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We previously characterized five visual opsin genes of American chameleon (Anolis carolinensis).
Here we report its nonvisual opsin gene orthologous to the chicken pineal gland-specific opsin (P-
opsin) gene. In the pure-cone American chameleon retina, all visual opsins including rod opsin are
expressed. In both pineal and parietal eye, three visual opsins as well as P-opsin are expressed.
Although opsins are detected in the pineal glands of a wide variety of vertebrates, Southern analysis
suggests that the P-opsin gene is used mainly by birds and reptiles. © 1997 Elsevier Science Ltd.
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INTRODUCTION

The periodic nature of biological functions is under direct
influence of both a daily light/dark cycle and an
endogenous clock (Sassone-Corsi, 1994). Biological
clocks have been detected in the hypothalamic supra-
chiasmatic nucleus of mammals (Meijer & Rietveld,
1989), pineal giand of birds, reptiles, and fish (Takahashi
et al., 1989; Falcon et al., 1989), and the retina of
amphibians, birds, and mammals (Cahill et al., 1991;
Tosini & Menaker, 1996). The pineal gland of many non-
mammalian vertebrates is believed to regulate photo-
reception and melatonin synthesis and has been identified
as a major component of the circadian system (Under-
wood, 1990; Korf, 1994). Despite different sites of the
clock and variation in the pineal anatomy (Korf, 1994),
the core mechanism of the circadian rhythm appears to be
fundamentally similar among all vertebrates, involving
opsins or opsin-like proteins (Takahashi, 1993). Such
proteins have been detected in the pineal gland of
lampreys, teleosts, frogs, birds, and reptiles (Vigh-
Teichmann ef al., 1982; Vigh-Teichmann & Vigh,
1990; Kalsow et al., 1991; Araki et al., 1992; Foster et
al., 1993; Tamotsu et al., 1994; Masuda et al., 1994;
Yoshikawa et al., 1994). Recently, the gene encoding the
pineal gland-specific opsin, named pinopsin (Okano et
al., 1994) or P-opsin (Max et al., 1995), has been isolated
from the chicken.

The pineal gland of the American chameleon (Anolis
carolinensis) shows light-dependent daily cycles of
melatonin synthesis both in vitro and in vivo (Menaker
& Wisner, 1983; Underwood & Hyde, 1989), where
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opsin-like proteins have been detected by an immunocy-
tochemical study (Foster et al., 1993). Currently known
opsins are classified into six major groups (Yokoyama,
1994, 1995, 1996): (1) the RH1 cluster (consisting of
rhodopsins); (2) the RH2 cluster (a mixture of opsins with
various absorption sensitivities); (3) the SWSI1 cluster
(blue, violet, and UV opsins); (4) the SWS2 cluster (blue
opsins); (5) the LWS/MWS cluster (a mixture of green
and red opsins); and 6) the P-opsin cluster. We have
previously characterized visual opsin genes of the
American chameleon rhil,., rh2,., swsl,., sws24., and
Iwsy. that encode RH1, RH2, SWS1, SWS2, and LWS,
respectively (Kawamura & Yokoyama, 1993, 1994,
1995, 1996). The lizard has an additional simple but
highly structured photoreceptor organ, the parietal (third)
eye, suspected of enhancing the detection of dawn and
dusk (Solessio & Engbretson, 1993). Here we report the
cloning and sequencing of the P-opsin gene of American
chameleon (denoted P,.). The isolation of P,. and the
visual opsin genes provides a unique opportunity for the
comprehensive study of opsin gene expression in the
retina and other photoreceptive organs.

MATERIALS AND METHODS

Genomic library screening

A genomic library was constructed with BamHI-
digested lambda EMBL3 vector and Sau3Al partially
digested genomic DNA of the American chameleon
(Kawamura & Yokoyama, 1993). We also constructed
another genomic library using BamHI- and EcoRI-
digested genomic DNA, the long arm of BamHI-digested
and the short arm of EcoRI-digested EMBL4 lambda
vectors. From these libraries, we isolated 7ZAc34 and
AAc167 containing exons 14 and exons 4 and 5 of Pa,
respectively, using the bovine rhodopsin cDNA (bd20)
(Nathans & Hogness, 1983) as the probe. Probe-
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hybridizing restriction fragments were subcloned into the
Bluescript SK(—) plasmid vectors. Probe labelling,
plaque hybridization, membrane washing and sequencing
for both strands were done as described previously
(Kawamura & Yokoyama, 1993).

