JOURNAL OF MULTIVARIATE ANALYSIS 37, 1-23 (1991)

# White Noise Approach to Multiparameter Stochastic Integration

## Mylan Redfern

University of Southern Mississippi

Communicated by the Editors

In this paper we will set up the Hida theory of generalized Wiener functionals using  $\mathscr{S}^*(\mathbb{R}^d)$ , the space of tempered distributions on  $\mathbb{R}^d$ , and apply the theory to multiparameter stochastic integration. With the partial ordering on  $\mathbb{R}^d_+$ :  $(s_1, ..., s_d) < (t_1, ..., t_d)$  if  $s_i < t_i$ ,  $1 \le i \le d$ , the Wiener process

 $W((t_1, ..., t_d), x) = \langle x, 1_{[0, t_1] \times \cdots \times [0, t_d]} \rangle, x \in \mathscr{S}^*(\mathbb{R}^d)$ 

is a generalization of a Brownian motion and there is the Wiener-Ito decomposition:  $L^2(\mathscr{S}^*(\mathbb{R}^d)) = \sum_{n=0}^{\infty} \bigoplus K_n$ , where  $K_n$  is the space of *n*-tuple Wiener integrals. As in the one-dimensional case, there are the continuous inclusions

$$(L^2)^+ \subset L^2(\mathscr{S}^*(\mathbb{R}^d)) \subset (L^2)^-,$$

and  $(L^2)^-$  is considered the space of generalized Wiener functionals. We prove that the multidimensional Ito stochastic integral is a special case of an element of  $(L^2)^-$ . For d=2 the Ito integral is not sufficient for representing elements of  $L^2(\mathscr{S}^*(\mathbb{R}^2))$ . We show that the other stochastic integral involved can also be realized in the Hida setting. For  $F \in \mathscr{S}^*(\mathbb{R})$  we will define F(W(s, t), x) as an element of  $(L^2)^-$  and obtain a generalized Ito formula.  $\square$  1991 Academic Press, Inc.

## 1. INTRODUCTION

Using the Hida theory of generalized Brownian functionals, Kubo and Takenaka in [9], have shown that for a nonanticipating process  $\varphi$  such that  $E \int_{a}^{b} |\varphi(t, \omega)|^2 dt < \infty$ ,

$$\int_a^b \varphi(t,\,\omega)\,dB(t,\,\omega) = \int_a^b \partial_t^*\,\varphi(t)\,dt,$$

where the integral on the left is the Ito stochastic integral with respect to the Brownian motion  $B(t, \omega)$ . In [8] Kubo defined the composition

Received October 13, 1988; revised September 21, 1990.

AMS 1980 subject classifications: 60H05, 60H20, 60J65.

Key words and phrases: Hida theory, multiparameter, stochastic integral, Ito formula.

F(B(t)), t > 0, for the tempered distribution F and obtained an Ito formula for these generalized Brownian functionals:

$$F(B(b)) - F(B(a)) = \int_a^b \partial_t^* F'(B(t)) dt + \frac{1}{2} \int_a^b F''(B(t)) dt.$$

The purpose of this paper is to set up the Hida theory on  $\mathscr{S}^*(\mathbb{R}^d)$  for d > 1 and exhibit an Ito formula for the generalized Wiener functional  $F(W(s, t)), (s, t) \in \mathbb{R}^2_+$ , where W is a two-dimensional parameter Wiener process and  $F \in \mathscr{S}^*(\mathbb{R})$ . Towards this end we will show that

$$\int_{[a,b]^d} \varphi(\mathbf{t},\omega) \, dW(\mathbf{t},\omega) = \int_{[a,b]^d} \partial_t^* \varphi(\mathbf{t}) \, d\mathbf{t}.$$

Here the integral on the left is the *d*-dimensional Ito integral. In dimension two another stochastic integral,  $[\int_{[a,b]^2 \times [a,b]^2} \varphi(\mathbf{z}, \mathbf{z}', \omega) dW(\mathbf{z}) dW(\mathbf{z}')$ , defined by Wong and Zakai [13], is required for the Ito formula. This integral exists provided

