JOURNAL OF DIFFERENTIAL EQUATIONS 23, 183-199 (1977)

Continuity of the Limit Set Maps in Semidynamical Systems

STEPHEN H. SAPERSTONE

George Mason University, Fairfax, Virginia 22030

AND

MASAHIRO NISHIHAMA

University of Maryland-Baltimore County, Baltimore, Maryland 21228

Received March 7, 1975

Given a semiflow on a metric space X (not necessarily locally compact), we relate notions of stability to the continuity of the orbital and limit set maps, $K(x)$ and $L(x)$, where K and L are considered as maps from X to 2^X .

1. INTRODUCTION

Let a semiflow π be given on a metric space (X, ρ) . We investigate both the upper and lower semicontinuity of the set valued maps $x \rightarrow K(x)$ and $x \rightarrow L(x)$, where $K(x)$ is the positive orbit closure through x, and $L(x)$ is the positive limit set of x.

The question of continuity of these maps was prompted by a result of of Boyarsky [5]. His work concerned a characterization of the limit sets of probability measures arising from diffusion processes. In particular, he established the continuity of the map $\mu \rightarrow L(\mu)$, provided the semiflow (of probability measures μ) was Lyapunov stable. This is indeed an unnecessarily strong requirement. As our examples will show, a weaker form of stability is called for.

We assume each $K(x)$ is compact. In Section 3 we establish that the following are equivalent: π is positively stable, each $L(x)$ is positively stable, the map K is continuous on X . Our main result is in Section 6: L is continuous on X if and only if each $L(x)$ is eventually stable. We can then deduce that if K is continuous on X , then so is L . The latter is even true locally, as shown in Proposition 4.2. In Section 7 we collect some results on the continuity of prolongations.

2. DEFINITIONS AND NOTATIONS

2.1. DEFINITION. Let $R^+ = \{t : t \geq 0\}$. By a semiflow (or a semidynamical system) on (X, ρ) we mean a mapping $\pi: X \times R^+ \rightarrow X$ so that

(i)
$$
\pi(x, 0) = x, x \in X
$$
,

(ii) $\pi(\pi(x, s), t) = \pi(x, s + t), x \in X, s, t \in R^{+}$

(iii) π is continuous.

For brevity we denote $\pi(x, t)$ by xt. For $A \subseteq X$, $B \subseteq R^+$, set

$$
AB = \{xt : x \in A, t \in B\}.
$$

We adopt the notation of Bhatia and Hajek [1]. $C(x) = xR^+$ is the *positive orbit* through x, $K(x) = C(x)$ is the orbit closure and $L(x) = \bigcap \{K(x): t \in R^+\}$ is the *positive limit set* of x. For $r > 0$ and $A \subset X$ let $N_r(A) = \{x : \rho(x, A) < r\}$ denote the *r* neighborhood of *A*. The *positive prolongation* of x is the set $D(x) =$ $\sqrt{N_r(x) R^+}$: $r > 0$, and the *positive prolongational limit set* of x is the set $J(x) = \bigcap \{N_r(x)[t, \infty) : r > 0, t \geq 0\}.$

A subset $M \subset X$ is *positively invariant* if $C(x) \subset M$ whenever $x \in M$. M is *positively minimal* if *M* is closed and positively invariant, but none of its nonempty proper subsets has these two properties. *M* is called *positively stable* if every neighborhood of *M* contains a positively invariant neighborhood of *M.* (This is called orbital stability by Bhatia and Hajek $[1]$.) π is said to be *positively stable* if $K(x)$ is positively stable for each $x \in X$. We consider *L*, *K*, *J*, *D* as maps of X into 2^x. We say xt is *ultimately* in M if there exists $t_0 \in R^+$ such that $C(x_{t_0}) \subset M$. A point x is said to be *attracted* to M if xt is ultimately in every neighborhood of *M.* As all concepts (e.g., limit sets, prolongations, stability) are positive, we shall henceforth omit the modifier "positive." Set $A(M) =$ ${x \in X : x$ is attracted to *M*.

Let $\mathscr K$ denote the collection of nonempty compact subsets of X and $h: \mathscr{K} \times \mathscr{K} \to R^+$ be the Hausdorff metric corresponding to ρ . That is, if $A, B \in \mathscr{K}, h(A, B) = \max\{\sup_{x \in A} \rho(x, B), \sup_{y \in B} \rho(A, y)\}.$

A map $S: X \to \mathscr{K}$ is called *upper semicontinuous* (USC) at x if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$
S(y) \subset N_{\epsilon}(S(x)) \quad \text{for all} \quad y \in N_{\delta}(x).
$$

A map S: $X \to \mathscr{K}$ is called *lower semicontinuous* (LSC) at x if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$
S(x) \subset N_{\epsilon}(S(y)) \quad \text{for all} \quad y \in N_{\delta}(x).
$$

Equivalently we have S is USC at x if for any sequence $x_n \to x$,

$$
\sup\{\rho(y, S(x))\colon y\in S(x_n)\}\to 0\qquad\text{as}\quad n\to\infty.
$$

S is LSC at x if for any sequence $x_n \to x$,

$$
\sup\{\rho(y, S(x_n))\colon y\in S(x)\}\to 0\qquad\text{as}\quad n\to\infty.
$$

From the definition of the Hausdorff metric on $\mathscr K$ one can easily show that a map S from X to $\mathcal X$ is continuous at x if and only if S is both USC and LSC at x.

In Sections 3, 4, 5, and 6, we will always assume that $K(x)$ is compact for each $x \in X$, and in Section 7 we will always assume that $D(x)$ is compact for each $x \in X$.

3. CONTINUITY OF THE MAP K

In this section we assume that $K(x)$ is compact for all $x \in X$.

3.1. PROPOSITION. If K is USC at x, then $K(x) = D(x)$. The converse is true provided $K(x)$ has a compact neighborhood.

Proof. Suppose K is USC at x. Let $y \in D(x)$. Then there exist sequences $x_n \to x$, $t_n \in R^+$ such that $x_n t_n \to y$ as $n \to \infty$. As each $x_n t_n \in K(x_n)$,

$$
\rho(x_n t_n, K(x)) \to 0.
$$

Since $K(x)$ is closed, $y \in K(x)$. Hence $D(x) \subset K(x)$ and so $K(x) = D(x)$.