Reverse transcriptase-polymerase chain reaction (RT—
PCR) analysis

From four animals, approximately 1, 2, and 20 ug of
total RNA were extracted from the parietal eye, pineal
gland, and retina, respectively (Chomczynski & Sacchi,
1987). Total RNA was mixed with the PCR reaction mix
[10 mM Tris—HCI (pH 9.0), 1.5 mM MgCl,, 50 mM KCI
0.1% Triton X-100, 200 uM dNTPs, and primers at 1 uM
each], MMLYV reverse transcriptase, and Taq polymerase
in total volume of 25 pl. The samples were placed in a
thermal cycler at S0°C for 8 min, followed by 35 cycles
of 92°C for 45 sec, 55°C for 60 sec, and 72°C for 90 sec.
Five microlitres each of PCR products was electrophor-
esed on 2.5% agarose gel. PCR was also carried out
without reverse transcriptase for each opsin gene,
resulting in no amplification in all tissues. Southern
hybridization of RT-PCR products was carried out using
mixed radioactive probe containing bovine rhodopsin
(bd20) (Nathans & Hogness, 1983), human blue (hs37)
and red (hs7) (Nathans et al., 1986), and chicken P-opsin
cDNAs (Max et al., 1995). Hybridization was carried out
at 65°C following the commercial protocol for Hybond-N
membrane (Amersham). Hybridized membrane was
washed in 1 x SSC/0.1% SDS at 55°C and autoradio-
graphed after 5 hr of exposure. All amplified cDNA
fragments were sequenced cither directly or after being
cloned and were confirmed to match the corresponding
genomic DNA sequences.

Zoo blot analysis

High molecular weight DNA were extracted from the
blood of the owl (Bubo virginianus), turkey (Meleagris
gallopavo), pigeon (Columba livia), human (Homo
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sapiens), and bovine (Bos taurus), liver of chicken
(Gallus gallus), and muscle of lamprey (Petromyzon
marinus), goldfish (Carassius auratus), Mexican cavefish
(Astyanax fasciatus), and Tokay gecko (Gekko gekko)
(Blin & Stafford, 1976). Frog (Xenopus laevis) and
coelacanth (Latemeria chalumnae) DNA were gifts from
Drs. B. Knox and R. DeSalle, respectively. ten micro-
grams (5 ug for American chameleon) per lane of
genomic DNA was digested with Sst1, electrophoresed
on 0.5% agarose gel, and transferred to a Hybond-N
nylon membrane by using the VacuGene vacuum blotting
system (Pharmacia). The last 170 bp portion of the pa.
exon 4 was amplified by PCR using two primers: 5'-
TCATGGT(G/C)ATCG(G/CHT/C)TTCCTI(A/G)T(G/
OTGCTGG(G/C)T-3" and 5-CTGTTTGTTCATGAA-
G(A/C)(A/C)G/A)TAG-3" and was used as the hybridi-
zation probe.

The probe was labeled with [x-**P] dATP by the
random-priming method. Hybridization was carried out
at 65°C following the commercial protocol for Hybond-N
membrane. The hybridized membrane was washed in
1 x SSC/0.1% SDS at 65°C four times (30 min each),
which allows ~20% mismatch (Meinkoth & Wahl,
1984).

RESULTS AND DISCUSSION

Molecular structure of the American chameleon P-opsin
gene

The basic structure of P4 is identical to that of the
chicken P-opsin gene. It has five exons. The position of
the second intron is displaced 15 nucleotides toward the
3" direction compared to the equivalent intron in the
visual opsin genes (Max et al., 1995). Splice junction
signals (GT/AG) are conserved in all introns. The
deduced P-opsins of American chameleon (PA.) and
chicken (Pg,) have two less amino acids than visual
opsins, located between the fourth and fifth putative
transmembrane domains (Okano et al., 1994; Max et al.,
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FIGURE 1. Alignment of the deduced amino acid sequences of P, Pg, (Max et al., 1995) and five visual opsins of American
chameleon (Kawamura & Yokoyama, 1993, 1994, 1995, 1996). Gaps, denoted by dashes, were introduced to optimize scquence
similarity. Putative transmembrane domains I-VII are indicated by horizontal lines.
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FIGURE 2. The phylogenetic tree for P-opsins and visual opsins of
American chameleon and chicken. RH1, RH2, SWS1, SWS2, and
L WS opsins of chicken correspond to its rthodopsin, green, violet, blue,
and red opsins (Okano et al., 1992). To construct a rooted tree, Rh1l
(GnBank K02315), Rh2 (M12896), Rh3 (M17718), and Rh4 (M17719
and M17739) opsins of Drosophila melanogaster were used as the
outgroup. The topology and branch lengths of the phylogenetic tree
were estimated by using the neighbor-joining method (Saitou & Nei,
1987) based on the Poisson-corrected numbers of amino acid
substitutions per site. The bootstrap supports were generated by
resampling 1000 replications (Higgins et al., 1992) and are indicated
beside branch nodes unless they are 100%.

