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1. Introduction

Given a bounded connected open set Ω ⊂ R
2, we consider weak solutions u ∈ W 1,2(Ω) to the elliptic equation

Lu = 0, in Ω, (1.1)

where L is defined as follows

Lu = −div(A∇u + uB) + C · ∇u + du. (1.2)

Here, the coefficients A, B , C , d are assumed to satisfy the hypotheses listed below. For simplicity, and with no loss of
generality, they are assumed to be defined on all of R

2.
A = {aij} is a positive definite, possibly non-symmetric, 2×2 matrix with L∞(R2) entries. We express its uniform ellipticity

by the following bounds (see, for instance, [7] for their equivalence to other customary formulations of ellipticity). For a
given K � 1

A(x)ξ · ξ � K −1|ξ |2, for every ξ ∈ R
2 and for a.e. x ∈ R

2,

A−1(x)ξ · ξ � K −1|ξ |2, for every ξ ∈ R
2 and for a.e. x ∈ R

2. (1.3)

For a given q > 2, B = {bi}, C = {ci} are vector-valued functions belonging to Lq(R2;R
2) and d is an Lq/2(R2) function.

Altogether, for a given κ > 0, they are assumed to satisfy

‖B‖Lq(R2) + ‖C‖Lq(R2) + ‖d‖Lq/2(R2) � κ. (1.4)

The aim of this note is to prove the following theorem.

Theorem 1.1. The operator L has the strong unique continuation property.
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As is well known, this means that if a solution u to (1.1) has a zero of infinite order at a point x0 ∈ Ω then u = 0
identically in Ω .

In order to summarize the past history of results of unique continuation for elliptic equations in two variables, we may
start with a remark due to Martio [14]:

In the plane uniqueness results can be proved using the theory of quasiconformal mappings and special representation
theorems.

In fact Martio is referring to Chapter 6 in the book by Bers, John and Schechter [10], which in turn is mainly based on the
papers by Bers and Nirenberg [9] and by Bojarski [11]. In these items, a theory of first order elliptic systems in the plane
(the so-called Beltrami systems) is developed, and in particular it is applied to the unique continuation of second order
elliptic equations in non-divergence form, see for instance [10, §6.4]. Thus it seems that up to 1988, a proof of the unique
continuation for equations in divergence form and L∞ coefficients in the principal part, was not available. On the other
hand, assuming some regularity on the coefficients in the principal part, results of unique continuation were known, one
can refer to Carleman [12] and Hartman and Wintner [13].

In 1992, motivated by inverse boundary problems [3,5], the author noticed that the approach based on Beltrami equations
and on the representation formulas of Bers–Nirenberg and Bojarski could be used also to prove unique continuation for pure
divergence elliptic equations, that is equations like (1.1), (1.2) with B = C = 0 and d = 0, [1]. This result appeared in print
soon afterwards in a joint work with Magnanini [6]. Next, in [2], the unique continuation was shown for operators of the
form

Lu = −div(A∇u) + du, (1.5)

with A symmetric and d bounded. The idea there was that, on a sufficiently small disk, we can find a positive solution w
to Lw = 0. Hence by a classical trick, see for instance Miranda [16, Ch. I, §5], we note that any solution u to Lu = 0 can be
locally factored as u = w v where v solves

−div
(

w2 A∇v
) = 0. (1.6)

That is, loosely speaking, w(−div(A∇(w·)) + dw·) = −div(w2 A∇·) and we have reduced ourselves again to a pure diver-
gence form equation. Soon afterwards, Schulz [17] noticed that a slightly more involved, but similar trick, could be used to
treat operators of the general form (1.2), with bounded lower order coefficients, but still, symmetric principal part!

Here we bypass this symmetry obstruction by using a reduction formula, Proposition 2.7, on the operator (1.2) which
involves the use of two positive multipliers m, w instead of one. These multipliers are obtained as solutions in the small of
two appropriately chosen elliptic equations. In fact, one of the two multipliers, w , is constructed, Definition 2.6, as a solution
of an equation whose coefficients depend on the previously chosen function m, see Definition 2.5. This forces to take into
consideration equations with unbounded lower order coefficients, and this is the main reason why, we have assumed since
the beginning the integrability conditions (1.4).

