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Given a semiflow on a metric space X (not necessarily locally compact), we 
relate notions of stability to the continuity of the orbital and limit set maps, 
K(x) and L(x), where K and L are considered as maps from X to 2x. 

1. INTRODUCTION 

Let a semiflow QT be given on a metric space (X, p). We investigate both 
the upper and lower semicontinuity of the set valued maps x + K(x) and 
x -L(x), where K(x) is the positive orbit closure through x, and L(x) is the 
positive limit set of x. 

The question of continuity of these maps was prompted by a result of 
of Boyarsky [5]. His work concerned a characterization of the limit sets of 
probability measures arising from diffusion processes. In particular, he estab- 
lished the continuity of the map p + L(p), provided the semiflow (of probability 
measures CL) was Lyapunov stable. This is indeed an unnecessarily strong 
requirement. As our examples will show, a weaker form of stability is 
called for. 

We assume each K(x) is compact. In Section 3 we establish that the following 
are equivalent: * is positively stable, each L(x) is positively stable, the map K 
is continuous on X. Our main result is in Section 6: L is continuous on X if 
and only if each L(x) is eventually stable. We can then deduce that if K is 
continuous on X, then so is L. The latter is even true locally, as shown in 
Proposition 4.2. In Section 7 we collect some results on the continuity of 
prolongations. 

183 
Copyright 0 1977 by Academic Press, Inc. 
All rights of reproduction in any form reserved. ISSN 0022-0396 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82658877?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


184 SAPERSTONE AND NISHIHAMA 

2. DEFINITIONS AND NOTATIONS 

2.1. DEFINITION. Let R+ = {t : t > O}. By a semzjlow (or a semidynamical 
system) on (X, p) we mean a mapping rr: X x R+ + X so that 

(i) ~(x, 0) = x, x E X, 

(ii) n(r(x, s), t) = r(x, s + t), x E X, s, t E Rf, 

(iii) i7 is continuous. 

For brevity we denote n(x, t) by xt. For A C X, B C Rf, set 

AB={xt:xEA,tEB}. 

We adopt the notation of Bhatia and Hajek [l]. C(x) = xR+ is the positive orbit 

through x, K(x) = C(x) is the orbit closure and L(x) = n{K(xt) : t E R+} 
is the positive limit set of x. For r > 0 and A C X let N,(A) = {x : p(x, A) < Y} 
denote the r neighborhood of A. The positive prolongation of x is the set D(x) = 

r)Wr(x) R+ : r > 0}, and the positive prolongational limit set of x is the set 

J(x) = fl{N&)[t, co) : r > 0, t >, O}. 
A subset MC X is positively invariant if C(x) C M whenever x E M. M is 

positively minimal if M is closed and positively invariant, but none of its nonempty 
proper subsets has these two properties. M is called positively stable if every 
neighborhood of M contains a positively invariant neighborhood of M. (This 

is called orbital stability by Bhatia and Hajek [l].) 7~ is said to be positiveZy 
stable if K(x) is positively stable for each x E X. We consider L, K, J, D as maps 
of X into 2x. We say xt is ultimately in M if there exists t,, E Rf such that 

C(xt,,) C M. A point x is said to be attracted to M if xt is ultimately in every 
neighborhood of M. As all concepts (e.g., limit sets, prolongations, stability) 
are positive, we shall henceforth omit the modifier “positive.” Set A(M) = 
(x E X : x is attracted to M}. 

Let x denote the collection of nonempty compact subsets of X and 
h: x x ~7 + R+ be the Hausdorff metric corresponding 

A, B E x, h(A, B) = ma4suprsa P(X, B), sup,,~ ,@, Y)). 
A map S: X + .3? is called upper semicontinuous (USC) 

E > 0 there exists S > 0 such that 

S(Y) C NJ@)) for all y E N,(x). 

A map S: X -+ x is called lower semicontinuous (LSC) at x 
there exists 6 > 0 such that 

to p. That is, if 

at x if for every 

if for every E > 0 

S(x) c N&vYN for all y E N,(x). 
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Equivalently we have S is USC at x if for any sequence x, -+ X, 

suPMY S(x)): Y 5 %%)> - 0 as 12-a. 

S is LSC at x if for any sequence x, -+ x, 

suPif (Y > S(%)) : Y E S(x)) - 0 as n+co. 

From the definition of the Hausdorff metric on %? one can easily show that 
a map S from X to %? is continuous at x if and only if S is both USC and LSC 
at x. 

In Sections 3, 4, 5, and 6, we will always assume that K(x) is compact for 
each x E X, and in Section 7 we will always assume that D(x) is compact for 
each N E X. 