Conversely suppose $K(x) = D(x)$. As $K(x) = D(x) = \sqrt{\sqrt{N_{\delta}(x) R^+}} : \delta > 0$, for every $\epsilon > 0$ there exists $\delta > 0$ so that $\overline{N_{\delta}(x) R^+} \subset N_{\epsilon}(K(x))$. Thus $N_{\epsilon}(K(x)) \supseteq N_{\delta}(x)$ $R^+ \supseteq K(y)$ for $y \in N_{\delta}(x)$. Hence K is USC at x.

We will next show that K is always LSC on X. First we obtain a new characterization of $K(x)$ and $L(x)$.

3.2. DEFINITION. Let $x \in X$, and set

$$
Q(x) = \{ y \in X \mid \forall x_n \to x, \exists t_n \in R^+ \text{ such that } x_n t_n \to y \},\
$$

$$
W(x) = \{ y \in X \mid \forall x_n \to x, \exists t_n \uparrow +\infty \text{ such that } x_n t_n \to y \}.
$$

3.3 LEMMA. $Q(x) = K(x)$ and $W(x) = L(x)$ for each $x \in X$.

Proof. It can be shown that $Q(x) \subset K(x)$ and $W(x) \subset L(x)$ by picking the sequence $x_n = x$. We show the reverse inclusions. For any $t \in R^+$ we claim that $xt \in Q(x)$. In fact let $x_n \to x$, and choose $t_n = t$ for every *n*. Then $x_n t_n =$

 $x_n t \to xt \in Q(x)$. Thus $C(x) \subset Q(x) \subset K(x)$. We need only show that $Q(x)$ is closed. But this is evident from the definition of $Q(x)$. To prove that $L(x) \subset W(x)$, it will be sufficient to show that $W(x) \supset \bigcap {\{Q(xt) : t \geq 0\}} = \bigcap {\{Q(xn) : n a$ positive integer}. So let $y \in Q(xn)$ for each n, and let $x_k \to x$. Then $x_k n \to xn$ for each *n*. For each *n* there exists $t_k^n \in R^+$ such that $(x_k n) t_k^n = x_k (n + t_k^n) \rightarrow y$ as $k \to \infty$. For each n choose k_n so that $p((x_k n) t_k^n, y) < 1/n$, $k \geq k_n$. We can assume that $k_1 < k_2 < \cdots$. We now construct a sequence $t_k \uparrow \infty$ so that $x_kt_k \to y$. For $1 \leqslant k \lt k_2$ set $t_k = 1 + t_k^1$. For $k_n \leqslant k \lt k_{n+1}$, $n \geqslant 2$, set $t_k = n + t_k^n$. Then $t_k \uparrow \infty$, and $x_k t_k \to y$ as $k \to \infty$. Thus $y \in W(x)$ and the proof of lemma is concluded.

3.4. PROPOSITION. The map K is LSC on X .

Proof. Assume K is not LSC at x. Then there exist $\epsilon > 0$ and a sequence $x_n \to x$ such that sup{ $\rho(y, K(x_n)) : y \in K(x) \} \geq \epsilon$ for each n. From compactness of $K(x)$ there exists a sequence $y_n \in K(x)$ such that $\rho(y_n, K(x_n)) \geq \epsilon$. We may assume that $y_n \to y \in K(x) = Q(x)$ for some y. There is a sequence $t_n \in R^+$ with $x_n t_n \to y$. Consequently $\rho(x_n t_n, y_n) \to 0$. As $x_n t_n \in K(x_n)$ for each n, $f(\mathcal{Y}_n, K(x_n)) \leqslant \rho(\mathcal{Y}_n, x_n t_n) \to 0$. This is impossible. Hence K must be LSC at x.

3.5. PROPOSITION. If $K(x)$ is compact for some $x \in X$, then the following are equivalent.

- (i) K is USC at x.
- (ii) K is continuous at x.

3.6. Remark. It is easy to see that the definition of upper semicontinuity of the map $K(x)$ at x is equivalent to the one of stability of $K(x)$ at x which is given in [3]. Using the notion of stability of $K(x)$ at x, one can show that if $K(z)$ is stable at each point $x \in K(x)$, then $K(x)$ is stable provided $K(x)$ is compact. In terms of upper semicontinuity of K , one has the following: If K is USC on $K(x)$, then $K(x)$ is stable.

Combining Proposition 3.5 and Remark 3.6 we have

3.7. THEOREM. The map K is continuous on X if and only if $K(x)$ is stable for each $x \in X$.

3.8. LEMMA. If $L(x)$ is stable, then so is $K(x)$.

Proof. We will show that for every $\epsilon > 0$ there exists $\delta > 0$ such that $N_{\delta}(K(x))$ $R^+ \subset N_{\epsilon}(K(x))$. Since $L(x)$ is stable, there is $\delta_1 > 0$ so that $N_{\delta}(L(x))$ $R^+ \subset N_{\epsilon}(L(x))$. Then there exist $T > 0$, $\delta_2 > 0$ such that

 $x[T, \infty) \subseteq N_{\star\delta}(L(x))$ and $N_{\delta}(x)$ $T \subseteq N_{\star\delta}(L(x)).$

This can be done by compactness of $K(x)$ and continuity of π . Hence

$$
N_{\delta_2}(x)[T, \infty) \subseteq N_{\frac{1}{4}\delta_1}(L(x)) R^+ \subseteq N_{\epsilon}(L(x)) \subseteq N_{\epsilon}(K(x)).
$$

