permutations and set partitions precise and to see their
connections we will need some definitions.

If f :S → T is a function from set S to set T , then f acts element-wise on objects constructed
from S. For example, if a1a2 . . . an is a permutation of elements of S then f (a1a2 . . . an) =
f (a1)f (a2) . . . f (an). Also, define [n] to be the set {1,2, . . . , n} and [k,n] to be the set {k, k +
1, . . . , n}.

Suppose that S ⊆ Z is a set with #S = n, then the standardization map corresponding to S

is the unique order preserving bijection StS :S → [n]. For example if S = {2,5,7,10} then
StS(2) = 1, StS(5) = 2, StS(7) = 3, and StS(10) = 4. When it is clear from context what set
the standardization map is acting on, we will omit the subscript S.

Let p = a1a2 . . . ak ∈ Sk be a given permutation, called the pattern, where Sk is the symmet-
ric group on k letters. A permutation q = b1b2 . . . bn ∈ Sn contains the pattern p if there is a
subsequence q ′ = bi1bi2 . . . bik of q with St (q ′) = p. Otherwise q avoids p. For example the
permutation q = 32145 contains 6 copies of the pattern 213, namely 324, 325, 314, 315, 214,
and 215. On the other hand q avoids the pattern 132. For R ⊆ Sk , let

Sn(R) = {q ∈ Sn: q avoids every pattern p ∈ R}.

The problem of enumerating Sn(R) for R ⊆ S3 was considered by Simion and Schmidt [26]. We
will consider the analogous problem for patterns in partitions.

A partition π of set S ⊆ Z, written π � S, is a family of nonempty, pairwise disjoint subsets
B1,B2, . . . ,Bk of S called blocks such that

⋃k
i=1 Bi = S. We write π = B1/B2/ . . . /Bk and

define the length of π , written �(π), to be the number of blocks. Since the order of the blocks
does not matter, we will always write our partitions in the canonical order where

minB1 < minB2 < · · · < minBk.

We will also always write the elements of each block in increasing order. For example,
137/26/45 � [7] has length 3.

Let

Πn = {
π � [n]}

be the set of all partitions of [n]. Suppose σ is a set partition of length m and π is a partition of
length �. Then σ contains π , written π ⊆ σ , if there are � different blocks of σ each containing a
block of π . For example σ = 137/26/45 contains π = 2/37/5 but does not contain π ′ = 2/37/6
because 2 and 6 are in the same block of σ .

Let π ∈ Πk be a given set partition called the pattern. A partition σ ∈ Πn contains the pattern
π if there is some σ ′ ⊆ σ with St (σ ′) = π . Otherwise π avoids σ . For example σ = 137/26/45
contains six copies of the pattern π = 14/2/3, namely 17/2/4, 17/2/5, 17/4/6, 17/5/6, 26/3/4,
and 26/3/5. It is important to note here that when looking for a copy of π in σ , the order of the
blocks does not matter. On the other hand, consider the pattern π ′ = 1/234. To be contained in σ

the copy of the block 234 of π ′ must be contained in a block of size three or larger. The only
such block of σ is 137. It is impossible to find an element smaller than 1, so σ does not contain
a copy of π ′. For R ⊆ Πk , let

Πn(R) = {σ ∈ Πn: σ avoids every pattern π ∈ R}.
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The set of non-crossing partitions mentioned above may be defined as the set Πn(13/24). It
is known that #Πn(13/24) = Cn, where Cn is the nth Catalan number [19,27]. For a survey of
results about non-crossing partitions see Simion’s paper [25].

Sagan [22] has provided enumerative results for Πn(R) when #R = 1. In the spirit of work
done by Simion and Schmidt on permutation patterns [26], we will enumerate Πn(R) for #R � 2.
We then define the sign of a partition and enumerate the set of signed partitions of [n] avoiding
particular patterns. In Section 5, we define generalized patterns analogous to the generalized
permutation patterns of Babson and Steingrímsson [1], and provide enumerative results for those.
Finally, we will show how these generalized partition patterns can be used to describe set partition
statistics.

2. Double restrictions

In this section we will consider the case of #Πn(R) where #R = 2. Given a set partition
σ = B1/B2/ . . . /Bk � [n], let σ c = Bc

1/Bc
2/ . . . /Bc

k be the complement of σ where

Bc
i = {n − a + 1: a ∈ Bi}.

For example if σ = 126/3/45 then σc = 156/23/4. The following result is obvious, so we omit
the proof.

Proposition 2.1 (Sagan). For n � 1,

Πn

(
σ c

) = {
πc: π ∈ Πn(σ)

}
,

#Πn

(
σ c

) = #Πn(σ).

The following lemma is an immediate consequence of Proposition 2.1.

Lemma 2.2.

#Πn(12/3,123) = #Πn(1/23,123),

#Πn(1/2/3,12/3) = #Πn(1/2/3,1/23),

#Πn(12/3,13/2) = #Πn(1/23,13/2).

There are 10 different sets R with elements from Π3 and #R = 2, so by Lemma 2.2 there
are seven different cases to consider. Note that #Π0 = 1 by letting the empty set partition itself.
Since any partition in Π1 or Π2 cannot possibly contain a partition of [3], we have #Π0(R) = 1,
#Π1(R) = 1 and #Π2(R) = 2 for all R ⊆ Π3. The fact that #Π3 = 5 implies that #Π3(R) = 3
for any R ⊂ Π3, with #R = 2. Hence, it suffices to consider n � 4 in the following results.

A partition σ � [n] is layered if σ is of the form [1, i]/[i + 1, j ]/[j + 1, k]/ . . . /[� + 1, n].
An example of a layered partition is σ = 123/4/56/789. A partition σ is a matching if #B � 2
for every block B of σ .

We will use the following results of Sagan [22] repeatedly, so we state them now.
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Proposition 2.3 (Sagan).