(1)  $\varphi$  is measurable with respect to the  $\sigma$ -field generated by  $\{W(\mathbf{u})\}$ ;  $(a, a) < \mathbf{u} < \mathbf{z} \vee \mathbf{z}'\}$ , and

(2) 
$$E \int_{[a,b]^2} \int_{[a,b]^2} |\varphi(\mathbf{z},\mathbf{z}',\omega)|^2 d\mathbf{z} d\mathbf{z}' < \infty.$$

We will show that

$$\begin{bmatrix} \int_{[a,b]^2 \times [a,b]^2} \\ \varphi(\mathbf{z}, \mathbf{z}', \omega) \, dW(\mathbf{z}) \, dW(\mathbf{z}') \\ = \int_{[a,b]^2} \int_{[a,b]^2} \partial_{\mathbf{z}'}^* \partial_{\mathbf{z}}^* \mathbf{1}_G(\mathbf{z}, \mathbf{z}') \, \varphi(\mathbf{z}, \mathbf{z}') \, d\mathbf{z} \, d\mathbf{z}',$$

where  $G = \{\mathbf{z}, \mathbf{z}' \in [a, b]^2; \mathbf{z} \text{ and } \mathbf{z}' \text{ are unordered} \}.$ 

Finally we will prove the Ito formula: For  $0 < a_1 < b_1$  and  $0 < a_2 < b_2$ ,

$$F(W(b_1, b_2)) - F(W(b_1, a_2)) - (F(W(a_1, b_2)) - F(W(a_1, a_2)))$$

$$= \int_{a_2}^{b_2} \int_{a_1}^{b_1} \partial_{(s,t)}^* F'(W(s, t)) \, ds \, dt$$

$$+ \frac{1}{2} \left[ \int_{0}^{b_2} \int_{0}^{b_1} \int_{0}^{b_2} \int_{0}^{b_1} - \int_{0}^{a_2} \int_{0}^{b_1} \int_{0}^{a_2} \int_{0}^{b_1} \right]$$

$$+ \int_{0}^{a_2} \int_{0}^{a_1} \int_{0}^{a_2} \int_{0}^{a_1} - \int_{0}^{b_2} \int_{0}^{a_1} \int_{0}^{b_2} \int_{0}^{a_1} \int_{0}^{a_2} \int_{0}^{a_1} \int_{0}^{a_1} \int_{0}^{a_2} \int_{0}^{a_1} \int_{0}^{a_1}$$

$$+\frac{b_1}{2}\int_{a_2}^{b_2} F''(W(b_1,t)) dt - \frac{a_1}{2}\int_{a_2}^{b_2} F''(W(a_1,t)) dt$$
$$+\int_{a_1}^{b_1} \left[\int_{a_2}^{b_2}\int_0^u \partial^*_{(s,t)} \frac{t}{2}F'''W(u,t)\right) ds dt \left] du.$$

Section 1 develops the parts of the multidimensional Hida theory which are pertinent to our work. We will define the space of generalized Wiener functionals  $(L^2)^-$  and the operators  $\partial_t$  and  $\partial_t^*$ . In Section 2 we will recall the definitions of the *d*-dimensional Ito stochastic integral and the Wong-Zakai integral. We show in Section 3 that both these integrals can be realized in the Hida setting. Section 4 includes the definition of F(W(t)) and the proof of the Ito formula.