We will show that for x[0, T], there exists $\delta_3 > 0$ such that N_{δ} (x[0, T]) $R^{\dagger} \subset$ $N_e(K(x))$. Assume this is not true. Then there exist $z_n \in X$ and $t_n \in R^+$ such that $\rho(z_n, x[0, T]) \to 0$, $z_n t_n \notin N_{\epsilon}(K(x))$. We may assume $z_n \to x t_0$ for some $0 \leq t_0 \leq T$. If $\overline{\lim}_{n\to\infty} t_n < \infty$, we may assume $t_n \to t < \infty$. Thus $z_n t_n \to$ $(xt_0)t = x(t_0 + t) \notin N_{\epsilon}(K(x))$. This is impossible since $x(t_0 + t) \in K(x)$. Thus assume $t_n \uparrow \infty$. Since $xt_0(T - t_0) = xT \in N_{\frac{1}{4}\delta_1}(L(x))$ there exists $\delta_4 > 0$ such that $N_{\delta}(xt_0)(T-t_0) \subset N_{\frac{1}{4}\delta}(L(x))$. This implies

$$
N_{\delta_4}(xt_0)[T-t_0\ ,\ \infty)\subset N_{\frac{1}{4}\delta_1}(L(x))\ R^+\subset N_{\epsilon}(L(x))\subset N_{\epsilon}(K(x)).
$$

There is $N_1 > 0$ so that $z_n \in N_{\delta}(xt_0), t_n > T - t_0$, $n \ge N_1$, and $z_n t_n \in N_{\epsilon}(K(x))$. Again this is impossible. Hence there is $\delta_3 > 0$ so that

$$
N_{\delta_3}(x[0,\,T])\,R^+\subseteq N_{\epsilon}(K(x)).
$$

On the other hand $\overline{C(xT)} \subset \overline{N_{\ast\delta}(L(x))} \subset N_{\frac{3}{2}\delta}(L(x))$. Let $0 < \delta_5 < \frac{1}{4}\delta_1$. Then $N_{\delta_{\epsilon}}(K(xT)) R^+ \subset N_{\delta_{\epsilon}}(N_{\delta_{\delta}}(L(x)) R^+ \subset N_{\delta_{\epsilon}}(L(x)) R^+ \subset N_{\epsilon}(L(x)) \subset N_{\epsilon}(K(x)).$ Setting $\delta = \min(\delta_3, \delta_5)$, we have $N_{\delta}(K(x))$ $R^+ = N_{\delta}(x[0, T] \cup K(xT))$ $R^+ \subset$ $N_{\delta}(x[0, T])]$ $R^+ \cup N_{\delta}(K(xT))$ $R^+ \subset N_{\epsilon}(K(x))$. Therefore $K(x)$ is stable.

The following Theorem is given in [4] for dynamical systems and does not assume the compactness of $K(x)$ for each point $x \in X$. It does assume that X is not a union of two disjoint open invariant sets and not minimal.

THEOREM. π is positively stable if and only if the following conditions hold.

(A) The positive limit set $L(x)$ is nonempty compact minimal and positively stable for each $x \in X$.

(B) The union M of compact minimal subsets of X is a closed globally asymptotically stable set.

For semidynamical systems, we have the following theorem with assumption $K(x)$ compact for each $x \in X$.

3.9. THEOREM. The following are equivalent.

- (1) π is stable.
- (2) $L(x)$ is stable for each $x \in X$.
- (3) The map K is continuous on X .

Proof. From Theorem 3.7 (1) is equivalent to (3). From Lemma 3.8 (2) implies (1).

If π is stable, then each $L(x)$ is minimal. Thus $L(x)$ is stable for each $x \in X$.

188 SAPERSTONE AND NISHIHAMA

4. UPPER SEMICONTINUITY OF THE MAP L

4.1. LEMMA. Let S: $X \to \mathcal{K}$ be any map which is USC at x. Then for any sequence $x_n \to x$, $S(x) \cup \{(\bigcup_{n=1}^{\infty} S(x_n)\})$ is compact.

Proof. Let $x_n \to x$, and set $Y = S(x) \cup \{(\bigcup_{n=1}^{\infty} S(x_n))\}$. For any sequence ${y_n} \subset Y$ we may assume $y_n \in S(x_n)$. Thus $\rho(y_n, S(x)) \to 0$. As $S(x)$ is compact we can find a subsequence $\{y_{n_k}\}\$ and $y \in S(x)$ so that $y_{n_k} \to y$. Thus Y is compact.

4.2. PROPOSITION. If the map K is USC at x, then so is the map L.

Proof. If $x \in L(x)$, then $L(x) = K(x)$ and hence the proposition is proved. So assume $x \notin L(x)$, and proceed by contradiction. Suppose L is not USC at x. We will first show that $x \in J(x)$.

There exist $\epsilon > 0$ and a sequence $x_n \to x$ such that

$$
\sup\{\rho(w,L(x)):w\in L(x_n)\}\geqslant 2\epsilon.
$$

We may assume that $x \notin N_{2\epsilon}(L(x))$. Let $w_n \in L(x_n) - N_{2\epsilon}(L(x))$. Then for each x_n there exists $t_n > n$ with $\rho(x_n t_n, w_n) < \epsilon/n$. Hence $x_n t_n \notin N_{\epsilon}(L(x))$. As K is USC at x , then Proposition 3.1 and Lemma 4.1 imply that $x_n t_n$ (or some subsequence thereof) converges to some $z_1 \in K(x)$. Since for large *n*, $x_n t_n \notin N_e(L(x))$, then $x_1 \in K(x) - L(x)$. Thus there exists $\tau_1 \geq 0$ so that $z_1 = x\tau_1 \notin N_c(L(x))$. On the other hand there exists $T > \tau_1$ with $K(xT) \subset$ $N_{\epsilon}(L(x))$. As $t_n \uparrow \infty$ we have $z_1 \in J(x)$. Now consider the sequence $x_n(t_n - \tau_1)$. By a similar argument to the above we may assume that $x_n(t_n - \tau_1) \rightarrow z_2$ for some $z_2 \in K(x)$. Thus $z_2 \tau_1 = z_1$. Moreover, $z_2 \in K(x) - L(x)$ so there exists some $\tau_2 \geq 0$ with $z_2 = x\tau_2$. Consequently $x\tau_1 = z_1 = z_2\tau_1 = (x\tau_2)\tau_1 =$ $x(\tau_2 + \tau_1)$ implies $\tau_2 = 0$. In other words $x_n(t_n - \tau_1) \rightarrow z_2 = x\tau_2 = x$. Thus $x \in J(x)$.