Πn(1/2/3) = {
σ : l(σ ) � 2

}
, (1)

Πn(12/3) = {
σ = B1/B2/ . . . /Bk: minBi = i for each i, and

[k + 1, n] ⊆ Bi for some i
}
, (2)

Πn(13/2) = {σ : σ is layered}, (3)

Πn(123) = {σ : σ is a matching}. (4)

Proposition 2.4. For all n � 3,

Πn(1/2/3,12/3) = {12 . . . n, 1/23 . . . n, 13 . . . n/2},
#Πn(1/2/3,12/3) = 3.

Proof. Let σ ∈ Πn(1/2/3,12/3). By (1), σ may have at most two blocks. If �(σ ) = 1 then
σ = 12 . . . n. If �(σ ) = 2 then by (2), we must have [3, n] ⊂ Bi for i = 1 or 2. �
Proposition 2.5. For all n � 1,

Πn(1/2/3,13/2) = {
σ : σ = 12 . . . k/(k + 1)(k + 2) . . . n for some k ∈ [n]},

#Πn(1/2/3,13/2) = n.

Proof. If σ ∈ Πn(1/2/3,13/2) then σ is layered by (3), and �(σ ) � 2 by (1). Hence σ is of the
form described above. The enumeration follows immediately. �
Proposition 2.6.

Πn(1/2/3,123) =
{ {12/34,13/24,14/23}, n = 4,

∅, n � 5,

#Πn(1/2/3,123) =
{

3, n = 4,

0, n � 5.

Proof. If n � 5 and σ � [n], then �(σ ) � 3 or σ has a block of size � 3 by the Pigeonhole Prin-
ciple. Thus by (1) and (4), Πn(1/2/3,123) = ∅ for n � 5. The case n = 4 is easy to check. �
Proposition 2.7. For all n � 3,

Πn(1/23,12/3) = {12 . . . n, 1/2/ . . . /n, 1n/2/3/ . . . /n − 1},
#Πn(1/23,12/3) = 3.

Proof. Let σ = B1/B2/ . . . /Bk avoid 12/3. If k = 1 then σ = 12 . . . n, which avoids 1/23. Simi-
larly, when k = n, we have σ = 1/2/ . . . /n, which avoids 1/23. If k = n−1 and n ∈ Bi for i � 2
then B1/Bi is a copy of 1/23. Thus n ∈ B1 and σ = 1n/2/3/ . . . /n − 1. If 1 < k < n − 1 then,
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by (2), we must have {n − 1, n} ⊆ Bi for some i, and there is at least one more block. Hence σ

contains a copy of 1/23, and so this case can not occur. �
Proposition 2.8. For all n � 1,

Πn(12/3,13/2) = {
σ = 1/2/ . . . /k − 1/k(k + 1) . . . n, for some k ∈ [n]},

#Πn(12/3,13/2) = n.

Proof. Suppose σ = B1/B2/ . . . /Bk ∈ Πn(12/3,13/2). Then by (2) we have i ∈ Bi for each
i and exactly one of the Bi contains [k + 1, n]. From (3) we have that σ must be layered. So
[k + 1, n] ∈ Bk , and Bk = [k,n]. Thus there is exactly one σ ∈ Πn(12/3,13/2) of length k for
each k ∈ [n]. �
Proposition 2.9. For all n � 1,

Πn(12/3,123) = {σ = B1/B2/ . . . /Bk: minBi = i, and k = n − 1 or n},
#Πn(12/3,123) = n.

Proof. Assume σ = B1/B2/ . . . /Bk ∈ Πn(12/3,123). Then by (2) and (4), k = n − 1 or n. The
result follows. �

Let Fn be the nth Fibonacci number, initialized by F0 = 1 and F1 = 1. A composition of an
integer n is an ordered collection of positive integers n1, n2, . . . , nk such that n = n1 + n2 +
· · ·+nk . The ni are called parts. It is easy to see that Fn counts the number of compositions of n

with parts of size 1 or 2.

Proposition 2.10. For all n � 0,

Πn(13/2,123) = {σ : σ is a layered matching},
#Πn(13/2,123) = Fn.

Proof. Any σ ∈ Πn(13/2,123) must be layered by (3) and a matching by (4).
There is a bijection between the compositions of n with parts of size 1 or 2 and the partitions

of [n] that are layered matchings. If σ ∈ Πn(13/2,123) and σ = B1/B2/ . . . /Bk , then we map σ

to the composition n = n1 + n2 + · · · + nk with ni = #Bi . �
From the results above we know that

#Πn(1/2/3,13/2) = #Πn(12/3,13/2) = #Πn(12/3,123) = n,

and we have a very nice description of the elements in each of these sets. It is interesting to note
that one gets similar results when avoiding certain sets of permutations in S3.

Proposition 2.11 (Simion, Schmidt). For every n � 1,
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#Sn(123,132,231) = #Sn(123,213,312) = n,

#Sn(132,231,321) = #Sn(213,312,321) = n.

And:

q ∈ Sn(123,132,231) ⇔ q = (n,n − 1, . . . , k + 1, k − 1, k − 2, . . . ,2,1, k),

q ∈ Sn(123,213,312) ⇔ q = (n,n − 1, . . . , k + 1,1,2,3, . . . , k),

q ∈ Sn(132,231,321) ⇔ q = (n − 1, n − 2, . . . , k + 1, n, k, k − 1, . . . ,2,1),

q ∈ Sn(213,312,321) ⇔ q = (k − 1, . . . ,3,2,1, n,n − 1, . . . , k).

The Fibonacci numbers also occur when avoiding permutations.

Proposition 2.12 (Simion, Schmidt). For every n � 1,

#Sn(123,132,213) = Fn.

There is a simple map Φ :Πn → Sn, given by sending σ = B1/B2/ . . . /Bk to BkBk−1 . . .B1.
For example, Φ(1/23/4/56) = 564231.

Proposition 2.13. The map Φ restricts to a bijection from the set Πn(13/2,123) to the set
Sn(123,132,213).