In the following Section 2 we construct such multipliers and prove the reduction to a pure divergence equation, Propo-
sition 2.7. In the final Section 3 we complete the proof of the main Theorem 1.1.

2. Preliminaries

In what follows, we denote by B R a disk of radius R and arbitrary center.

Lemma 2.1. There exists p, 2 < p < q, only depending on K and q, and a number R0 > 0, only depending on K , q and κ such that for
every R, 0 < R � R0 and for every F ∈ L p(B R ;R

2) there exists a unique weak solution u ∈ W 1,p
0 (B R) to the equation

Lu = −div F (2.1)

and it satisfies

‖∇u‖L p(B R ) � C‖F‖L p(B R ) (2.2)

where C > 0 only depends on K and q.

Proof. This result is a minor, well-known, variation of a celebrated theorem of Meyers [15, Theorem 1]. In fact, in [15] it is
proven that, considering the principal part L0 of the operator L, that is

L0u = −div(A∇u), (2.3)

there exist p, 2 < p < q, and c0 > 0, only depending on K and q, such that for every R > 0 we have that L0 : W 1,p
0 (B R) �→

W −1,p(B R) is invertible and the following estimate holds

‖L0u‖W −1,p(B ) � c0‖∇u‖L p(B R ) for every u ∈ W 1,p
(B R). (2.4)
R 0
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Let us denote by M = L − L0 the remainder first order operator

Mu = −div(uB) + C · ∇u + du. (2.5)

Then Eq. (2.1) can be rewritten as

u + L−1
0 Mu = L−1

0 (−div F ), (2.6)

and the thesis will follow provided we show that, for sufficiently small R the operator L−1
0 M is a contraction on

W 1,p
0 (B R). By (1.4) and by a straightforward use of Sobolev inequalities, one obtains that, for every R > 0 and for every

u ∈ W 1,p
0 (B R), v ∈ W 1,p′

0 (B R), we have

∣∣〈Mu, v〉∣∣ =
∣∣∣∣
∫
B R

uB · ∇v + vC · ∇u + duv

∣∣∣∣

� Cκ(R2( 1
2 − 1

q ) + R2( 1
p − 1

q + 1
2 − 1

q )
)‖∇v‖L p′

(B R )
‖∇u‖L p(B R0 ), (2.7)

here 〈·,·〉 denotes the dual pairing between W −1,p(B R) and W 1,p′
0 (B R), and the constant C > 0 only depends on q and p,

that is on q and K . Consequently, by (2.4), there exists R0 > 0, only depending on q, K and κ such that ‖L−1
0 M‖ � 1

2 . And
(2.2) follows with C = 2

c0
. �

Lemma 2.2. Under the same assumptions of Lemma 2.1, and letting R0 , p be as introduced in the same lemma, given F ∈ Lq(B R ;R
2)

and f ∈ Ls(B R) with 1
s � 1

2 + 1
q , for every R � R0 there exists a unique weak solution u ∈ W 1,p

0 (B R) to the equation

Lu = −div F + f (2.8)

and it satisfies

‖∇u‖L p(B R ) � C
(

R2( 1
p − 1

q )‖F‖Lq(B R ) + R2( 1
p − 1

s )+1‖ f ‖Ls(B R )

)
, (2.9)

and also

‖u‖L∞(B R ) � C R1− 2
p
(

R2( 1
p − 1

q )‖F‖Lq(B R ) + R2( 1
p − 1

s )+1‖ f ‖Ls(B R )

)
, (2.10)

where C > 0 only depends on K , q and s.

Proof. This is also a well-known consequence of Meyers’ result [15, Theorem 1]. In fact we may easily construct G ∈
Lq(B R ;R

2) such that −div G = f and also

‖G‖Lq(B R ) � C R2( 1
q − 1

s )+1‖ f ‖Ls(B R ), (2.11)

where C > 0 only depends on q and s. Hence, applying Lemma 2.1 with F replaced with F + G , we obtain (2.9), (2.10)
follows by a Sobolev inequality. �

We record here another result, of the same flavor as the previous lemmas, which shall be used later on.

Lemma 2.3. Let u ∈ W 1,2(Ω) be a weak solution to (1.1) in Ω , and let p, 2 < p < q, be the exponent introduced in Lemma 2.1. For
any two concentric balls Bρ ⊂ Br ⊂ Ω , we have

‖∇u‖L p(Bρ) � Cr2( 1
p −1)‖u‖L2(Br)

, (2.12)

where C > 0 only depends on K , κ , q and on the ratio r
ρ .