We next show that $x \in L(x)$. As this case was previously ruled out, the proof of the proposition will be complete when $x \in L(x)$ is established. Choose $\delta > 0$ so that $N_{\delta}(x)T \subset N_{\epsilon}(L(x))$. For sufficiently large n we have x_n , $x_n(t_n - \tau_1) \in N_{\delta}(x)$ and $t_n - \tau_1 > T$. As $x_n T \in N_e(L(x))$, there exists s_n , $0 < s_n < t_n - \tau_1$ with $x_n s_n \in \partial N_{\epsilon}(L(x)),~ x_n (s_n~,~ t_n - \tau_1] \cap N_{\epsilon}(L(x)) = \varnothing$. Then

$$
\liminf_{n \to \infty} (t_n - \tau_1 - s_n) > 0,
$$

for otherwise $x \in \partial N_{\epsilon}L(x)$. Let $0 < s < \liminf_{n \to \infty}(t_n - \tau_1 - s_n)$. As before we may assume that $x_n(t_n - \tau_1 - s) \rightarrow z_3$ for some $z_3 \in K(x) - L(x)$. Let $z_3 = x\tau_3$ for some $\tau_3 \ge 0$. Thus $x(\tau_3 + s) = z_3 s = \lim_{n \to \infty} x_n(t_n - \tau_1) = x$. This implies that $x \in L(x)$.

The following example shows that the converse of uroposition 4.2 is false.

4.3. EXAMPLE. In Fig. 4.1 every orbit approaches a point z which is a critical point. The map L is a constant map. However K is not USC at x. The space X is assumed to have the usual topology of the plane.

As one can see in Example 4.3, $L(x) = \{z\}$ is not stable. This leads us to formulate a weaker form of stability to characterize upper semicontinuity of the map L.

4.4. DEFINITION. A set $M \subset X$ is eventually stable if for every neighborhood W of M, there exists a neighborhood V of M such that for every $y \in V$, there is $T = T(y) \geq 0$ such that $C(yT) \subset W$. If T does not depend on $y \in V$, then M is said to be uniformly eventually stable.

It should be noted that sets M which are either stable or attractors are eventually stable. (M is an attractor if $A(M)$ is a neighborhood of M.) However, neither of the properties is necessary for eventual stability, as shown by the following example.

4.5. EXAMPLE. Consider a flow on the upper half plane given in Fig. 4.2 which is similar to Fig. 4.1. The set of critical points consists of $\{(x, y) : x = 0,$ $0 \leq y \leq \frac{1}{2}$. Let $P_0 = (-1, 0)$. Then $L(P_0) = \{(0, 0)\}$. This flow shows that $L(P_0)$ is eventually stable but neither stable nor an attractor.

4.6. PROPOSITION. Given $x \in X$, the map L is USC on $L(x)$ if and only if $L(x)$ is minimal and eventually stable.

Proof. Suppose L is USC on $L(x)$. Let $y \in L(x)$. We shall show $L(x) \subset L(y)$. For $y \in L(x)$ there exists a sequence $t_n \uparrow \infty$ such that $xt_n \to y$. Let $z \in L(x)$.

FIGURE 4.2

Then $z \in L(xt_n) = L(x)$ for each n. Since

 $\sup\{\rho(w, L(y)) : w \in L(xt_n)\} \to 0$ as $n \to \infty$,

 $x \in L(y)$. Hence $L(x) \subset L(y)$, so $L(x)$ is minimal.

We now prove that $L(x)$ is eventually stable. Let $\epsilon > 0$ and $y \in L(x)$. Then there is $\delta_y > 0$ so that $N_e(L(y)) \supset L(z)$ for $z \in N_{\delta_y}(y)$. Thus $N_e(L(x)) \supset L(z)$ for $z \in N_{\delta_n}(y)$. By compactness of $L(x)$, there is a finite set of points $\{y_1, y_2, ..., y_n\} \subset L(x)$ such that $\bigcup_{i=1}^n N_{\delta_{y_i}}(y_i) \supset L(x)$. Setting $V = \bigcup_{i=1}^n N_{\delta_{y_i}}(y_i)$, $N_e(L(x)) \supset L(x)$ for each $x \in V$. This shows $L(x)$ is eventually stable.

Conversely let $L(x)$ be minimal and eventually stable. Let $y \in L(x)$. Then for every $\epsilon > 0$ there exists $\delta > 0$ such that for each $z \in N_{\delta}(L(x))$ there is $\tau \geq 0$ with $C(y\tau) \subset N_{\frac{1}{4}\epsilon}(L(x))$. Thus for $x \in N_{\delta}(y) \subset N_{\delta}(L(x)), L(z) \subset \overline{N_{\frac{1}{4}\epsilon}(L(x))} \subset$ $N_e(L(x)) = N_e(L(y))$. Hence L is USC on $L(x)$.

The next lemma is needed in order to establish global upper semicontinuity of the map L .

4.7. LEMMA. The map L is USC on $L(x)$ if and only if L is USC on $A(L(x))$.

Proof. As $L(x) \subset A(L(x))$, we need only prove that L is USC on $A(L(x))$ whenever L is USC on $L(x)$. So let $y \in A(L(x))$. According to [1, Theorem 8.12], $L(y) \subset L(x)$. As $L(x)$ is minimal from Proposition 4.6, $L(y) = L(x)$. Thus it will be sufficient to show that L is USC at $x \in A(L(x))$. As $L(x)$ is eventually stable, for every $\epsilon > 0$ there exists $\delta_1 > 0$ such that for each $z \in N_{\delta_1}(L(x))$, there is $T = T(z) \geq 0$ so that $C(zT) \subset N_{\frac{1}{4}C}(L(x))$. On the other hand there exist $\tau \geq 0$, $\delta > 0$ such that $x\tau \in N_{\delta_1}(L(x))$ and $N_{\delta}(x)\tau \subset N_{\delta_1}(L(x))$. Thus for every $y \in N_{\delta}(x)$, $L(y) = L(y\tau) \subset \overline{N_{\delta}(L(x))} \subset N_{\epsilon}(L(x))$. Hence L is USC at x.