Proof. We may describe q ∈ Sn(123,132,213) recursively. To avoid the patterns 123 and 213,
we must have q−1(n) � 2. If q−1(n) = 1 then the remaining positions form a permutation in
Sn−1(123,132,213). If q−1(n) = 2 then q−1(n − 1) = 1, otherwise there will be a copy of 132
in q . The remaining positions form a permutation in Sn−2(123,132,213).

Suppose σ = B1/B2/ . . . /Bk ∈ Πn(13/2,123), then Bk = {n} or {n − 1, n}. The permutation
Φ(σ) thus begins with n or n − 1, n. Inductively, one can see that this restriction of the map Φ

is well defined.
To prove that the restricted Φ is a bijection we provide its inverse map. Let q = q1q2 . . . qn ∈

Sn(123,132,213) then we say that qk is a descent if qk > qk+1. Let D = {qi1, qi2, . . . , qi�} be the
set of descents of q , with i1 < i2 < · · · < i�. Then

Φ−1(q) = qi�+1qi�+2 . . . qn/qi�−1+1 . . . qi�/ . . . /q1 . . . qi1 .

For example Φ−1(564231) = 1/23/4/56 because its descent set is D = {3,4,6}.
We now show that Φ−1 is well defined. Every q ∈ Sn(123,132,213) must have a descent in

at least one of its first two positions. After this initial descent there may be no more than one
position between any two descents. Thus the blocks of Φ−1(q) will have size at most 2, and
from the description of the elements of Sn(123,132,213) above Φ−1(q) will be layered.

The fact that Φ and Φ−1 are inverses follows easily from the descriptions of the maps. �
3. Higher order restrictions

We begin, as with double restrictions, by reducing the number of cases. The following lemma
is a consequence of Proposition 2.1.
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Table 1
Enumeration of partitions restricted by 3 patterns

R Πn(R) #Πn(R)

{1/2/3,12/3,13/2} {12 . . . n,1/23 . . . n} 2
{1/2/3,12/3,123} ∅ 0
{1/2/3,13/2,123} {12/34} 1 if n = 4

∅ 0 if n � 5
{1/2/3,1/23,12/3} {12 . . . n} 1
{12/3,13/2,123} {1/2/ . . . /n,1/2/ . . . /n − 2/(n − 1)n} 2
{1/23,12/3,13/2} {123 . . . n,1/2/ . . . /n} 2
{1/23,12/3,123} {1/2/ . . . /n,1n/2/3/ . . . /n − 1} 2

Lemma 3.1.

#Πn(1/2/3,12/3,123) = #Πn(1/2/3,1/23,123),

#Πn(1/2/3,12/3,13/2) = #Πn(1/2/3,1/23,13/2),

#Πn(12/3,13/2,123) = #Πn(1/23,13/2,123).

The results for #Πn(R) where #R = 3 are easy to prove. Table 1 describes these sets and gives
their enumeration for n � 4. The following proposition describes #Πn(R) for #R � 4. We omit
the simple proof.

Proposition 3.2. For R ⊆ Π3 with #R � 4 and n � 4,

#Πn(R) =
{

0 if {1/2/3,123} ⊆ R,

1 else.

4. Even and odd set partitions

In this section we will consider the number of even and odd partitions of the set [n], which
avoid a single pattern of length three. A partition σ � [n] with �(σ ) = k has sign,

sgn(σ ) = (−1)n−k.

Even partitions σ satisfy sgn(σ ) = 1, and odd partitions σ satisfy sgn(σ ) = −1. We will use the
following notation:

EΠn(π) = {
σ � [n]: sgn(σ ) = 1

}
,

OΠn(π) = {
σ � [n]: sgn(σ ) = −1

}
.

The following follows directly from the definitions.

Lemma 4.1. The sign of σ is the same as the sign of σc. Thus #EΠn(12/3) = #EΠn(1/23) and
#OΠn(12/3) = #OΠn(1/23).
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We will use the following result of Sagan [22] repeatedly, so we state it now. Define the double
factorial by

(2i)!! = 1 · 3 · 5 · · · (2i − 1).

Proposition 4.2 (Sagan).

#Πn(1/2/3) = 2n−1, (5)

#Πn(12/3) =
(

n

2

)
+ 1, (6)

#Πn(13/2) = 2n−1, (7)

#Πn(123) =

n/2�∑
i=0

(
n

2i

)
(2i)!!. (8)

We now consider single restrictions. By Lemma 4.1 there are only four cases.

Proposition 4.3. For all odd n � 1,

#EΠn(1/2/3) = 1,

#OΠn(1/2/3) = 2n−1 − 1.

For all even n � 2,

#EΠn(1/2/3) = 2n−1 − 1,

#OΠn(1/2/3) = 1.

Proof. By (1), any σ ∈ Πn(1/2/3) must have �(σ ) � 2. If n is odd, then a partition of length 1
will be even and a partition of length 2 will be odd. There is only one partition of length 1, and
#OΠn(π) + #EΠn(π) = #Πn(π) for any pattern π . Thus, the result holds for odd n by (5). The
proof for even n is similar. �
Proposition 4.4. For all odd n � 0,

#EΠn(12/3) =
⌊

(n − 1)2

4

⌋
+ 1,

#OΠn(12/3) =
⌊

n2

4

⌋
.

Proof. By (2) we have, for n odd,

#EΠn(12/3) = 1 +
n−3

2∑
(2k + 1) = 1 + (n − 1)2

4
=

⌊
(n − 1)2

4

⌋
+ 1,
k=0



A.M. Goyt / Advances in Applied Mathematics 41 (2008) 95–114 103
and by (6)

#OΠn(12/3) =
(

n

2

)
+ 1 − (n − 1)2

4
− 1 =

⌊
n2

4

⌋
.

The proof for even n is similar. �
Proposition 4.5. For all n � 1,

#OΠn(13/2) = #EΠn(13/2) = 2n−2.