3. CONTINUITY OF THE MAP K 

In this section we assume that K(x) is compact for all x E X. 

3.1. PROPOSITION. If K is USC at x, then K(x) = D(x). The converse 
is true provided K(x) has a compact neighborhood. 

Proof. Suppose K is USC at x. Let y E D(x). Then there exist sequences 
x, - x, f, E R+ such that x,t, - y as n + a3. As each x,t, E K(x,), 

f(xntn > W)) - 0. 

Since K(x) is closed, y E K(x). Hence D(x) C K(x) and so K(x) = D(x). 
Conversely suppose K(x) = D(x). As K(x) = D(x) = fi{Na(x) R+ : 6 > 0}, 

for every E > 0 there exists 6 > 0 so that N,(x) R+ C N,(K(x)). Thus 
N,(K(x)) 3 N,(x) R+ 3 K(y) for y E N,(x). Hence K is USC at x. 

We will next show that K is always LSC on X. First we obtain a new charac- 
terization of K(x) and L(x). 

3.2. DEFINITION. Let x E X, and set 

Q(x) = {y E X j Vx, + x, 3, E R+ such that x,t, ---f y}, 

W(x) = {y E X 1 Vx, --f x, 3, t + cc such that x,t, --f y}. 

3.3 LEMMA. Q(x) = K(x) and W(x) = L(x) for each x E X. 

Proof. It can be shown that Q(x) C K(x) and t(x) CL(x) by picking the 
sequence x, = x. We show the reverse inclusions. For any t E R+ we claim 
that xt E Q(x). In fact let x, -+ x, and choose t, = t for every n. Then x,t, = 
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~,t ---f xt E Q(x). Thus C(x) C Q(x) C K(x). We need only show that Q(x) is 
closed. But this is evident from the definition of Q(x). To prove thatl(x) C IV(x), 
it will be sufficient to show that W(x) 3 n (Q(M) : t 3 0} = n {Q(xn) : n a 
positive integer}. So let y E Q(M) for each n, and let xlc + x. Then xkn --, xn 
for each II. For each n there exists tkn E R+ such that (xKn) t,” = x,(n + tkn) - y 
as K - co. For each n choose K, so that p((x,n) tkn, y) < l/n, k > R, . We can 
assume that K, < k, < **a . We now construct a sequence t, t cc so that 
xkt, - y. For 1 < R < k, set t, = 1 + t,l. For k, < k < k,,, , n > 2, set 
t, = n + t,“. Then t, t co, and x,t, + y as k --f co. Thus y E IV(x) and the 
proof of lemma is concluded. 

3.4. PROPOSITION. The map K is LSC on X. 

Proof. Assume K is not LSC at x. Then there exist E > 0 and a sequence 
x, ---f x such that sup{p(y, K(x~)) : y E K(x)} > E for each n. From compactness 
of K(x) there exists a sequence yn E K(x) such that p(yn , K(x,J) 3 E. We may 
asrhm; :hat yn - y E K(x) = Q(x) f or some y. There is a sequence t, E R+ 

---f y. Consequently p(xnt, , yJ --f 0. As x,t, E K(xJ for each n, 

f(Yn , &)) G P(Y,. 1 x,t,) + 0. This is impossible. Hence K must be 
LSC at x. 

3.5. PROPOSITION. If K(x) is compact for some x E X, then the following are 
equivalent. 

(i) K is USC at x. 

(ii) K is continuous at x. 

3.6. Remark. It is easy to see that the definition of upper semicontinuit) 
of the map K(x) at x is equivalent to the one of stability of K(x) at .r which is 
given in [3]. Using the notion of stability of K(x) at x, one can show that if K(z) 
is stable at each point z E K(x), then K(x) is stable provided K(x) is compact. 
In terms of upper semicontinuity of K, one has the following: If K is USC on 
K(x), then K(x) is stable. 

Combining Proposition 3.5 and Remark 3.6 we have 

3.7. THEOREM. The map K is continuous on X if and only if K(x) is stable 
for each x E X. 

3.8. LEMMA. IfL(x) is stable, then so is K(x). 

Proof. We will show that for every E > 0 there exists 6 > 0 such that 
N,(K(x)) R+ C N,(K(x)). Since L(x) is stable, there is Si > 0 so that 
N&(x)) R+ C N,(L(x)). Then there exist T > 0, 6, > 0 such that 

x[T, 0~)) C N&(x)) and 
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This can be done by compactness of K(x) and continuity of 7~. Hence 

We will show that for x[O, T], there exists 6, > 0 such that N,3(~[0, T]) Rf C 
N,(K(x)). Assume this is not true. Then there exist x, E X and t, E R+ such that 

P(% 7 x[O, T]) + 0, z,t, $ N,(K(x)). We may assume x, + xt, for some 
0 < to < T. If i%,,, t, < co, we may assume t, + t < 00. Thus z,t, + 
(xt,)t = x(t, + t) $ N,(K(x)). Th’ is is impossible since x(t, + t) E K(x). Thus 
assume t, f co. Since xt,(T - to) = XT E N+@(x)) there exists 6, > 0 such 
that Na4(xtO)( T - to) C N+,I(L(x)). This implies 

N&to)[T - to , ~0) C %&W)) R+ C ~LW) C ~#W)). 