4.8. LEMMA. If $L(y)$ is eventually stable for each $y \in L(x)$, then $L(x)$ is positively minimal.

Proof. Suppose $L(x)$ is not minimal. Then there exists a minimal set M in $L(x)$. Obviously, $x \notin M \subsetneq L(x)$. Let $y \in L(x) - M$, $0 < \epsilon < \rho(y, M)$ and $z \in M$. By assumption, there exists $\delta > 0$ such that for every $y' \in N_{\delta}(L(z))$, there exists $T = T(y') \geq 0$ such that $C(y') \subset N_{\frac{1}{4}\epsilon}(M) = N_{\frac{1}{4}\epsilon}(L(z))$. Since $z \in M \subset L(x)$, there is $\tau_1 \geq 0$ with $x\tau_1 \in N_{\delta}(L(x))$. Thus there is $T_1 =$ $T_1(x\tau_1) \geqslant 0$ so that $x\tau_1[T_1, \infty) = x[\tau_1 + T_1, \infty) \subset N_{\frac{1}{2}\epsilon}(L(z))$. Hence $L(x) \subset$ $\overline{N_{\star\epsilon}(L(z))} \subset N_{\epsilon}(L(z))$. This is impossible since $y \in L(x)$ and $y \notin N_{\epsilon}(L(z))$. Thus $L(x)$ must be minimal.

Combining Proposition 4.6, Lemma 4.7, and Lemma 4.8 we have

4.9. THEOREM. The map L is USC on X if and only if $L(x)$ is eventually stable for each $x \in X$.

5. LOWER SEMICONTINUITY OF THE MAP L

5.1. DEFINITION. A set $M \subset X$ is eventually weakly stable if for every neighborhood W of M, there exists a neighborhood V of M such that for each $y \in V$ there is a sequence $t_n \uparrow \infty$ such that $yt_n \in W$.

There is a relationship between [1, Definition 8.7] and Definitions 4.4 and 5.1.

5.2. PROPOSITION. For any $M \subseteq X$ the following diagram holds.

The above diagram is an extension of [1, Diagram 8.17].

5.3. PROPOSITION. Let $L(y)$ be minimal for each $y \in L(x)$. Then the map L is LSC on $L(x)$ if and only if $L(x)$ is eventually weakly stable for every $x \in L(x)$.

Proof. Suppose L is LSC on $L(x)$. Let $x \in L(x)$. Assume $L(x)$ is not eventually weakly stable. Then there exist $\epsilon > 0$, $y_n \to y \in L(z)$ so that $y_n \tau$ is ultimately in $X - N_e(L(z))$. Accordingly $L(y_n) \subset X - N_e(L(z))$. Thus

$$
\sup\{\rho(w,L(\,y_{\,n})) : w\in L(\,y)\} \geqslant \epsilon \qquad \text{with}\quad y_{\,n}\to y.
$$

This is impossible since L is LSC at $y \in L(x)$.

Conversely suppose $L(z)$ is eventually weakly stable for each $z \in L(x)$. Assume L is not LSC at $y \in L(x)$. Then there exist $\epsilon > 0$ and $y_n \to y$ so that $\sup\{\rho(w, L(y_n)) : w \in L(y)\} \geq \epsilon$ for each *n*. Compactness of $L(y)$ ensures that there exist $N_1 > 0$ and $v \in L(y)$ with $\rho(v, L(y_n)) \geq \frac{1}{2} \epsilon$ for $n \geq N_1$. Since $L(y)$ is positively minimal, then for every $z\in L(y)$ there exists $T=T(z)\geqslant 0$ such that $zT \in N_{1\epsilon}(v)$. Thus there exists $r = r(z) > 0$ so that $N_r(z)T \subset N_{1\epsilon}(v)$. As $L(y)$ is compact, there is a finite covering $\bigcup_{i=1}^n N_{r_i}(z) \supset L(y)$, $z_i \in L(y)$ and $T_i \geq 0$ with $N_{r_i}(z_i)$ $T_i \subset N_{\frac{1}{4}\epsilon}(v)$. Choose $\delta > 0$ so that

$$
N_{\delta}(L(\mathbf{y})) \subseteq \bigcup_{i=1}^n N_{r_i}(z_i).
$$

According to Lemma 3.3, there exists $t_n \uparrow \infty$ such that $y_n t_n \to v$.

By eventual weak stability of $L(y)$ there is $\alpha>0$ so that for every $z'\in N_\alpha(L(y))$ there exists $t_k' \uparrow \infty$ such that $z't_k' \in N_{\delta}(L(y))$. Choose $N_2 \geq N_1$ so that $y_n t_n \in N_{\alpha}(L(y))$ for $n \geq N_2$. Fix $n \geq N_2$. Then there exists t_k ⁿ $\uparrow \infty$ such that $(y_n t_n) t_k^n \in N_{\delta}(L(y))$. Compactness of $K(y_n)$ ensures that $L(y_n t_n) \cap N_{\delta}(L(y)) =$ $L(y_n) \cap N_{\delta}(L(y)) \neq \emptyset$. Let $w_n \in L(y_n) \cap N_{\delta}(L(y))$. Then $\rho(w_n, L(y)) < \delta$, and there is z_i so that $w_n \in N_{\delta}(z_i)$ and $w_n T_i \in N_{\delta}(v)$. Thus $L(y_n) \cap N_{\delta}(v) \neq \emptyset$, $n \geq N_2$. Hence $\rho(v, L(y_n)) < \frac{1}{4}\epsilon$. This is impossible. Thus L is LSC on $L(x)$.

5.4. COROLLARY. If the map L is USC on $L(x)$, then L is LSC on $L(x)$.

Proof. The proof is immediate upon noting that eventual stability and upper semicontinuity of L on $L(x)$ implies the minimality of $L(x)$.

In the proof of Proposition 5.3, we notice that the minimality of $L(y)$ for each $y \in L(x)$ is needed in order to prove the "if part." The following example shows that even if $L(z)$ is eventually weakly stable for each $z \in L(x)$, L is not necessarily LSC on $L(x)$.