Proof. This is indeed Meyers’ higher integrability theorem [15, Theorem 2]. It may also be obtained in a straightforward
manner from Lemma 2.1 above with the aid of a smooth cutoff function. �

The proposition below provides the main tool in the construction of the required multipliers.
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Proposition 2.4. Under the same assumptions as above, and letting R0 , p be as before, there exists R1 , 0 < R1 � R0 , only depending
on K , κ and q, such that there exists u ∈ W 1,p(B R1 ) which is a weak solution to

Lu = 0, in B R1 , (2.13)

and it satisfies

1

2
� u � 2, (2.14)

‖∇u‖L p(B R1 ) � 1. (2.15)

Proof. Let z ∈ W 1,p
0 (B R) be the solution to (2.1) obtained in Lemma 2.2 when F , f are replaced with −B , −d, respectively.

We may choose R = R1 small enough so that

|z| � 1

2
, (2.16)

‖∇z‖L p(B R1 ) � 1. (2.17)

The thesis follows by picking u = z + 1. �
In the next definitions we construct the multipliers m, w and two auxiliary elliptic operators.

Definition 2.5. We define the multiplier m as the solution obtained in the previous Proposition 2.4, when, in the operator L
introduced in (1.2) the coefficient vector B is replaced with 0. That is, m is a weak solution to

−div(A∇m) + C · ∇m + dm = 0 in B R1 , (2.18)

and it satisfies the bounds (2.14), (2.15). Consequently, we define in B R1 the following set of coefficients

Ã = mAT ,

B̃ = mC − A∇m,

C̃ = mB, (2.19)

here the superscript (·)T denotes the transpose. Accordingly, we set

L̃u = −div( Ã∇u + uB̃) + C̃ · ∇u. (2.20)

Observe that the following bounds are easily obtained

Ã(x)ξ · ξ � 1

2K
|ξ |2, for every ξ ∈ R

2 and for a.e. x ∈ B R1 ,

Ã−1(x)ξ · ξ � 1

2K
|ξ |2, for every ξ ∈ R

2 and for a.e. x ∈ B R1 , (2.21)

‖B̃‖L p(B R1 ) + ‖C̃‖L p(B R1 ) � 2
(
π R2

1

) 1
p − 1

q κ + K . (2.22)

Definition 2.6. Let R0, R1 and p be as before. By applying Proposition 2.4 to the operator L̃ we find that there exist R2,
0 < R2 � R1, and t , 2 < t < p only depending on K , κ and q, such that there exists w ∈ W 1,t(B R2 ) which is a weak solution
to

L̃w = 0, in B R2 , (2.23)

and it satisfies

1

2
� w � 2, (2.24)

‖∇w‖Lt (B R2 ) � 1. (2.25)

Such a function w shall be our second multiplier. Let us fix any disk B R ⊂ Ω with R � R2. In B R we define

Â = mw A,

B̂ = w A∇m + mw B − mAT ∇w − mwC, (2.26)
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and consequently, we set

L̂u = −div( Â∇u + uB̂). (2.27)

Note that the following bounds are easily verified:

Â(x)ξ · ξ � 1

4K
|ξ |2, for every ξ ∈ R

2 and for a.e. x ∈ B R ,

Â−1(x)ξ · ξ � 1

4K
|ξ |2, for every ξ ∈ R

2 and for a.e. x ∈ B R , (2.28)

‖B̂‖Lt (B R ) � 2K
(
1 + (

π R2) 1
t − 1

p
) + 4

(
π R2) 1

t − 1
q κ. (2.29)

Proposition 2.7. For any v ∈ W 1,2(B R) we have

L̂v = wL(mv), (2.30)

as elements of W −1,2(B R).

Proof. Let u = mv and note that u ∈ W 1,2(B R). Let F ∈ L2(B R ;R
2) be such that −div F = Lu in the sense of W −1,2(B R).