There is Ni > 0 so that z, E N,,(xto), t, > T - to , n > Ni , and z,t, E N,(K(x)). 
Again this is impossible. Hence there is 6, > 0 so that 

On the other hand C(xT) C NtBl(L(x)) C Nial(L(x)). Let 0 < 6, < @, . 

Then N@(xT)) R+ C ~~~W~~JW)) R+ C N+(4) R+ C N&W) C ~,(K(4). 
Setting 6 = min(S, , S,), we have N,(K(x)) R+ = N,(x[O, T] u K(xT)) Rf C 
N,(x[O, T])]) Rf u N,(K(xT)) R+ C N,(K(x)). Therefore K(x) is stable. 

The following Theorem is given in [4] for dynamical systems and does not 
assume the compactness of K(x) for each point x E X. It does assume that X 
is not a union of two disjoint open invariant sets and not minimal. 

THEOREM. r is positively stable if and only if the following conditions hold. 

(A) The positive limit set L(x) is nonempty compact minimal and positively 
stable for each x E X. 

(B) The union M of compact minimal subsets of X is a closed globally 
asymptotically stable set. 

For semidynamical systems, we have the following theorem with assumption 
K(x) compact for each x E X. 

3.9. THEOREM. The following are equivalent. 

(1) r is stable. 

(2) L(x) is stable for each x E X. 

(3) The map K is continuous on X. 

Proof. From Theorem 3.7 (1) is equivalent to (3). From Lemma 3.8 (2) 
implies (1). 

If n is stable, then each L(x) is minimal. Thus L(x) is stable for each x E X. 
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4. UPPER SEMICONTINUITY OF THE MAP L 

4.1. LEMMA. Let S: X -+ S- be any map which is USC at x. Then for any 
sequence x, + x, S(x) U {(JzSl S(x,)} is compact. 

Proof. Let x, + x, and set Y = S(x) u {uF=, S(x,)}. For any sequence 
{y,> C Y we may assume yn E S(x,J. Thus p( yn , S(x)) + 0. As S(x) is compact 
we can find a subsequence { y,,} and y E S(x) so that yn, -+ y. Thus Y is compact. 

4.2. PROPOSITION. If the map K is USC at x, then so is the map L. 

Proof. If x EL(X), then L(x) = K(x) and h ence the proposition is proved. 
So assume x $ L(x), and proceed by contradiction. Suppose L is not USC at x. 
We will first show that x E J(x). 

There exist E > 0 and a sequence x, + x such that 

sup(p(w, L(x)) : w EL(X,)} 3 2E. 

We may assume that x 6 NzE(L(x)). Let w, EL(x,) - N2,(L(x)). Then for each 
x, there exists t, > 1z with p(x,t, , w,J < e/n. Hence x,t, $ N,(L(x)). As K 
is USC at x, then Proposition 3.1 and Lemma 4.1 imply that x,t, (or 
some subsequence thereof) converges to some zr E K(x). Since for large n, 
x,t, 4 Nc(L(x)), then zr E K(x) -L(x). Thus there exists pi > 0 so that 
z1 = XT, 6 N,(L(x)). On th e other hand there exists T > or with K(xT) C 
~,(L(xN. As tn t 00 we have xi E J(x). Now consider the sequence x,(t, - T&. 
By a similar argument to the above we may assume that x,(t, - 7J + z2 for 
some z2 E K(x). Thus z2~1 = zr . Moreover, zs E K(x) -L(x) so there exists 
some ra > 0 with zs = ~7s . Consequently xrr = zr = xsri = (x~s) pi = 
~(7s + or) implies r2 = 0. In other words x,(t, - TJ + z2 = XT~ = X. Thus 
x E J(x)- 

We next show that x E L(x). As this case was previously ruled out, the proof 
of the proposition will be complete when x EL(X) is established. Choose 6 > 0 
so that N,(x)T C N,(L(x)). For sufficiently large n we have x, , x,(t, - TV) E N,(x) 
and t, - or > T. As x,~T E N6(L(x)), there exists s, , 0 < s, < t, - r1 with 
wn E ~~,(-qx)), %z(s, , t, - Q-J n N,(L(x)) = GZ. Then 

liF+inf (t, - 7i - s,) > 0, 

for otherwise x E aN,L(x)). Let 0 < s < lim infnem(t, - pi - s,J. As before 
we may assume that x,(t, - 71 - s) - z3 for some z, E K(x) -L(x). Let 
zs = XT, for some 7s 3 0. Thus x(ra + s) = zas = lim,-, x,(t, - TV) = x. 
This implies that x E L(x). 