5.5. EXAMPLE. Let X be a torus. The dynamical system on X is an irrational flow with a single critical point z. For each $x' \in X$, we have either (1) $L(x') = X$ or (2) $L(x') = \{z\}$. We immediately see that the space X itself and $\{z\}$ are eventually weakly stable. Let $x \in X$ with

$$
L(x) = X \qquad \text{and} \qquad d = \sup\{\rho(x',\, z') : x',\, z',\, \in X\} \qquad \text{and} \qquad 0 < \epsilon < d.
$$

Then there exists $y_n \to x$ such that $L(y_n) = \{z\}$. Obviously $N_c(L(y_n)) =$ $N_{\epsilon}(z) \nightharpoonup L(z) = X$. In other words L is not LSC at $x \in L(x)$.

6. CONINUITY OF THE MAP L

6.1. THEOREM. A necessary and sufficient condition that the map L be continuous on $L(x)$ is that $L(x)$ is minimal and eventually stable.

Proof. The proof is immediate from Proposition 4.6 and Corollary 5.4.

6.2. THEOREM A necessary and sufficient condition that the map L be continuous on X is that $L(x)$ is eventually stable for each $x \in X$.

Proof. As is given in the proof of Lemma 4.7, one can easily show the lower semicontinuity of the map L on $A(L(x))$ provided L is LSC and $L(x)$ is minimal. Thus the proof is immediate from Theorem 6.1.

6.3. Remark. From Theorem 3.9 and Theorem 6.2, we have the following diagram.

194 SAPERSTONE AND NISHIHAMA

7. CONTINUITY OF THE MAPS *J* AND *D*

As one can see in [3, Definition 2.3] the notion of upper semicontinuity of the map D at x is equivalent to the notion of stability of $D(x)$ at x. The following Proposition for the map D is given in [3, Theorem 2.7] in the different form.

7.1. PROPOSITION. If $J(x)$ has a compact neighborhood, then the maps I and D are USC at x.

Proof. Let $\epsilon > 0$. Since $J(x) = \bigcap \overline{\{N_{\delta}(x)[t, \infty) : \delta > 0, t \geq 0\}}$, there exist $r>0$ and $\tau\geqslant 0$ so that $\overline{N_r(x)[\tau,\infty)}\subset N_s(J(x))$. Let $y\in N_r(x)$. There is an $\alpha > 0$ so that $N_{\alpha}(y) \subset N_r(x)$. Thus $J(y) \subset \overline{N_{\alpha}(y)[\tau, \infty)} \subset \overline{N_r(x)[\tau, \infty)} \subset N_{\alpha}(f(x))$. Therefore J is USC.

Now for the map D. Let $\epsilon > 0$. Then there exist $r' > 0$, $\tau \geq 0$ so that $\overline{N_r(x)[\tau,\infty)} \subset N_{\epsilon}(J(x)) \subset N_{\epsilon}(D(x))$. Since $x[0, \tau] \subset N_{\epsilon}(D(x))$, there exists r, $0 < r < r'$, so that $\overline{N_r(x[0, t])} \subset N_r(D(x))$. Thus $\overline{N_r(x) R^+} \subset N_r(D(x))$. The rest of the proof is similar to the one for J.

From Proposition 7.1, if the space X is locally compact, then J, D are USC on X . Without assuming any condition on X , we have the following characterization for upper semicontinuity of the maps D and J .

7.2. LEMMA. The map $D(f)$ is USC at x if and only if for every sequence $x_n \to x$, $D(x) \cup \{\bigcup_{n=1} D(x_n)\}\{f(x) \cup \{\bigcup_{n=1} f(x_n)\}\}\$ is compact.

Proof. Lemma 4.1 takes care of the "only if" part. We now show the "if" part. Suppose D is not USC at x. Then there exists $\epsilon > 0$ and $x_n \to x$ so that $\sup\{\rho(w, D(x)) : w \in D(x_n)\} \geq \epsilon$ for each *n*. Thus there is $y_n \in D(x_n)$, and we may assume $y_n \to y \in Y$. Hence $\rho(y, D(x)) \geq \epsilon$. $y_n \in D(x_n)$ implies there exist $\{x_n^k\}$, $\{t_n^k\}$ so that $x_n^k \to x_n$, $x_n^k t_n^k \to y_n$ as $k \to \infty$. Thus for each n, there exists $k_n > 0$ such that $\rho(x_n^{k_n}, x_n) < 1/n$ and $\rho(x_n^{k_n} t_n^{k_n}, y_n) < 1/n$. This shows $x_n^k \to x$, $x_n^k x_n^k \to y$ as $n \to \infty$. Therefore $y \in D(x)$. This is impossible. Hence D is USC at x . The proof for \overline{I} is similar.

7.3. Remark and example. We see from Lemma 4.1 that if a map $S: X \rightarrow \mathcal{K}$ is USC at x, then for any sequence $x_n \to x$, $S(x) \cup \{ \bigcup_{n=1}^{\infty} S(x_n) \}$ is compact. However, the converse is not true. For instance, consider a flow on $X = [0, 1]$ with the usual topology of R . There are only two critical points $0, 1$, so that every point $x(\neq 0, 1)$ approaches 1 positively and approaches 0 negatively. Let $0 < x_n < 1$ with $x_n \to 0$. Then $L(x_n) = \{1\}, L(0) = \{0\}$. Thus

$$
\left\{\bigcup_{n=1}^{\infty} L(x_n)\right\} \cup L(0) = \{0\} \cup \{1\}
$$

is compact. However, L is neither USC nor LSC at 0.

Similarly

$$
\left\{\bigcup_{n=1}^{\infty} K(x_n)\right\} \cup K(0) = X
$$

is compact, but K is not USC at 0.

The following proposition shows some relationship between the map D and the map J.