Proof. By (7) it suffices to give a sign reversing involution ψ :Πn(13/2) → Πn(13/2). By (3),
σ ∈ Πn(13/2) is layered, so it is of the form σ = B1/B2/ . . . /Bk , where either Bk = {n} or
Bk ⊃ {n}. Let

ψ(σ) =
{

B1/B2/ . . . /Bk−1 ∪ {n} if Bk = {n},
B1/B2/ . . . /Bk − {n}/n if Bk ⊃ {n}.

Notice that ψ(σ) is still layered for any σ ∈ Πn(13/2), so ψ is well defined. And, ψ is its own
inverse because it either moves n into the block preceding it if {n} is a block and into its own
block otherwise. Also, ψ changes the sign of σ by either increasing or decreasing the length of σ

by 1. �
Proposition 4.6. For all n � 1,

#EΠn(123) =

 n−2

4 �∑
i=0

(
n

4i + 2

)
(4i + 2)!!,

#OΠn(123) =

 n

4 �∑
i=0

(
n

4i

)
(4i)!!.

Proof. Any σ ∈ Πn(123) is a matching. If i blocks of σ have 2 elements each and the remaining
blocks are singletons then σ has i + (n − 2i) = n − i blocks. Thus sgn(σ ) = (−1)n−(n−i) =
(−1)i . So the even and odd counts are obtained by taking the appropriate terms from (8). �

Table 2 gives the results for #EΠn(R) and #OΠn(R) where #R � 2 and n � 4. We prove the
enumeration of EΠn(13/2,123) and OΠn(13/2,123) as an example and leave the rest to the
reader.

Proposition 4.7.

#EΠn(13/2,123) =
{ �Fn/2� for n ≡ 0,1 (mod 6),

Fn/2 for n ≡ 2,5 (mod 6),


Fn/2� for n ≡ 3,4 (mod 6);

#OΠn(13/2,123) =
{ 
Fn/2� for n ≡ 0,1 (mod 6),

Fn/2 for n ≡ 2,5 (mod 6),
�Fn/2� for n ≡ 3,4 (mod 6).
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Table 2
Enumeration of even and odd partitions restricted by at least 2 patterns

R #EΠn(R) #OΠn(R)

{1/2/3,12/3} 1 for n odd 2 for n odd
2 for n even 1 for n even

{1/2/3,13/2} 1 for n odd n − 1 for n odd
n − 1 for n even 1 for n even

{1/2/3,123} 3 for n = 4 0
0 for n � 5

{1/23,12/3} 2 for n odd 1 for n odd
1 for n even 2 for n even

{12/3,13/2} �n/2� 
n/2�
{12/3,123} 1 n − 1

{13/2,123} �Fn/2� for n ≡ 0,1 (mod 6) 
Fn/2� for n ≡ 0,1 (mod 6)

Fn/2 for n ≡ 2,5 (mod 6) Fn/2 for n ≡ 2,5 (mod 6)


Fn/2� for n ≡ 3,4 (mod 6) �Fn/2� for n ≡ 3,4 (mod 6)

{1/2/3,1/23,12/3} 1 for n odd 0 for n odd
0 for n even 1 for n even

{1/2/3,12/3,13/2} 1 1

{1/2/3,12/3,123} 0 0

{1/2/3,13/2,123} 1 0

{1/23,12/3,13/2} 2 for n odd 0 for n odd
1 for n even 1 for n even

{1/23,12/3,123} 1 1

{12/3,13/2,123} 1 1

{1/2/3,1/23,12/3,13/2} 1 for n even 0 for n odd
0 for n odd 1 for n even

{1/2/3,1/23,12/3,123} 0 0

{1/2/3,12/3,13/2,123} 0 0

{1/23,12/3,13/2,123} 1 0

{1/2/3,1/23,12/3,13/2,123} 0 0

Proof. Let σ = B1/B2/ . . . /Bk ∈ Πn(13/2,123). Then Bk = {n} or {n − 1, n}. If Bk = {n} then
B1/B2/ . . . /Bk−1 is a layered matching of [n−1] and sgn(B1/B2/ . . . /Bk−1) = sgn(σ ). If Bk =
{n − 1, n} then B1/B2/ . . . /Bk−1 is a layered matching of [n − 2] and sgn(B1/B2/ . . . /Bk−1) =
−sgn(σ ). Thus we have that

#EΠn(13/2,123) = #EΠn−1(13/2,123) + #OΠn−2(13/2,123).

Similarly,

#OΠn(13/2,123) = #OΠn−1(13/2,123) + #EΠn−2(13/2,123).

Now induct on n. To show that the proposition is true when 0 � n � 5 is easy. This leaves us
with twelve cases to check for the inductive step. We will show one of them. It is easy to see that
Fn is odd unless n ≡ 2,5 (mod 6).
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Suppose that n ≡ 4 (mod 6). Then we have

#EΠn(13/2,123) = #EΠn−1(13/2,123) + #OΠn−2(13/2,123)

= 
Fn−1/2� + Fn−2/2

= Fn−1 − 1 + Fn−2

2
= 
Fn/2�. �

5. Generalized partition patterns

Babson and Steingrímsson [1] defined generalized patterns for permutations. These were
patterns in which certain elements were required to be consecutive. Generalized permutation
patterns were used to describe permutation statistics and classify Mahonian statistics. In this sec-
tion we will define a similar notion for set partition patterns and consider the avoidance case.
In the next section we will show that generalized partition patterns can be used to describe set
partition statistics.

Recall that if σ = B1/B2/ . . . /Bk is a partition then the blocks are written in such a way that
minB1 < minB2 < · · · < minBk . This gives us a well-defined notion of adjacency of blocks,
where we consider Bi as being adjacent to both Bi−1 and Bi+1. Consider the partition σ =
147/25/36 and the pattern π = 13/2. Suppose now that a copy of π must appear in adjacent
blocks. Then 17/2 is still a copy, but 17/3 is not. We may also have the blocks in the restricted
copy of 13/2 in the opposite order making 25/4 a copy of π in σ . We will denote π with
the adjacency restriction by the generalized pattern ρ = 13|2. In general, we will denote block
adjacency using a vertical bar.