The following example shows that the converse of uroposition 4.2 is false. 
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4.3. EXAMPLE. In Fig. 4.1 every orbit approaches a point z which is a critical 
point. The map L is a constant map. However K is not USC at x. The space X 
is assumed to have the usual topology of the plane. 

x .? 

FIGURE 4.1 

As one can see in Example 4.3, L(x) = {z> is not stable. This leads us to 
formulate a weaker form of stability to characterize upper semicontinuity of 
the map L. 

4.4. DEFINITION. A set MC X is eventually stable if for every neighborhood 
W of M, there exists a neighborhood V of M such that for every y E V, there 
is T = T(y) > 0 such that C(yT) C W. If T does not depend on y E V, then M 
is said to be uniformly eventually stable. 

It should be noted that sets M which are either stable or attractors are even- 
tually stable. (M is an attractor if A(M) is a neighborhood of M.) However, 
neither of the properties is necessary for eventual stability, as shown by the 
following example. 

4.5. EXAMPLE. Consider a flow on the upper half plane given in Fig. 4.2 
which is similar to Fig. 4.1. The set of critical points consists of {(x, y) : x = 0, 
0 < y < &}. Let P,, = (-1, 0). Then L(P,) = ((0, 0)). This flow shows that 
L(P,,) is eventually stable but neither stable nor an attractor. 

4.6. PROPOSITION. Given x E X, the map L is USC on L(x) if and only ifL(x) 
is minimal and eventually stable. 

Proof. Suppose L is USC on L(x). Let y E L(x). We shall show L(x) CL(y). 
For y E L(x) there exists a sequence t, f 00 such that xt, -+ y. Let z E L(X). 
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PO L(P,) 

FIGURE 4.2 

Then z l L(xt,) = L(X) for each n. Since 

qJ{P(“, L(y)): w ~q&L)) - 0 as In+ co, 

x EL(~). Hence L(X) CL(y), so L(X) is minimal. 
We now prove that L(X) is eventually stable. Let E > 0 and y EL(X). Then 

there is 6, > 0 so that N,(L(y)) IL(z) for z E N,y(y). Thus N@(x)) IL(x) 
for z E Nay(y). By compactness of L(X), there is a finite set of points 

{Yl YYZ Y*.‘, yn} CL(x) such that uyII N,yJyi) I) L(X). Setting V = uT=r NGyz( yJ, 

~kw) ’ L( z 1 f or each z E V. This shows L(X) is eventually stable. 
Conversely let L(X) be minimal and eventually stable. Let y EL(X). Then 

for every E > 0 there exists 6 > 0 such that for each z E N,(L(x)) there is 

T 3 0 with C(~T) C N+,(L(x)). Thus for .z E Ns( y) C N,(L(x)), L(z) C N&(x)) C 
N,(L(x)) = N,(L(y)). Hence L is USC on L(x). 

The next lemma is needed in order to establish global upper semicontinuity 
of the map L. 

4.7. LEMMA. The map L is USC on L(x) if and onb ifL is USC on A(L(x)). 

Proof. As L(x) C A(L(x)), we need only prove that L is USC on A(L(x)) 
whenever L is USC on L(x). So let y E A(L(x)). According to [l, Theorem 8.121, 
L(y) CL(x). As L(x) is minimal from Proposition 4.6, L(y) = L(x). Thus it 
will be sufficient to show that L is USC at x E A(L(x)). As L(x) is eventually 
stable, for every E > 0 there exists 6, > 0 such that for each z E NsI(L(x)), 
there is T = T(x) 3 0 so that C(xT) C N+,(L(x)). On the other hand there 
exist 7 2 0, 6 > 0 such that XT E NB1(L(x)) and N,(x)7 C N,,(L(x)). Thus for 

every y E N,(X), L(y) = L(y7) C N+,(L(x)) C N,(L(x)). Hence L is USC at x. 