7.4. PROPOSITION. If D is USC at x , then so is J .

Proof. Let $\epsilon > 0$. By the first part of Proposition 7.1 we need only show the existence of $r > 0$ and $\tau \geq 0$ such that $N_r(x)[\tau, \infty) \subset N_{\frac{1}{2}\epsilon}(f(x)) \subset N_{\epsilon}(f(x))$. Suppose this is not the case. Then there exist $x_n \to x$ and $t_n \uparrow \infty$ so that $x_n t_n \notin N_{\kappa} (J(x))$. Since D is USC at x, then $D(x) \cup \{(\bigcup_{n=1}^{\infty} D(x_n))\}$ is compact. $\{x_n, t_n\} \subset D(x) \cup \{(\bigcup_{n=1}^{\infty} D(x_n))\}$ implies there exists a subsequence $\{n_k\}$ of $\{n\}$ and $y \in D(x) \cup \{(\bigcup_{n=1}^{\infty} D(x_n)\}\)$ such that $x_{n_k}t_{n_k} \to y$ as $k \to \infty$ with $x_{n_k} \to x$, $t_n \uparrow \infty$. Hence $y \in J(x)$. This is impossible since $x_n, t_n \notin N_{\frac{1}{2}}(f(x))$. Therefore J must be USC at X.

The following example shows that the converse is not true in general. The example was suggested by N. P. Bhatia.

 $X=\{(x,y)\in\mathbb{R}^2: x\leq 0\}-\{(x,y)\in\mathbb{R}^2: y=0, -1\leq x\leq 0\}$

7.5. EXAMPLE. The phase space

FIGURE 7.2

has the usual topology of R^2 . The set $\{(x, y) : x = 0\} \cup \{(-1, 0)\}\)$ consists of critical points. The remaining flow is parallel in the direction indicated in Fig. 7.2.

Let $p = (-2, 0)$ and $p_n \rightarrow p$ where $p_n = (x_n, y_n)$, $y_n \neq 0$. Then $J(p) =$ $\{(-1, 0)\}\cup \{(0, 0)\}\$ and $J(p_n) = \{(0, y_n)\}\$ + $\{(0, 0)\}\subset J(p)$. Thus J is USC at p . However, D is not USC at p .

We now characterize the lower semicontinuity of D and J .

7.6. PROPOSITION. If D is LSC at x, then for any $x_n \to x$, $\delta_n > 0$, $y \in D(x)$, there exist $x_n' \to x$, $t_n' \geq 0$ such that $\rho(x_n, x_n') < \delta_n$, $x_n't_n' \to y$.

Proof. Let $x_n \to x$, $\delta_n > 0$, $y \in D(x)$. Then $\rho(y, D(x_n)) \to 0$ as $n \to \infty$, and there exists $z_n \in D(x_n)$ so that $\rho(y, z_n) \to 0$. For each z_n there exist $x_n^k \to x_n$, $t_n^k \geqslant 0$ such that $x_n^k t_n^k \to z_n$ as $k \to \infty$. Choose $k_n > 0$ so that

$$
\rho(x_n^{k_n}t_n^{k_n},z_n)<1/n, \qquad \rho(x_n^{k_n},x_n)<\min(1/n,\delta_n)\qquad\text{for each}\quad n.
$$

This shows that $x_n^{k_n} \to x$ and $x_n^{k_n} t_n^{k_n} \to y$ as $n \to \infty$. Setting $x_n' = x_n^{k_n}$, $t_n' = t_n^{k_n}$, we have $x_n' \to x$, $x_n't_n' \to y$ with $\rho(x_n', x_n) < \delta_n$.

The following Proposition will give the converse of Proposition 7.6 under the assumption of upper semicontinuity of the map D.

7.7 PROPOSITION. Let D be USC on X. If for every $x_n \to x$, $\delta_n > 0$, $y \in D(x)$, there exist $x_n' \to x$, $t_n' \ge 0$ with $\rho(x_n, x_n') < \delta_n$, $x_n't_n' \to y$, then D is LSC at x.

Proof. Suppose D is not LSC at x. Then there exist $\epsilon > 0$, $x_n \to x$ so that $\sup\{\rho(w, D(x_n)) : w \in D(x)\} \ge \epsilon$. Thus there exist y, $y_n \in D(x)$, with $y_n \to y$ such that $\rho(y_n, D(x_n)) \geq \epsilon$. Then there is an $N > 0$ so that $\rho(y, D(x_n)) \geq \frac{1}{2}\epsilon$ for $n \geq N$. From the definition of D, $D(x_n) = \overline{(\bigcap_{k=1}^{\infty} N_{k-1}(x_n) R^+}.$ We first show that for each *n*, there is $k_n > 0$ such that $N_{k_n-1}(x_n)$ $R^+ \cap N_{k_n}(y) = \emptyset$.

Suppose $N_{k-1}(x_n)$ $R^+ \cap N_{k}(y) \neq \emptyset$ for each k. Then there exist $z_k \in N_{k-1}(x_n)$ and $t_k \in R^+$ so that $z_k t_k \in N_{\frac{1}{2}\epsilon}(y)$. Thus $z_k \to x_n$ as $k \to \infty$. Now $\{\bigcup_{k=1}^{\infty} D(\mathfrak{x}_k)\} \cup D(\mathfrak{x}_n)$ is compact. Hence we may assume

$$
z_kt_k \to z \in \left\{\bigcup_{k=1}^{\infty} D(z_k)\right\} \cup D(x_n) \quad \text{for some } z.
$$

As $z_k \to z_n$, then $z \in D(x_n)$ so $\rho(z, y) \leq \frac{1}{4} \epsilon$. This shows $\rho(D(x_n), y) \leq \frac{1}{4} \epsilon$. This is impossible. Therefore for each *n* there exists $k_n > 0$ such that

$$
N_{k_n^{-1}}(x_n) R^+ \cap N_{\frac{1}{4}\epsilon}(y) = \varnothing.
$$

Consider $\{x_n\}$, $\{k_n^{-1}\}\$, $y \in D(x)$. Then there exist $x_n' \to x$, $t_n' \in R^+$ such that $p(x_n, x_n') < k_n^{-1}, x_n't_n' \rightarrow y$. Therefore there exists $N' \geq N$ so that for $n \geq N'$ $p(x_n't_n', y) < \frac{1}{4}\epsilon$. This implies $N_{k_n-1}(x_n)$ $R^+ \cap N_{\frac{1}{4}\epsilon}(y) \neq \emptyset$ for $n \geq N'$. Again this is impossible. Therefore D must be LSC at x .