## 2. THE HIDA THEORY OF GENERALIZED WIENER FUNCTIONALS

Let  $\mathscr{G}(\mathbb{R}^d)$  be the Schwartz space of rapidly decreasing smooth real valued functions on  $\mathbb{R}^d$ . The dual space  $\mathscr{G}^*(\mathbb{R}^d)$  of  $\mathscr{G}(\mathbb{R}^d)$  consists of the tempered distributions. Thus we have the continuous inclusions  $\mathscr{G}(\mathbb{R}^d) \subset L^2(\mathbb{R}^d) \subset \mathscr{G}^*(\mathbb{R}^d)$ . The cannonical bilinear form connecting  $\mathscr{G}$  and  $\mathscr{G}^*$  will be denoted by  $\langle x, \xi \rangle$ ,  $x \in \mathscr{G}^*$  and  $\xi \in \mathscr{G}$ . Also,  $\mathscr{G}$  is a countably Hilbert nuclear space [7], i.e.,  $\mathscr{G}$  is topologized by a Family  $\{\|\cdot\|_p; p=1, 2, ...\}$  of Hilbertian norms with the following structure: Let  $\mathscr{G}_p$  be the completion of  $\mathscr{G}$  with respect to the norm  $\|\cdot\|_p$ . Then

$$\mathscr{G} = \bigcap_{p} \mathscr{G}_{p} \subset \cdots \mathscr{G}_{2} \subset \mathscr{G}_{1} \subset \mathscr{G}_{0} = L^{2}(\mathbb{R}^{d}) \subset \mathscr{G}_{1}^{*} \subset \mathscr{G}_{2}^{*} \subset \cdots \subset \bigcup_{p} \mathscr{G}_{p}^{*} = \mathscr{G}^{*},$$

where the inclusions  $\mathscr{G}_{p+1} \subset \mathscr{G}_p$  are Hilbert-Schmidt, and the inclusions  $\mathscr{G} \subset \mathscr{G}_p$  and  $\mathscr{G}_p^* \subset \mathscr{G}^*$  are continuous. For the *n*th Hermite polynomial  $H_n(x) = (-1)^n \exp(x^2) D_x^n \exp(-x^2)$ , let  $h_n(x) = (2^n n! \sqrt{\pi})^{-1/2}$  $H_n(x) \exp(-x^2/2)$ . Then  $\{h_n\}_{n=0}^{\infty}$  is a complete orthonormal system in  $L^2(\mathbb{R})$  and  $\{h_{n_1n_2...n_d}\}_{n_1,n_2,...,n_{d=0}}^{\infty}$ , where  $h_{n_1n_2...n_d}(t_1,...,t_d) = \prod_{i=1}^d h_{n_i}(t_i)$ , is a c.o.n.s. in  $L^2(\mathbb{R}^d)$ . Let us denote this basis by  $\{\xi_n\}_{n=0}^{\infty}$ . For  $f \in \mathscr{G}(\mathbb{R}^d)$  and p an integer,  $||f||_p^2 = \sum_{n=0}^{\infty} (2n+1)^{2p} (f, \xi_n)^2$ , the inner product on  $L^2(\mathbb{R}^d)$  being denoted by  $(\cdot, \cdot)$ . Note that  $\mathscr{G}_p = \{f \in L^2(\mathbb{R}^d) : ||f||_p < \infty\}$ . Also, it is true that  $\mathscr{G}_p^* = \mathscr{G}_{-p}$ .

The probability space  $(\mathscr{S}^*(\mathbb{R}^d), \mathscr{B}, \mu)$  determined by the characteristic functional  $C(\xi) = \exp(-\frac{1}{2} \|\xi\|^2)$  is called the *d*-dimensional white noise space. Here,  $\|\cdot\|$  is the  $L^2(\mathbb{R}^d)$  norm. For  $\xi \in \mathscr{S}$ , the random variable

 $\langle x, \xi \rangle$  on  $(\mathscr{S}^*(\mathbb{R}^d), \mathscr{B}, \mu)$  is normally distributed with mean 0 and variance  $\|\xi\|^2$ . Moreover, since  $\mathscr{S}(\mathbb{R}^d)$  is dense in  $L^2(\mathbb{R}^d)$ , if  $f \in L^2(\mathbb{R}^d)$ ,  $\langle \cdot, f \rangle$  is Gaussian with mean 0 and variance  $\|f\|^2$ . We thus have that  $\{\langle x, 1_A \rangle: A \text{ is a Borel subset of } \mathbb{R}^d \text{ with finite Lebesgue measure}\}$  is a normal random measure on  $(\mathscr{S}^*(\mathbb{R}^d), \mathscr{B}, \mu)$ .