Let ψ ∈ C∞
0 (B R) be an arbitrary test function. Denote ϕ = wψ and observe that ϕ ∈ W 1,2

0 (B R). Consequently∫
A∇u · ∇ϕ + uB · ∇ϕ + ϕC · ∇u + duϕ =

∫
F · ∇ϕ, (2.31)

here, and in the rest of this proof, integrals are intended over B R . Using the chain rule on the products u = mv , ϕ = wψ ,
we obtain∫

(mw A∇v · ∇ψ + mψ A∇v · ∇w

+ v w A∇m · ∇ψ + vψ A∇m · ∇w

+ mv w B · ∇ψ + mvψ B · ∇w

+ mwψC · ∇v + v wψC · ∇m

+ dmv wψ) =
∫

F · ∇(wψ). (2.32)

By the identity ψ∇v = ∇(ψv) − v∇ψ , we may use the following substitutions

mψ A∇v · ∇w = mA∇(ψ v) · ∇w − mv A∇ψ · ∇w, (2.33)

mwψC · ∇v = mwC · ∇(ψ v) − mw vC · ∇ψ. (2.34)

Therefore∫
(mw A∇v · ∇ψ + v w A∇m · ∇ψ + mv w B · ∇ψ − mv A∇ψ · ∇w − mw vC · ∇ψ)

+
∫ (

mA∇(ψ v) · ∇w + mwC · ∇(ψ v)
)

+
∫

(vψ A∇m · ∇w + mvψ B · ∇w + v wψC · ∇m + dmv wψ) =
∫

F · ∇(wψ). (2.35)

Again by the chain rule, we may substitute

vψ A∇m · ∇w = A∇m · ∇(vψ w) − w A∇m · ∇(vψ), (2.36)

and obtain∫
(mw A∇v · ∇ψ + v w A∇m · ∇ψ + mv w B · ∇ψ − mv A∇ψ · ∇w − mw vC · ∇ψ)

+
∫ (

mA∇(ψ v) · ∇w + mwC · ∇(ψ v)
)

+
∫ (

mvψ B · ∇w − w A∇m · ∇(vψ)
)

+
∫ (

A∇m · ∇(vψ w) + v wψC · ∇m + dmv wψ
) =

∫
F · ∇(wψ). (2.37)
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Now we note that vψ w ∈ W 1,2
0 (B R), therefore by (2.18) the fourth integral on the left-hand side vanishes. Then we can

rearrange the terms as follows∫
(mw A∇v · ∇ψ + v w A∇m · ∇ψ + mv w B · ∇ψ − mv A∇ψ · ∇w − mw vC · ∇ψ)

+
∫ (

mAT ∇w · ∇(ψ v) + mwC · ∇(ψ v) + mvψ B · ∇w − w A∇m · ∇(vψ)
)

=
∫

F · ∇(wψ). (2.38)

Again, we note that vψ ∈ W 1,2
0 (B R) and by (2.23), the second integral on the left-hand side is also vanishing. Finally,

recalling the notation introduced in Definition 2.6, we arrive at∫
( Â∇v · ∇ψ + v B̂ · ∇ψ) =

∫
F · ∇(wψ), (2.39)

for every ψ ∈ C∞
0 (B R), and hence by density, for every ψ ∈ W 1,2

0 (B R). Note, in conclusion, that the functional −w div F
given by 〈−w div F ,ψ〉 = ∫

F · ∇(wψ) does indeed belong to W −1,2(B R). �
3. Proof of the main theorem

From now on, let u be a weak solution to (1.1), and let us fix any disk B R ⊂ Ω with R < R2. We denote

v = u

m
, (3.1)

where m is the function introduced in Definition 2.5. Note that, by Proposition 2.4 and by Lemma 2.3, v ∈ W 1,t(B R) and by
Proposition 2.7

L̂v = 0, (3.2)

in the weak sense.
The advantage is that from a pure divergence elliptic equation we can easily pass to a first order elliptic system of

Beltrami type. The procedure is well known [1,6,17,7]. Denote

J =
(

0 −1
1 0

)
, (3.3)

then, by (3.2), J ( Â∇v + v B̂) is weakly curl-free in B R and therefore there exists a function ṽ ∈ W 1,t(B R), unique up to an
additive constant, such that