Combining Propositions 7.6 and 7.7, we have:

7.8. THEOREM, Let D be USC on X. Then D is LSC at x if and only if for any sequences $x_n \to x$, $\delta_n > 0$, and any point $y \in D(x)$, there exist sequences $x_{n} \rightarrow x$, $t_{n} \in \mathbb{R}^{+}$ such that $\rho(x_{n}, x_{n}) < \delta_{n}$, $x_{n} \prime t_{n} \rightarrow y$.

For the map J, we need a slightly stronger condition given in the following Proposition. Its proof is similar to that of Proposition 7.6.

7.9. PROPOSITION. If *J* is LSC at x, then for any $x_n \to x$, $\delta_n > 0$, $y \in J(x)$, $t_n \uparrow \infty$, there exist $x_n' \to x$, $t_n' \geq t_n$ such that $\rho(x_n, x_n') < \delta_n$ and $x_n't_n' \to y$. Just as Proposition 7.7 we have

7.10. PROPOSITION. Let D be USC on X. If for any $x_n \to x$, $\delta_n > 0$, $t_n \uparrow \infty$, $y \in J(x)$, there exist $x_n' \to x$, $t_n' \geq t_n$ such that $\rho(x_n, x_n') < \delta_n$, $x_n't_n' \to y$, then J is LSC at x .

Combining Propositions 7.9 and 7.10 we have

7.11. THEOREM. Let D be USC on X. Then \tilde{I} is LSC at x if and only if for any $x_n\to x$, $t_n \uparrow \infty$, $y \in J(x)$, $\delta_n > 0$, there exist $x_n' \to x$, $t_n' \geq t_n$ such that $p(x_n, x_n') < \delta, x_n't_n' \rightarrow y.$

In Propositions 7.7 and 7.10 we assumed upper semicontinuity of the map D in order to show the lower semicontinuity of the maps D and J . The following example shows that Propositions 7.7 and 7.10 do not hold without assuming upper semicontinuity of the map D.

7.12. EXAMPLE. Let

$$
X = \{(x, y) \in R^2 \mid x \leqslant 0, 0 \leqslant y \leqslant 1\}
$$

$$
-\{(x, y) \in R^2 : -1 < x \leqslant 0, y = \left(\frac{1}{2}\right)^n, n = 0, 1...\}
$$

$$
-\{(x, y) \in R^2 : -1 < x < 0, y = 0\}
$$

with the usual topology of R^2 .

The set of critical points consists of $\{(x, y) \in \mathbb{R}^2 : x = -1, y = (\frac{1}{2})^n,$ $n=0,1...$ \cup { $\{-1,0\}$ } \cup { $(x,y) \in R^2: x=0,0 \leq y \leq 1, y \neq (\frac{1}{2})^n, n=0,1...$ }. The phase portrait is given in Fig. 7.3. The flow is parallel in the direction indicated. Let $p = (-1, 0), \tilde{p}_n = (-1, (\frac{1}{2})^n), n = 1, 2,...$. Then $D(\tilde{p}_n) = {\tilde{p}_n},$ $D(p) = \{p\} \cup \{(0, 0)\} = J(p)$. Thus D is not LSC at p. On the other hand for any $p_n \to p$, $\delta_n > 0$, $p \in D(p)$, $p_n't_n' \to p$ where $p_n' = p_n$, $t_n' = 0$, or for any $p_n \to p$, $\delta_n > 0$, $(0, 0) \in D(p)$ there exist p_n' , $t_n' \uparrow \infty$ such that $\rho(p_n, p_n') <$ δ_n , $p_n' \notin \{(x, y) \in R^2 : y = (\frac{1}{2})^k, k = 0, 1, ...\} \cup \{(x, y) \in R^2 : y = 0\}$ with $p_n't_n' \to (0, 0)$. Similarly the map *J* is not LSC at *p*. However for any $p_n \to p$,

 $\delta_n > 0$, $p \in J(p)$ (or $(0, 0) \in J(p)$), $t_n \uparrow \infty$, there exist $p_n' \to p$, $t_n' \geq t_n$ such that $\rho(p_n', p_n) < \delta_n$, $p_n't_n' \rightarrow p$ (or (0, 0)).

FIGURE 7.3

Finally we give the following proposition, which is similar to Proposition 3.1. The proof is similar to that of Proposition 3.4.

7.13. PROPOSITION. If $D(x) = K(x)$ at x, then D is LSC at x.

7.14. COROLLARY. If $K(x)$ is stable, then D is LSC at x. Moreover if π is stable, then D is continuous on X .

The following example shows that the converse of Corollary 7.14 is not true in general.

7.15. EXAMPLE. The phase space X is given by $\{(x, y) \in \mathbb{R}^2 : x \leq 0\}$ with the usual topology of $R²$. The set

$$
\{(x, y) \in R^2 : -1 \leq x \leq 0, y = 0\} \cup \{(x, y) \in R^2 : x = 0\}
$$

consists of critical points. The remaining Aow is parallel in the direction indicated. For any point $p = (x, y), y \neq 0, D(p) = \{(x', y') : y' = y,$ $x \leq x' \leq 0$. Obviously D is continuous on X. However for any $q = (x, 0)$, $-1 \leqslant x < 0$, $K(q) = \{q\}$ is not stable.

ACKNOWLEDGMENT

The authors wish to express their gratitude to Professor N. P. Bhatia for his many suggestions and fruitful discussions.

REFERENCES

- 1. N. P. BHATIA AND O. HAJEK, "Local Semi-Dynamical Systems," Lecture Notes in Mathematics Vol. 90, Springer-Verlag, Berlin/Heidelberg/New York, 1969.
- 2. N. P. BHATIA **AND** *G. P.* **SZEGO,** "Stability of Dynamical Systems," Springer-Verlag, Berlin/Heidelberg/New York, 1970.
- 3. N. P. BHATIA, Characteristic properties of stable sets and attractors in dynamical systems, in "Symposia Mathematica," Vol. VI, pp. 155-166, Academic Press, London/ New York, 1971.
- 4. N. P. BHATIA, Positively stable dynamical systems, in "Ordinary Differential Equations: the 1971 NRL-MRC Conference" (Leonard Weiss, Ed.), pp. 365-370.
- 5. A. BOYARSKY, Limit sets of dynamical systems on the space of probability measures, /. *Differential Equations 14 (1973), 559-567.*