Recall that the elements of a block are put in order by size, which gives us a way to consider
adjacent elements. Now, suppose we want to find a copy of 13/2 in σ = 147/25/36, but we
require that the elements that represent 1 and 3 in this copy are adjacent. In this case 14/3 is a
copy of 13/2, but 17/6 is not, since 1 and 7 are not adjacent in their block. We will denote this
by the generalized pattern ρ = 	

13/2. In general, we will denote element adjacency by placing
an arc over the elements, which must be adjacent.

If ρ is a generalized pattern, then the notation Πn(ρ) denotes the set of partitions of [n], which
avoid ρ. Similarly, if R is any set of generalized patterns then Πn(R) is the set of partitions of [n],
which avoid all generalized patterns in R.

We are interested in enumerating the Πn(R) where R is a set of partitions of [3] at least one of
which contains an adjacency restriction. It turns out that the adjacency restrictions do not actually
restrict most of the original patterns. This is summed up in the next lemma.

Lemma 5.1. The following are true for generalized patterns:

Πn(1/2/3) = Πn(1|2/3) = Πn(1/2|3) = Πn(1|2|3),

Πn(1/23) = Πn(1|23) = Πn(1/
	
23) = Πn(1|	

23),

Πn(13/2) = Πn(
	
13/2) = Πn(13|2) = Πn(

	
13|2),

Πn(123) = Πn(
	
123) = Πn(1

	
23) = Πn(

	
12

	
3),
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Πn(12/3) = Πn(
	
12/3),

Πn(12|3) = Πn(
	
12|3).

Proof. We will only prove the second line as the others are very similar. First we show that
Πn(1/23) = Πn(1|23). It is obvious that if a partition σ � [n] contains a copy of 1|23 then
it contains a copy of 1/23. So it will suffice to show the other containment holds. Let σ =
B1/B2/ . . . /Bk � [n] contain a copy a/bc of 1/23. Suppose a ∈ Bs and b, c ∈ Bt . If s < t then
the block Bt−1 exists and minBt−1 < minBt � b < c. Letting d = minBt−1 gives a copy d/bc

of 1|23 in σ . If s > t then Bt+1 exists and minBt+1 � a < b < c. Letting e = minBt+1 gives a
copy e/bc of 1|23 in σ . We remind the reader that the adjacent blocks of the copy of 1|23 may
appear in either order in σ .

Now we will show that Πn(1/23) = Πn(1/
	
23). Again, it suffices to show that if σ � [n]

contains a copy of 1/23 then it contains a copy of 1/
	
23. Given a copy a/bc of 1/23 in σ , if b

and c are not adjacent in their block B then let d be the minimum of all of the elements of B

which are larger than b. Thus a/bd is a copy of 1/
	
23 in σ . These two observations can be used

to prove the remaining equality. �
Let R be a set of generalized patterns, and let S be the same set with adjacency restrictions

dropped. That is if, for example, 1|	
23 ∈ R then 1/23 ∈ S, and S only contains patterns without

adjacency restrictions. Lemma 5.1 says that unless 12|3 or
	
12|3 ∈ R, we have that Πn(R) =

Πn(S). However, since we have Πn(12|3) = Πn(
	
12|3), we only need to consider cases when

12|3 ∈ R. The sets Πn(S) were enumerated in Sections 2 and 3, so we need only enumerate the
sets Πn(S ∪ {12|3}) where S ⊆ Π3 − {12/3}.

Proposition 5.2. Let S ⊆ Π3 − {12/3} then Πn(S ∪ {12|3}) = Πn(S ∪ {12/3}) unless S = ∅ or
{123}.

Proof. The cases where #S � 2 follow automatically from those with #S = 1 and Lemma 5.1.
The three cases with #S = 1 are very similar, so we will only prove the statement for S = {13/2}.
Let σ ∈ Πn(13/2,12|3), then σ must be layered. Thus any copy of 12/3 in σ easily reduces to a
copy of 12|3 as in the proof of Lemma 5.1. �

The following lemma describes the elements of Πn(12|3).

Lemma 5.3. We have σ ∈ Πn(12|3) if and only if whenever a block Bt of σ satisfies #Bt � 2,
then

#Bt−1 = 1 and #Bt+1 = 1.

Furthermore, if Bt+1 = {a} then a < b for every b ∈ Bt − {minBt }.

Proof. First we show that σ = B1/B2/ . . . /Bk ∈ Πn(12|3) can be described as above. Let
#Bt � 2 and suppose that Bt−1 contains at least 2 elements and let a < b be the two smallest
elements of Bt−1. Let c < d be the two smallest elements of Bt . By the definition of canonical
order, a < c. If b < d , then ab/d is a copy of 12|3. If b > d , then cd/b is a copy of 12|3 another
contradiction. The proof that #Bt+1 = 1 is similar. The single element in Bt+1 must be larger
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than c by definition. If it is larger than any other element of Bt we will again have an unwanted
copy of 12|3.

Now, suppose that σ ∈ Πn has the structure described above. Then it is straightforward to
show that σ cannot contain a copy of 12|3. �

First we will consider the case where S = ∅ in Proposition 5.2. Let an = #Πn(12|3) and let

f (x) =
∑
n�0

an

xn

n!

be the corresponding exponential generating function.

Proposition 5.4. For n � 2,

an = an−1 + 1 +
n−2∑
k=1

(
n − 2

k

)
an−k−2

with the initial conditions a0 = 1 and a1 = 1, and f (x) satisfies the differential equation

y′′ = y′ + y
(
ex − 1

) + ex.