For a positive integer d, set  $\mathbb{R}^d_+ = \{\mathbf{a} = (a_1, ..., a_d) \in \mathbb{R}^d : a_i \ge 0\}$  and denote by  $\mathbb{R}_{\mathbf{a}}$  the rectangle  $\prod_{i=1}^d [0, a_i[$ . For  $\mathbf{a} \in \mathbb{R}^d_+$  and  $x \in \mathscr{S}^*(\mathbb{R}^d)$ ,  $W(\mathbf{a}, x) = \langle x, 1_{\mathbb{R}_{\mathbf{a}}} \rangle$  is a Wiener process with d-dimensional time. For d = 1 we have the Brownian motion  $B(t, x) = \langle x, 1_{[0,t]} \rangle$ .

**THEOREM 1.** (Wiener-Ito decomposition).  $L^2(\mathscr{S}^*(\mathbb{R}^d))$  has the direct orthogonal decomposition  $L^2(\mathscr{S}^*(\mathbb{R}^d)) = \sum_{n=0}^{\infty} \bigoplus K_n$ , where  $K_0 = \mathbb{R}$  and for n > 1,  $K_n$  is the space of n-tuple Wiener integrals based on the normal random measure  $W_A = \langle x, 1_A \rangle$  mentioned above; i.e., each  $\varphi$  in  $K_n$  has the form

$$\varphi(x) := I_n(f) = \int_{(\mathbb{R}^d)^n} f(\mathbf{u}_1, ..., \mathbf{u}_n) \, dW(\mathbf{u}_1, x) \cdots dW(\mathbf{u}_n, x),$$

where  $f \in \hat{L}^2((\mathbb{R}^d)^n)$ : the  $L^2((\mathbb{R}^d)^n)$  functions which are symmetric in the  $\mathbf{u}_i$ 's. Moreover,  $(\varphi, \psi)_{L^2(\mathscr{S}^{\bullet}(\mathbb{R}^d))} = n!(f, g)_{L^2((\mathbb{R}^d)^n)}$ , where  $\psi \in K_n$  is the multiple Wiener integral of g.

For the proof of this theorem see Ito [6]. It is also shown there that if  $\{\eta_i\}_{i=1}^k$  is an orthonormal set in  $L^2(\mathbb{R}^d)$  and  $p_1 + \cdots + p_k = n$ , then

$$\int_{(\mathbb{R}^{d})^{n}} \eta_{1}(\mathbf{u}_{1}) \cdots \eta_{1}(\mathbf{u}_{p_{1}}) \eta_{2}(\mathbf{u}_{p_{1}+1}) \cdots \eta_{2}(\mathbf{u}_{p_{1}+p_{2}}) \cdots$$
$$\times \eta_{k}(\mathbf{u}_{p_{1}+\cdots+p_{k}-1}) \cdots \eta_{k}(\mathbf{u}_{n}) dW(\mathbf{u}_{1}) \cdots dW(\mathbf{u}_{n})$$
$$= (\sqrt{2})^{-n} \prod_{i=1}^{k} H_{p_{i}}\left(\int \eta_{i} dW/\sqrt{2}\right),$$

where  $H_{p_i}$  is the Hermite polynomial of degree  $p_i$ . This product is called a Fourier-Hermite polynomial of degree *n* based on  $\{\eta_i\}$ . Then for a c.o.n.s.  $\{\eta_i\}$  of  $L^2(\mathbb{R}^d)$ ,  $K_n$  is spanned by the Fourier-Hermite polynomials of degree *n* based on  $\{\eta_i\}$ . Note that for a Borel set *A* with finite Lebesgue measure  $\int_A dW(\mathbf{u}) = \langle x, 1_A \rangle$ . Thus, for  $f \in L^2(\mathbb{R}^d)$ ,  $\langle x, f \rangle = \int_{\mathbb{R}^d} f(\mathbf{u}) dW(\mathbf{u})$ .