LIMIT SET MAPS 191 

4.8. LE~VMA. IfL( y) is eventually stable for each y E L(x), thenL(x) is positively 
minimal. 

Proof. Suppose L(X) is not minimal. Then there exists a minimal set M 
in L(X). Obviously, x +! M $2 L(X). Let y EL(X) - M, 0 < E < p(y, M) and 
z E M. By assumption, there exists 6 > 0 such that for every y’ E N.&(z)), 
there exists T = T(y’) 2 0 such that C(y’T) C N+,(M) = N+,(L(x)). Since 
z E M CL(x), there is pi > 0 with x~i E N,(L(z)). Thus there is Tl = 
T,(xT,) > 0 so that XT,[T, , co) = x[-rl f Tl , CO) C N+,(L(z)). Hence L(X) C 

~V&W C ~&W)). Th is is impossible since y EL(X) and y $ N&(z)). Thus 
L(x) must be minimal. 

Combining Proposition 4.6, Lemma 4.7, and Lemma 4.8 we have 

4.9. THEOREM. The map L is USC on X ;f and only if L(x) is eventually 
stable for each x E X. 

5. LOWER SEMICONTINUITY OF THE MAP L 

5.1. DEFINITION. A set MC X is eventually weakly stable if for every neigh- 
borhood W of M, there exists a neighborhood I/ of M such that for each y E I’ 
there is a sequence t, T co such that yt, E W. 

There is a relationship between [ 1, Definition 8.71 and Definitions 4.4 and 5.1. 

5.2. PROPOSITION. For any M C X the following diagram holds. 

0 -+ Asymtotical Stability A 0 

t 

\ 

/ 
Positive Invariance 

\ Y / 
Stability 

Eventual Weak Eventual Uniformly Eventual 
Stability - Stability - Stability 

/ i 
M compact 

2 
Weak Attractor c- Attractor - Strong Attractor 

The above diagram is an extension of [l, Diagram 8.171. 
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5.3. PROPOSITION. Let L(y) be minimal for each y EL(X). Then the map L 
is LSC on L(x) if and only ifL( z is eventually weakly stable for every z E L(x). ) 

Proof. Suppose L is LSC onL(x). Let x E L(x). Assume@) is not eventually 
weakly stable. Then there exist E > 0, yn + y EL(Z) so that yn~ is ultimately 
in X - N,(L(z)). Accordingly L( y,J C X - N,(L(z)). Thus 

SUP{P(%L(Yn)) : Will 3 E with yn +y. 

This is impossible since L is LSC at y E L(x). 
Conversely suppose L(x) is eventually weakly stable for each z E L(x). Assume 

L is not LSC at y E L(x). Then there exist E > 0 and yn 3 y so that 
sup{p(w, L(y,)) : w EL(Y)} > E for each n. Compactness of L(y) ensures that 
there exist Ni > 0 and v EL(~) with p(v, L( yn)) > & for n > Ni . Since 
L(y) is positively minimal, then for every z EL(~) there exists T = T(z) 3 0 
such that zT E NiJv). Thus there exists Y = Y(Z) > 0 so that N,.(z)T C iViE( 
As L(y) is compact, there is a finite covering uy=i N,,(z) 1 L(y), zi E L(y) and 
Ti > 0 with iV,.(zJ Ti C iV$Jv). Choose 6 > 0 so that 

N8(L(Y)) c (j N7t(Zi)s 
i-1 

According to Lemma 3.3, there exists t, t co such that y& -+ v. 
By eventual weak stability ofL(y) there is 01 > 0 so that for every z’ E N,(L( y)) 

there exists t,’ t co such that dtk’ E N,(L(y)). Choose N, 3 Ni so that 

Y&l E NW(Y)) f or n 2 Ns . Fix n > iV, . Then there exists tkn f co such that 
(y&J t,” E N,(L( y)). Compactness of K( yJ ensures that L( y&J n N,(L( y)) = 
L(yJ n NdL(y)) # 0. Let w, ~4~4 n N&(Y)). Then P(W , L(Y)) -C 6, 
and there is zi so that w, E N,,(q) and w,T, E N;,(v). ThusL( yn) A N+t(u) # o , 
n > N, . Hence p(v, L(y,)) < &. This is impossible. Thus L is LSC on L(x). 

5.4. COROLLARY. If the map L is USC on L(x), then L is LSC on L(x). 

Proof. The proof is immediate upon noting that eventual stability and upper 
semicontinuity of L on L(x) implies the minimality of L(x). 

In the proof of Proposition 5.3, we notice that the minimality ofL(y) for each 
y E L(x) is needed in order to prove the “if part.” The following example shows 
that even if L(z) is eventually weakly stable for each .a E L(x), L is not necessarily 
LSC on L(x). 