Proof. That #Π0(12|3) = #Π1(12|3) = 1 is obvious. Let σ = B1/B2/ . . . /Bk ∈ Πn(12|3). Ei-
ther #B1 = 1 or #B1 � 2. If #B1 = 1 then, by the definition of canonical order, B1 = {1}. Clearly
any 12|3 avoiding partition of the set [2, n] will still avoid 12|3 if we prepend the block {1}. This
gives the first term of the recursion.

Now suppose that #B1 � 2, then either σ = 12 . . . n or not. The case where σ = 12 . . . n is
counted by the 1 in the recursion. If σ �= 12 . . . n then, by Lemma 5.3, we must have B2 = {2}. If
k of the elements from [3, n] are in B1, then the remaining n − k − 2 elements must form a 12|3
avoiding partition. This establishes the recursion.

Using the recursion to produce the differential equation satisfied by f (x) is routine and is left
the reader. �

The substitution y = uex/2 simplifies the equation to

u′′ = u

(
ex − 3

4

)
+ ex/2.

Using Maple, we obtain the solution

u = C1 · I√−3

(
2ex/2) + C2 · K√−3

(
ex/2)

+ 2I√−3

(
2ex/2)∫

K√−3

(
ex/2ex/2)dx

− 2K√−3

(
ex/2)∫

I√−3

(
2ex/2)ex/2 dx,
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for certain constants C1 and C2, where In(z) and Kn(z) are the modified Bessel functions of the
first and second kinds, respectively. There are known combinatorial interpretations for certain
Bessel functions. See, for example, [2] and [11]. It is unlikely, however, that there is a combi-
natorial interpretation for the Bessel functions appearing in the exponential generating function
f (x) = ue−x/2, since K√−3(e

x/2) is not well defined as a formal power series.
Now, we turn our focus to Πn(123,12|3). Let bn = #Πn(123,12|3) and

g(x) =
∑
n�0

bn

xn

n!

be the corresponding exponential generating function.
The proof of the following proposition is very similar to the proof of Proposition 5.4 and is

omitted.

Proposition 5.5. For n � 3,

bn = bn−1 + (n − 2)bn−3

with the initial conditions b0 = 1, b1 = 1, and b2 = 2. Also, g(x) satisfies the differential equation

y′′′ = y′′ + xy′ + y.

Using Maple, we obtain the solution

y = D1e
x/2Ai(1/4 + x) + D2e

x/2Bi(1/4 + x)

+ D3e
x/2

(
Ai(1/4 + x)

∫
Bi(1/4 + x)e−x/2 dx

−
∫

Ai(1/4 + x)e−x/2 dx Bi(1/4 + x)

)
,

for constants D1, D2, and D3, where Ai and Bi are Airy functions.
It is not terribly surprising that Airy functions appear, since these functions are closely related

to Bessel functions and Πn(123,12|3) is a subset of the set Πn(12|3). There do not seem to
be any existing combinatorial interpretations of Airy functions. There is also unlikely to be a
combinatorial interpretation of this generating function due to the fact that Ai(1/4 + x) is not
well defined as a formal power series.

For completeness we will consider the cases where odd and even set partitions avoid gen-
eralized set partitions. As before only the cases OΠn(R) and EΠn(R) where R = {12|3} or
{123,12|3} are new.

Let oan = #OΠn(12|3) and ean = #EΠn(12|3). Let obn = #OΠn(123,12|3) and ebn =
#EΠn(123,12|3). The following propositions easily follow from the recursions above. We let
χ be the truth function, where χ of a statement is 1 if the statement is true and 0 if the statement
is false.
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Proposition 5.6. For n � 2,

oan = oan−1 + χ(n is even) +
n−2∑

l=2, l even

(
n − 2

l

)
oan−2−l +

n−2∑
l=1, l odd

(
n − 2

l

)
ean−2−l ,

and

ean = ean−1 + χ(n is odd) +
n−2∑

l=2, l even

(
n − 2

l

)
ean−2−l +

n−2∑
l=1, l odd

(
n − 2

l

)
oan−2−l .

Proposition 5.7. For n � 3

obn = obn−1 + (n − 2)ebn−3,

and

ebn = ebn−1 + (n − 2)obn−3.

6. Set partition statistics

Carlitz [5,6] and Gould [12] were the first to give versions of the q-Stirling numbers of the
second kind. In [20], Milne introduces an inversion and dual inversion statistic on set partitions,
whose distributions over partitions of [n] with k blocks produce these two q-Stirling numbers
of the second kind. Later, Sagan [23] introduced the major index and dual major index of a set
partition, whose distributions produced the same two q-Stirling numbers of the second kind.
At around the same time, Wachs and White [28] investigated four natural statistics, which they
called lb, ls, rb, and rs, again producing the same two q-Stirling numbers of the second kind.
Other statistics of interest are the number of crossings, nestings and alignments of a partition,
see for example [4,9], or [14]. In this section we will show that all of these statistics can be
described in the language of generalized partition patterns.

We will need some more notation. Consider the pattern π = 1/23. If we are looking for a
copy of π in σ = 137/26/45, but we want the element representing 1 in the copy to be the
minimum of its block then 1/45 is a copy, but 3/45 is not. We will represent this generalized
pattern by

	
1/23. And in general, we will denote such a generalized pattern by putting an arc over

the first element of the block, in which we want the minimum to occur. In the same fashion, if
we want the element representing 1 in a copy of 1/23 to be the maximum in its block, then we
denote the pattern by

	
1 /23. If we want the element representing 1 in a copy of 1/23 to be both

the minimum and the maximum of its block, then we denote the pattern by
		

1 /23.
In the sequel, if we say ρ is a pattern then ρ may or may not have adjacency restrictions. Let

ρ be a pattern and σ ∈ Πn. Then ρ will be treated as a function from Πn to the nonnegative
integers by letting ρ(σ ) be the number of copies of ρ in σ . If we have patterns ρ1, ρ2, . . . , ρ�

then

(ρ1 + ρ2 + · · · + ρ�)(σ ) = ρ1(σ ) + ρ2(σ ) + · · · + ρ�(σ ).
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We begin with the inversion statistic. Let σ = B1/B2/ . . . /Bk ∈ Πn and b ∈ Bi . We will say
that (b,Bj ) is an inversion if b > minBj and i < j . Define the inversion number of σ , written
inv(σ ), to be the number of inversions in σ .