1995) (Fig. 1). Pa. and P, have 73% amino acid identity
with each other, while they have 45-50% amino acid
identity to the visual opsins in vertebrates. A phyloge-
netic tree constructed from the sequences of a number of
bird and reptile opsins clearly shows that P,. is more
closely related to Pg, than to the visual opsins (Fig. 2).

Pac and Pg, are unique at four sites, containing amino
acids F88 (F96 for Pg,), D131 (D139), S163 (S171), and
N176 (N184), while those at the corresponding sites of
the visual opsins are Y, N, R, and D (Fig. 1). Thus, Fig. 2
suggests that the common ancestor of the two opsins
might have achieved amino acid replacements Y88F,
N131D, R163S, and D176N, following the site number of
PA.. When the seven transmembrane model of an opsin
(Hargrave et al., 1983) is considered, Y88F, R163S, and
D176 are located in the cytoplasmic region, while N131D
is in the intradiscal region. Furthermore, Pg, shows the
chicken P-opsin-specific amino acid replacements
K135R and R306Q in the intradiscal region. Since these
amino acid changes probably do not interact with the
chromophore in the transmembrane region directly, they
might have been important in modifying the interaction
of the P-opsin with other proteins in the pineal gland. The
exact effects of these changes on the function of the P-
opsin remain to be examined.

1869

Expression of visual- and P-opsin genes

Using opsin gene-specific primers [Fig. 3(A)], we have
examined the expression of ril o, rh2ac, SWS1 a¢, SWS2ac,
Iwsa. and pa. in the retina, pineal gland, and parietal eye
of American chameleon by RT-PCR assay. In the retina,
all five visual opsin genes are expressed [Fig. 3(B)].
However, the expression of the rod opsin gene, ril 5, is
totally unexpected because not only is rod opsin not
detected in the retina by immunocytochemical assay
(Foster et al., 1993) but also this species is believed to
have a pure-cone retina (Yu & Fager, 1982; Fowlkes ez
al., 1984; Walter et al., 1986). This suggests that either
rod opsin is produced at a low level in some cone
photoreceptor cells or this species possesses a small
number of rod photoreceptors which might have been
overlooked in the previous analyses. In the American
chameleon retina, three types of cone pigments with
maximal absorption (imax) at 625 nm, 503 nm, and
462 nm are known to exist (Provencio et al., 1992),
which appear to correspond to LWS, RH2, and SWS2
pigments, respectively (Kawamura & Yokoyama, 1993,
1995, 1996). Therefore, expression of two additional
visual opsin genes in the retina suggests the presence of
ultraviolet-sensitive cones which have been detected in
its closely related Puerto Rican Anolis species (Fleishman
et al., 1993).

(A)

opsin expected size
gene forward reverse of cDNA (bp)
pPac 5'-ccgtcattggetgegettte~3' 5'-acagctcgcagggtcaagag-3' 235
rhlac 5'-cccttattggggtgagttge-3' 5'~gecgctttcactgtacagac-3' 241

w

rh2apc  5'-ccttgatgggcatttctttt~-3' S5'-gectctcgaactttgcatat-3T 241

w

swslac 5'-tacacctggttcctcttcat-3' 5°'~ctgtttgttcatgaagcagtag-3' 330

w

sws2pc 5'-ccatcatcggttgtgctgtg-~3' 5'-acagctctcagggtgagaag-3' 241

[t

iwsac 5'-ccgtggetggeattgtctte~3' 5'-accgcacggatagccaacca-3" 241

(®) ©)

retina pineal parietal eye

= o
R
I=
EV)%

RH1
Lws

a

(bp)