5.5. EXAMPLE. Let X be a torus. The dynamical system on X is an irrational 
flow with a single critical point a. For each x’ E X, we have either (1) L(x’) = X 
or (2) L(x’) = (a}. We immediately see that the space X itself and {a} are 
eventually weakly stable. Let x E X with 

L(x) = x and d = sup{&‘, .a’) : x’, a’, E X> and O<a<d. 
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Then there exists yn -+ x such that L(y,) = (z}. Obviously N,(L(y,)) = 
N,(z) $L(x) = X. I n o th er words L is not LSC at x E L(x). 

FIGURE 5.1 

6. CONINUITY OF THE MAP L 

6.1. THEOREM. A necessary and sujicient condition that the map L be continuous 
on L(x) is that L(x) is minimal and eventually stable. 

Proof. The proof is immediate from Proposition 4.6 and Corollary 5.4. 

6.2. THEOREM A necessary and su#icient condition that the map L be continuous 
on X is that L(x) is eventually stable for each x E X. 

Proof. As is given in the proof of Lemma 4.7, one can easily show the lower 
semicontinuity of the map L on A(L(x)) provided L is LSC and L(x) is minimal. 
Thus the proof is immediate from Theorem 6.1. 

6.3. Remark. From Theorem 3.9 and Theorem 6.2, we have the following 
diagram. 

Stability of rr t----f Continuity of K 
4 I 

1 1 
Stability of -----+ Continuity of L 
each L(x) 

\ 
I 
Eventual Stability 

of each L(x) 
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7. CONTINUITY OF THE MAPS J AND D 

As one can see in [3, Definition 2.31 the notion of upper semicontinuity of 
the map D at x is equivalent to the notion of stability of D(x) at x. The following 
Proposition for the map D is given in [3, Theorem 2.71 in the different form. 

7.1. PROPOSITION. If J(x) has a compact neighborhood, then the maps J and D 
are USC at x. 

Proof. Let E > 0. Since J(x) = (I (Ns(x)[t, CO) : 6 > 0, t > 01, there exist 

Y > 0 and T 3 0 so that N?(x)[~, CO) C NE(J(x)). Let y E NT(x). There is an 

a: > 0 so that N,(Y) C N,(x). Thus J(Y) C X(y)b-, 03) C NT(x)t~, 03) C NdJ(4). 
Therefore J is USC. 

Now for the map D. Let E > 0. Then there exist Y’ > 0, T 3 0 so that 

N,.,(x)[~, a) C N,( J(x)) C N,(D(x)). Since x[O, 71 C N,(D(x)), there exists r, 
0 < Y < Y’, so that Nr(x[O, t]) C N,(D(x)). Thus N,(x) R+ C N,(D(x)). The 
rest of the proof is similar to the one for J. 

From Proposition 7. I, if the space X is locally compact, then 1, D are USC 
on X. Without assuming any condition on X, we have the following characteriza- 
tion for upper semicontinuity of the maps D and J. 

7.2. LEMMA. The map D(J) is USC at x if and only ;f for every sequence 
x, - x, D(x) u CU~sl D(4l(J(x) u CU~zl J(G)>) is compact. 

Proof. Lemma 4.1 takes care of the “only if” part. We now show the “if” 
part. Suppose D is not USC at x. Then there exists E > 0 and x, - x so that 

supb(w, D(x)) : w E D&J) 3 E f or each n. Thus there is yn E D(xn), and we 
may assume yql + y E Y. Hence p(y, D(x)) 2 E. yn E D(xn) implies there 
exist {xnk}, {tnk} so that xnk + x, , xnktlzk +yn as k -+ co. Thus for each n, 
there exists k, > 0 such that p(x>, xn) < l/n and p(x>t$, y,J < l/n. This 
shows xk nn + x, x>t$ - y as n ---f CO. Therefore y E D(x). This is impossible. 
Hence D is USC at x. The proof for J is similar. 

7.3. Remark and example. We see from Lemma 4.1 that if a map S: X--f &- 
is USC at x, then for any sequence x, - x, S(x) U {uz=, S(xn)} is compact. 
However, the converse is not true, For instance, consider a flow on X = [0, l] 
with the usual topology of R. There are only two critical points 0, 1, so that 
every point x( #O, 1) approaches 1 positively and approaches 0 negatively. 
Let 0 < x, < 1 with x, + 0. Then 15(x,) = (13, L(O) = (0). Thus 

is compact. However, L is neither USC nor LSC at 0. 



LIMIT SET MAPS 195 

Similarly 

is compact, but K is not USC at 0. 

. . 

0 1 

FIGURE 7.1 

The following proposition shows some relationship between the map D 
and the map J. 