We may calculate inv(σ ) by summing, over all elements b ∈ [n], the number of inversions of
the form (b,Bj ). This observation leads to the next proposition.

Proposition 6.1. For any σ ∈ Πn,

inv(σ ) = (
	
13/

	
2 )(σ ).

Proof. We will show that there is a one to one correspondence between inversions and copies
of

	
13/

	
2 . Let σ = B1/B2/ . . . /Bk . Let b ∈ Bi and (b,Bj ) be an inversion. If a = minBi and

c = minBj then (b,Bj ) corresponds to the copy ab/c of
	
13/

	
2 . Conversely, if ab/c is a copy of

	
13/

	
2 , then a = minBi and c = minBj where i < j since a < c. Also, b > c = minBj . Thus,

the copy ab/c yields the inversion (b,Bj ). �
Let σ = B1/B2/ . . . /Bk be a partition. We will say that (b,Bi+1) is a descent of σ if b ∈ Bi

and b > minBi+1. Let di be the number of descents of σ in block Bi . Then the major index of σ

is

maj(σ ) =
k−1∑
i=1

idi = d1 + 2d2 + · · · + (k − 1)dk−1.

Notice that each descent (b,Bi+1) contributes i to the major index.

Proposition 6.2. For any σ ∈ Πn,

maj(σ ) = (
	
13|	2 +	

1/
	
24|	3)(σ ).

Proof. Let σ = B1/B2/ . . . /Bk and b ∈ Bi . Let ρ1 =	
13|	2 and ρ2 =	

1/
	
24|	3 . We will first

show that (b,Bi+1) is a descent if and only if b represents the 3 in a copy of ρ1, or, for i � 2, the 4
in a copy of ρ2. Then we will show that each descent (b,Bi+1) contributes i to the right-hand
side.

Let (b,Bi+1) be a descent. If a = minBi and c = minBi+1 then ab/c is a copy of ρ1 where b

represents the 3. If additionally i � 2 and we let d = minBj where j < i then d/ab/c is a copy
of ρ2, in which b represents the 4. For the converse, let ab/c be a copy of ρ1, then c = minBi+1

for some i, and (b,Bi+1) is a descent. Similarly, a copy d/ab/c of ρ2 with c = minBi+1 for
some i � 2 produces the descent (b,Bi+1).

If (b,Bi+1) is a descent, then there is exactly one copy of ρ2 with b representing 3, since the
1 in ρ1 must be represented by a = minBi , and the 2 must be represented by c = minBi+1. Now,
if b represents the 4 in a copy of ρ2 then the 2 must be represented by a = minBi , and the 3
must be represented by c = minBi+1. But now the 1 may be represented by the minimum of any
block appearing before Bi . So the total contribution of the two patterns is 1 + (i − 1) = i. �
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Let σ = B1/B2/ . . . /Bk and b ∈ Bi . The dual of a descent is an ascent, which is a pair
(b,Bi−1) with b > minBi−1. Note that this is true that each b ∈ Bi forms an ascent because
of the canonical ordering. So, we define the dual major index to be

m̂aj(σ ) =
k∑

i=2

(i − 1)(#Bi).

The dual inversion number of σ , written înv(σ ), is the number of pairs (b,Bj ) such that
b ∈ Bi , b > minBj , and i > j . We will call these pairs dual inversions. Clearly, înv(σ ) = m̂aj(σ )

for any σ ∈ Πn, since every ascent causes i − 1 dual inversions.

Proposition 6.3. For any σ ∈ Πn,

înv(σ ) = m̂aj(σ ) = (
	
1/

	
2 +	

1/
	
23)(σ ).

Proof. Let σ = B1/B2/ . . . /Bk . The proof that înv(σ ) = (
	
1/

	
2 +	

1/
	
23)(σ ) is similar to the

proof of Proposition 6.1. The only difference here is that the minimum of a block can represent
the b in a dual inversion (b,Bj ). This is taken care of by the first pattern. �

Wachs and White [28] define four natural statistics on partitions by encoding the partitions as
restricted growth functions. Their statistics are lb, ls, rb, and rs, which stand for left bigger, left
smaller, right bigger and right smaller. For consistency, we will define these statistics without
introducing restricted growth functions, and hence the names of the statistics may seem a little
unusual.

Let σ = B1/B2/ . . . /Bk . If b ∈ Bi , then we will say that (b,Bj ) is:

• a left bigger pair of σ if i < j , and b > minBj ,
• a left smaller pair of σ if i > j and b > minBj ,
• a right bigger pair of σ if i < j and b < maxBj ,
• a right smaller pair of σ if i > j and b < maxBj .

Let lb(σ ), ls(σ ), rb(σ ), and rs(σ ) be, respectively, the number of left bigger pairs, the number
of left smaller pairs, the number of right bigger pairs, and the number of right smaller pairs in σ .

Notice that (b,Bj ) is a left bigger pair if and only if it is an inversion of σ , and (b,Bj ) is a left
smaller pair if and only if (b,Bj ) is a dual inversion of σ . Thus we have from Propositions 6.2
and 6.3 that

lb(σ ) = (
	
13/

	
2)(σ ),

ls(σ ) = (
	
1/

	
2 +	

1/
	
23)(σ ).

We will now consider the other two statistics.

Proposition 6.4. For any σ ∈ Πn,

rb(σ ) = (
	
1/

	
2

	
3 + 	

13/
	
2

	
4 + 	

1/
		

2 + 	
12/

		
3 )(σ ).
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Proof. Let σ = B1/B2/ . . . /Bk . The pattern
	
1/

	
2

	
3 counts right bigger pairs (b,Bj ) where

b = minBi and #Bj � 2. The pattern
	
13/

	
2

	
4 counts those pairs where b �= minBi and #Bj � 2.