∇ ṽ = J ( Â∇v + v B̂), (3.4)

and, since t > 2, ṽ is also Hölder continuous, thus we can normalize it by setting ṽ(x0) = 0, where x0 denotes the center
of B R . Setting

f = v + i ṽ (3.5)

one has f ∈ W 1,t(B R;C) and, according to Bers and Nirenberg [9], one can rewrite (3.4), in terms of the complex coordinate
z = x1 + ix2, as follows

f z = μ f z + ν f z + α f + β f , in B R , (3.6)

where the so-called complex dilatations μ, ν only depend (and can be explicitly expressed [7]) on Â, and the lower order
coefficients α, β only depend on Â, B̂ . Moreover the following bounds are easily proven

|μ| + |ν| � k < 1, a.e. in B R , (3.7)

where, in view of the ellipticity condition (2.28), the constant k only depends on K , see [7, Proposition 1.8] for a sharp
bound. For the lower order coefficients, recalling (2.29), one can obtain

‖α‖Lt (B R ) + ‖β‖Lt (B R ) � C, (3.8)

where C > 0 only depends on K , κ and q.
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We can now invoke the well-known representation theorem for solutions of equations of the form (3.6).

Theorem 3.1. There exist a k-quasiconformal mapping χ from C onto itself, a holomorphic function F on χ(B R) and a complex-valued
Hölder continuous function s on B R such that

f = es F (χ). (3.9)

Moreover we have that the function χ and its inverse χ−1 satisfy the following Hölder continuity properties
∣∣χ(z) − χ(ζ )

∣∣ � C |z − ζ |η, for any z, ζ ∈ B R , (3.10)∣∣χ−1(z) − χ−1(ζ )
∣∣ � C |z − ζ |η, for any z, ζ ∈ χ(B R), (3.11)

and
∣∣s(z) − s(ζ )

∣∣ � C |z − ζ |η, for any z, ζ ∈ B R , (3.12)

where C and η, 0 < η < 1, only depend on K , κ and q.

Proof. This is a celebrated theorem of Bers and Nirenberg [9, p. 116], see also Bojarski [11, Theorem 4.3] and the book
[10, Section 6.3]. �

It is now evident that if f is nontrivial then it may vanish only up to finite order, in fact in (3.9) the exponential es

never vanishes, and F (χ) may have only isolated zeroes of finite order in view of (3.11). Only one small step remains in
order to show the strong unique continuation property for u = m�(es F (χ)).

Lemma 3.2. Let u ∈ W 1,2(Ω) be a weak solution to (1.1) in Ω , and let p, 2 < p < q, be the exponent introduced in Lemma 2.1. Let v,
ṽ be as introduced above. For any two balls Bρ , Br concentric to B R , ρ < r < R, we have

‖ṽ‖L∞(Bρ) � C‖v‖L∞(Br), (3.13)

where C > 0 only depends on K , κ , q and on the ratio r
ρ .

Proof. These bounds are straightforward consequences of (3.4), by the use of Lemma 2.3 applied to the operator L̂ and by
Sobolev inequalities. Note that use is made of the normalization ṽ(x0) = 0, where x0 is the center of B R . �
Proof of Theorem 1.1. Assume that a solution u to Lu = 0 has a zero of infinite order at a point x0 ∈ Ω , let R < R2 such
that the disk B R , centered at x0, is contained in Ω . By (3.1) also v has a zero of infinite order at x0, and by (3.13), the same
occurs to ṽ . Hence also f , given by (3.5), does the same. By Theorem 3.1 we obtain that f , and hence u are identically zero
in B R . Then a standard continuity argument yields that u is identically zero in Ω . �
Concluding Remark. In previous studies, [4] by Escauriaza and the author and [8] by Rondi, Rosset, Vessella and the au-
thor, it has been ascertained that, when lower order terms are absent, or when the operator L is in the self-adjoint form
Lu = −div(A∇u) + du, with A symmetric, the representation Theorem 3.1 enables also to obtain quantitative estimates
of unique continuation, such as doubling inequalities [4, Proposition 2], three-spheres inequalities [4, Proposition 1] and
[8, Theorem 1.10], estimates of propagation of smallness [8, Theorems 5.1, 5.3] and stability estimates for Cauchy problems
[8, Theorems 1.9, 7.1]. In view of the reduction to pure divergence form obtained in Proposition 2.7, all such types of results
can be extended to equations of the form (1.1), (1.2) treated here. We refrain from details for the sake of brevity.
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