7.4. PROPOSITION. If D is USC at x, then so is J. 

Proof. Let E > 0. By the first part of Proposition 7.1 we need only show 
the existence of r > 0 and 7 3 0 such that N,(x)[~, 00) C N&(X)) C NE(](z)). 
Suppose this is not the case. Then there exist X, + x and t, 1‘ CO so that 

&A I N*dJW s- mce D is USC at X, then D(x) u {(Jr=‘=, D(xn)> is compact. 

h&J C D(x) ” {U:=A D&J> tm ~1 ies there exists a subsequence (nk} of {n} 

and Y E D(x) u CUz=:=l D(G)> such that xltnk --f y as k -+ 03 with x, -+ x, 
tns t co. Hence y E J(x). This is impossible since xnktn, $ N&(x)). Therlfore J 
must be USC at X. 

The following example shows that the converse is not true in general. The 
example was suggested by N. P. Bhatia. 

7.5. EXAMPLE. The phase space 

X={(x,y)ER~:X~0}-{(X,y)ER2:y=0,-l <X<O} 

. 

. 

.-------- ---. 
Pf-2,O) C-1,0) (0.0) 

. 

. 

. 

. 
FIGURE 7.2 
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has the usual topology of R2. The set {(x, y) : x = 0} u {( - 1, 0)} consists of 
critical points. The remaining flow is parallel in the direction indicated in Fig. 7.2. 

Let p = (-2, 0) and p, - p where p, = (xn , y,J, yn # 0. Then J(p) = 
N-1, ON U {CA O>> and J(PJ = ((0, YJ> - i(O, O>> C J(P). Thus J is USC 
at p. However, D is not USC at p. 

We now characterize the lower semicontinuity of D and J. 

7.6. PROPOSITION. If D is LSC at x, then for any x, -+ x, 6, > 0, y E D(x), 
there exist xn’ + x, t,’ 3 0 such that p(x, , xr2‘) < 6, , xnft,’ + y. 

Proof. Let x, --+ x, 6, > 0, y E D(x). Then p(y, D(x,J) -+ 0 as n + co, 
and there exists z, E D(x,J so that p(y, z,) -+ 0. For each .z, there exist xnk + x, , 
t n k 2 0 such that x,letnk -+ a, as k --f co. Choose k, > 0 so that 

p(4$?, %) -=z l/n, p(x2, x,) ( min(l/n, 6,) for each n. 

This shows that x21 + x and x$t$ --t y as n --j co. Setting x,’ = xk,,, t,’ = t?, 
we have xn’ -+ x, xn’t,’ --t y with p(xn’, x,) < 6, . 

The following Proposition will give the converse of Proposition 7.6 under 
the assumption of upper semicontinuity of the map D. 

7.7 PROPOSITION. Let D be USC on X. If for every x, + x, 6, > 0, y E D(x), 
there exist x,’ -+ x, t,’ 3 0 with p(x, , xn’) < 6, , xn’t,’ ---f y, then D is LSC at x. 

Proof. Suppose D is not LSC at x. Then there exist E > 0, x, 4 x so that 
SUP{&, D&J> : w ED(X)) 3 E. Thus there exist y, yn E D(x), with yn -+ y 
such that p(yn , D(xJ) > E. Then there is an N > 0 so that p(y, D(x,J) > & 
for n 3 N. From the definition of D, D(xn) = n& Nk-l(x,) R+. We first 
show that for each n, there is k, > 0 such that IVk;l(xn) R+ n N&y) = @. 

Suppose Nk-‘(x,) R+ n IV%,(y) # ,B for each k. Then there exist 
zk E N@(x,) and t, E R+ so that x,t, E NiE(y). Thus zk -+ x, as k -+ 00. 
Now {(J,“=, D(.+)} u D(xJ is compact. Hence we may assume 

+t, -+ z E 
/ t 

k2 D(zk) u D(x,J for some z. 

As zk --f x, , then x E D(xn) so p(z, y) < 4~. This shows p(D(x,), y) < 4~. 
This is impossible. Therefore for each n there exists k, > 0 such that 

Nkil(xn) R+ n N$,(y) = ET. 

Consider {x,}, (k;l}, y E D(x). Then there exist x,’ -+ x, t,’ E R+ such that 
Phi 9 xn’) < k;l, xn’tn’ ---f y. Theref ore there exists N’ > N so that for n > N’ 
p(xn’t,‘, y) < &. This implies Nk;l(xn) R+ n N&y) # D for n > N’. Again 
this is impossible. Therefore D must be LSC at x. 
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Combining Propositions 7.6 and 7.7, we have: 

7.8. THEOREM, Let D be USC on X. Then D is LSC at x if and only if for 
any sequences x, + x, 6, > 0, and any point y E D(x), there exiit sequences 
X n’ + x, t,’ E R+ such that ,o(xn , xn’) < 6, , x,‘tll’ + y. 