The other two patterns correspond to the same two cases when #Bj = 1. �
The proof of the following proposition is similar to the proof of Proposition 6.4 and is omitted.

Proposition 6.5. For any σ ∈ Πn,

rs(σ ) = (
	
1

	
3 /

	
2 +	

1
	
4 /

	
23)(σ ).

There has long been interest in non-crossing partitions. Recall that the non-crossing partitions
are those in the set Πn(13/24) for some n. Non-nesting partitions may be described as those in
the set Πn(

	
14/

	
23). Note that this definition of a non-nesting partition is not the only one. Klazar

[15] defines non-nesting partitions as those in the set Πn(14/23).
Recently, however, there has been increasing interest in counting the number of crossings or

nestings of a partition. In [9], Chen et al. show that the crossing number and nesting number
are symmetrically distributed over Πn by giving a bijection between partitions and vacillating
tableaux. In [14], Kasraoui and Zeng give an involution of Πn, which exchanges the crossing
number and the nesting number while keeping another statistic, the number of alignments of two
edges, fixed.

We will describe each of these statistics and show that they too may be translated into the
language of patterns.

Let σ = B1/B2/ . . . /Bk ∈ Πn. We may rewrite σ as a set P ⊆ [n] × [n] in the following
way. If a, b ∈ Bi and there is no c ∈ Bi such that a < c < b then (a, b) ∈ P . If Bi = {d} then
(d, d) ∈ P . It is easy to see that P uniquely represents σ . We will call P the standard represen-
tation of σ .

Let A be a family {(i1, j1), (i2, j2)} ⊆ P . We will say that A is:

• a crossing if i1 < i2 < j1 < j2,
• a nesting if i1 < i2 < j2 < j1,
• an alignment if i1 < j1 � i2 < j2.

For example, the following diagram represents σ = 137/26/45, where an edge connects ele-
ments if they are adjacent in a block.

� � � � � � �

1 2 3 4 5 6 7

Notice that the pair {(1,3), (2,6)} forms a crossing, the pair {(2,6), (4,5)} forms a nesting
and the pairs {(1,3), (4,5)} and {(1,3), (3,7)} each form an alignment of two edges.

Let cr(σ ) be the number of crossings in σ , ne(σ ) the number of nestings, and al(σ ) the
number of alignments.
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The following proposition is an easy consequence of the previous definitions.

Proposition 6.6. For any σ ∈ Πn,

cr(σ ) = (
	
13/

	
24)(σ ),

ne(σ ) = (
	
14/

	
23)(σ ),

al(σ ) = (
	
12/

	
34 + 	

12
	
34 + 	

12
	
3)(σ ).

Let σ ∈ Πn and P be the standard representation of σ . Consider the family A = {(i1, j1),

(i2, j2), . . . , (ik, jk)} ⊆ P . Then A is a k-crossing if i1 < i2 < · · · < ik < j1 < j2 < · · · < jk . We
say A is a k-nesting if i1 < i2 < · · · < ik < jk < jk−1 < · · · < j1. Let crk(σ ) be the number of
k-crossings of σ and nek(σ ) be the number of k-nestings of σ . Notice that cr = cr2 and ne = ne2.
The following proposition describes these two statistics as patterns.

Proposition 6.7. For any σ ∈ Πn,

crk(σ ) = (	
1(k + 1)/

	
2(k + 2)/ . . . /

	
k(2k)

)
(σ ),

nek(σ ) = ( 	
1(2k)/

	
2(2k − 1)/ . . . /

	
k(k + 1)

)
(σ ).

7. Future work

There has been an explosion in interest in permutation patterns recently, and this paper will
hopefully help to generate interest in similar work with set partitions. Sections 2–4 focus mainly
on the question of avoidance of a partition of a three element set, and there is more that can
be done. Klazar [15–17], for example, has done work on avoidance of certain partitions of a
four element set. The problem of avoiding more than one pattern in Π4 is yet to be considered.
Also, of interest is the problem of avoiding a family of patterns, which include patterns from
both Π4 and Π3. Sagan [22] has provided enumerative results for four different infinite families
of patterns.

This is just the tip of iceberg. We may also consider problems of containment. For example,
what is the smallest n such that we can find a partition in Πn, which contains all the patterns
in Πk? Also, for π ∈ Πk , which σ ∈ Πn contain the maximal number of copies of π? The
second question is similar to work initiated for packing of permutations by Price in [21].

In [1], Babson and Steingrímsson use generalized permutation patterns to classify Mahonian
statistics. It is known that the distribution of the statistics of Milne, Sagan, and of Wachs and
White on the set of partitions of [n] with k blocks give nice q-analogues of the Stirling numbers
of the second kind. Is there any way to use the generalized patterns for set partitions to classify
the statistics which produce these nice q-analogues?

Another question which arises is: what distributions do we get if we examine these statistics on
sets Πn(R) for some R ⊆ Πk? The author is working with Sagan on a project [13] that answers
this question for the restricted sets Πn(13/2) and Πn(13/2,123). The distribution of the statistics
ls and rb on Πn(13/2,123) produce q-analogues of the Fibonacci numbers, which are closely
related to q-Fibonacci numbers studied by Carlitz [7,8] and Cigler [10]. It is also interesting to
note that these q-analogues arising from restricted set partitions are related to integer partitions.
Such q-analogues can also be viewed as arising from statistics on compositions.



114 A.M. Goyt / Advances in Applied Mathematics 41 (2008) 95–114
One partition being contained in another partition as a pattern produces a natural partial or-
dering on the family of all set partitions. This poset is likely to be quite beautiful and have nice
structure. It is, of course, an analogue of the poset of permutations ordered by containment. For
more information on this poset of permutations see [29]. The author is currently investigating
properties of various posets of compositions related to a composition poset studied by Sagan and
Vatter [24] and Björner and Sagan [3].
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