310-
281/271=
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- 240
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FIGURE 3. RT-PCR assay for the visual- and P-opsin gene expression
in the retina, pineal gland and parietal eye of American chameleon. (A)
Primers used for the RT-PCR analysis. For swsl 5. and the other opsin
genes, codons between Y198-Q307 and those between the second
nucleotide of A139 and that of V217 of p . are amplified, respectively
(see Fig. 1). (B) RT-PCR amplification of opsin cDNAs from the
retina and pineal gland. (C) Southern hybridization of RT-PCR
products from the parietal eye with the mixed radioactive probe
containing bovine rhodopsin (bd20) (Nathans & Hogness, 1983),
human blue (hs37) and red (hs7) (Nathans et al., 1986) and chicken P-
opsin ¢cDNAs (Max et al., 1995).
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FIGURE 4. Southern hybridization of vertebrate genomic DNA to the

exon 4 of Pa.. A mixture of 2 Hindlll and ¢pX174RF Haelll size

standards are indicated in kb. Two hybridizing bands for American

chameleon arc consistent with those expected from the restriction maps
of two allelic forms of P (data not shown).

In the pineal gland, expression of P, and lower levels
of sws2a. and Iws. expression are detected by staining
the agarose gel with ethidium bromide [Fig. 3(B)]. When
the gel was Southern-blotted and hybridized to mixed
radioactive probes (sece Materials and Methods). expres-
sion of sws/,. was additionally detected (result not
shown). The immunocytochemical study has suggested
the presence of RHI (rod) opsin in the pineal gland of
American chameleon (Fosler et al., 1993), but we cannot
detect it using the RT-PCR assay. In the mouse pineal
gland, rhodopsin is actually expressed, but it lacks retinal
derivatives, showing that the opsins of the pineal gland
are not involved in phototransduction (Kramm et al.,
1993). However, using the same HPLC method, retinals
have been detected in the directly light-sensitive pineal
gland of the trout (Tabata er al., 1985) and the quail
(Foster et al., 1989). Similarly, the American chameleon
appears to contain retinals in the pineal gland (Provencio
& Foster, 1993). Thus, the mechanisms of phototransduc-
tion may fundamentally differ between mammalian
pinealocytes and the functional photoreceptors of non-
mammals (Kramm et al., 1993).

In the parietal eye of the American chameleon, no
opsin has been detected by immunocytochemical analy-
sis (Foster et al., 1993). However, hybridization of the
RTPCR products to the radioactive probes reveals sws/ 5.
and a much lesser amount of sws2,., Iwsa., and Pa.
expression [Fig. 3(C)]. The parietal eye is likely to
contain photoreceptor cells that are sensitive to blue and
green light (Solessio & Engbretson, 1993). Thus, all four
different opsins may have an important function in
photoreception in this organ.

Phylogenetic distribution of P-opsin gene
To investigate how commonly the P-opsin genes are
found among vertebrates, the exon 4 of P,. was
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hybridized to genomic DNA from jawless tish {marine
lamprey), bony fishes (goldfish, Mexican cavefish. and
coelacanth), frog, birds (chicken, pigeon, great horned
owl. and turkey), lizards (American chameleon and
Tokay gecko), and mammals (human and bovine) (Fig,
4). Hybridization signals were detected only for lizards.
chicken, pigeon, turkey and lamprey but not for the other
species (the hybridization data for Mexican cavefish.
coelacanth, turkev. and bovine are not shown). Curiously.
owl DNA showed no hybridization signal. The lack of the
P-opsin gene is consistent with the observation that the
pincal gland of another nocturnal owl (Strix uralensis) is
partially degenerated and may not play a physiological
circadian oscillatory role in owls (Taniguchi ¢r al.. 1993).
The hybridization result strongly suggests that the P-
opsin gene is found mainly in some birds and reptiles and
that teleosts, amphibians. and mammals do not possess
the orthologous genc.

Phylogenetic  analyses show  that P-opsin  alrcady
existed bhefore the divergence of various vertebrates
(Okano et al., 1994; Max er al.. 1995). Howcever.
Southern analysis  suggests that the P-opsin gene
disappeared In many vertebrate lineages during evolu-
tion. What are the types of opsins used in the pincal
glands of teleosts, amphibians. and cven in some
mammals (Korf. 1994)? Perhaps these specics use visual
opsins and/or entirely new. yet unknown, pineal gland-
specific opsins for pineal photoreception.
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