For the map J, we need a slightly stronger condition given in the following 
Proposition. Its proof is similar to that of Proposition 7.6. 

7.9. PROPOSITION. If J is LSC at x, then for any x, -+ x, 6, > 0, y E J(x), 
t, T co, there exist xn’ + x, t,’ 2 t, such that p(xn , xn’) < 6, and xn’t,’ -+ y. 
Just as Proposition 7.7 we have 

7.10. PROPOSITION. Let D be USC on X. Iffor any x, + x, 6, > 0, t, t co, 
y E J(x), there exist xn’ + x, t,’ > t, such that p(xn , xn’) < 6, , x,‘t,,’ -j y, 
then J is LSC at x. 

Combining Propositions 7.9 and 7.10 we have 

7.11. THEOREM. Let D be USC on X. Then J is LSC at x if and only ;ffor 
any x,+x, t, T co, y E J(x), 6,, > 0, there exist x,’ -+ x, t,’ > t, such that 

Pb7 , Xn') < 6, xn't,' + y. 

In Propositions 7.7 and 7.10 we assumed upper semicontinuity of the map D 
in order to show the lower semicontinuity of the maps D and J. The following 
example shows that Propositions 7.7 and 7.10 do not hold without assuming 
upper semicontinuity of the map D. 

7.12. EXAMPLE. Let 

X = {(x, y) E R2 ( x < 0, 0 < Y < 1) 

-{(x, y) E R2 : -1 < x < 0, y = (h)“, n = 0, l...> 

-{(x, y) E R2 : -1 <x<O,y=O} 

with the usual topology of R2. 
The set of critical points consists of {(x, y) E R2 : x = -1, y = (#“, 

~=O,1...}u{(--1,0)}u{(x,y)~R~:~=0,O~y~1,y#(Q)~,~=0,1...}. 
The phase portrait is given in Fig. 7.3. The flow is parallel in the direction 
indicated. Letp = (-1, O),fi, = (-l,(-Q”),n = 1, 2 ,... .ThenD(j,) ={j,}, 

D(P) = {P> u ((0, 0)) = J(P)- Thus D is not LSC at p. On the other hand 
for any p, + p, 6, > 0, p E D(p), p,‘t,’ + p where p,’ = p, , t,’ = 0, or for 

any P, -+ p, 6, > 0, (0, 0) E D(p) there existp,’ , t,’ t co such that p(pR , p,‘) < 
6, , p,’ 4 ((x, y) E R2 : y = (&)k, K = 0, l,... > u {(x, y) E R2 : y = 0) with 
p,,‘t,’ + (0, 0). Similarly the map J is not LSC at p. However for any p, -+ p, 

505/23/2-2 
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6, > 0, p E J(p) (or (0, 0) E j(p)), t, f CO, there exist p,’ -p, t,’ > tn such 

that P(P~‘, PA < 6, , P,‘L -P (or (0, ON. 

.--------------- 

. 

. 
.---------- ---- 

. 

. 

. 

. 

.--mm------- ---_ 

. 

. 
.--- ------------ 

.----------------T 

. -------- _____ ---2 
. ..--- ----_____ ----• 

P (0.0) 

FIGURE 7.3 

Finally we give the following proposition, which is similar to Proposition 3.1. 
The proof is similar to that of Proposition 3.4. 

7.13. PROPOSITION. 1jD(x) = K(x)& x, then D is LSC at X. 

7.14. COROLLARY. If K(x) is stable, then D is LSC at x. Moreover if T is 
stable, then D is continuous on X. 

The following example shows that the converse of Corollary 7.14 is not true in 
general. 

. 

. 

P(X,Y) 
. 
. 

. . . . . . . . . . . . . . . . . . . 
(-1.0) (0.0) 

. 

. 

. 
FIGURE 1.4 
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7.15. EXAMPLE. The phase space X is given by ((x, y) E R2 : x < 0) with 

the usual topology of R2. The set 

((x, y) E Ra : -1 < x < 0, y = 0} u {(x, y) E R2 : x = 01 

consists of critical points. The remaining Aow is parallel in the direction 

indicated. For any point p = (x, y), y # 0, D(p) = ((x’, y’) : y’ = y, 
x < x’ < 01. Obviously II is continuous on X. However for any q = (x, 0), 

-1 < x < 0, K(q) = {q} is not stable. 
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