In the Hida theory, functionals in  $L^2(\mathscr{G}^*(\mathbb{R}^d))$  are studied by means of a transformation to a space of functionals on  $\mathscr{G}(\mathbb{R}^d)$ . Once this transformation is made, the resulting functional has a very nice form which allows us to work in  $\sum_{n=0}^{\infty} \oplus \sqrt{n!} \hat{L}^2((\mathbb{R}^d)^n)$ .

DEFINITION 1. The S-transform on  $L^2(\mathscr{G}^*(\mathbb{R}^d))$  is defined by

$$(S\varphi)(\xi) = \int_{\mathscr{S}^*} \varphi(x+\xi) \, d\mu(x),$$

where  $\varphi \in L^2(\mathscr{S}^*(\mathbb{R}^d))$  and  $\xi \in \mathscr{S}$ .

The image of the S-transform is a space of functionals on  $\mathscr{S}$  and is topologized so as to make S a Hilbert space isomorphism, see [5]. Just as in the one-dimensional case, when restricted to  $K_n$ , the S-transform has a particularly simple form.

THEOREM 2 (Integral representation theorem). Suppose  $\varphi \in K_n$  is of the form

$$\varphi(x) = \int_{(\mathbb{R}^d)^n} f(\mathbf{u}_1, ..., \mathbf{u}_n) \, dW(\mathbf{u}_1, x) \cdots dW(\mathbf{u}_n, x),$$

with  $f \in \hat{L}^2((\mathbb{R}^d)^n)$ . Then

$$(S\varphi)(\xi) = \int_{(\mathbb{R}^d)^n} f(\mathbf{u}_1, ..., \mathbf{u}_n) \, \xi(\mathbf{u}_1) \cdots \xi(\mathbf{u}_n) \, d\mathbf{u}_1 \cdots d\mathbf{u}_n.$$

*Remark.* The proof is essentially that of the one-dimensional case found in [5] for the transformation  $\mathcal{T}$ .

Generalized Wiener functionals arise in the following way. For  $\alpha \in \mathbb{R}$ , let  $H^{\alpha}(\mathbb{R}^{nd})$  be the Sobolev space of order  $\alpha$  over  $\mathbb{R}^{nd}$ , i.e.,  $H^{\alpha}(\mathbb{R}^{nd}) = \{f \in \mathscr{S}^{\ast}(\mathbb{R}^{nd}): \int_{\mathbb{R}^{nd}} (1+|\lambda|^2)^{\alpha} |(\mathscr{F}f)(\lambda)|^2 d\lambda < \infty\}, \mathscr{F}$  being the Fourier transform. This is a Hilbert space with dual  $H^{-\alpha}(\mathbb{R}^{nd})$ .

Define  $K_n^{(n)}$  to be the elements of  $K_n$  which are *n*-tuple Wiener integrals of functions in  $\hat{H}^{(nd+1)/2}(\mathbb{R}^{nd})$ . Here  $\hat{H}^{(nd+1)/2}(\mathbb{R}^{nd}) = H^{(nd+1)/2}(\mathbb{R}^{nd}) \cap \hat{L}^2((\mathbb{R}^d)^n)$ . We then have



and  $K_n^{(-n)}$  is defined as the space of generalized *n*-tuple Wiener integrals of elements in  $\hat{H}^{-(nd+1)/2}(\mathbb{R}^{nd})$ . More precisely, for  $\varphi = I_n(f)$ ,  $f \in \hat{L}^2((\mathbb{R}^d)^n)$ , define  $|||\varphi||| = (\sqrt{n!}) ||f||_{\hat{H}^{-(nd+1)/2}(\mathbb{R}^{nd})}$  and let  $K_n^{(-n)}$  be the completion of  $K_n$  with respect to  $||| \cdot |||$ . We will write formally that for  $\varphi \in K_n^{(-n)}$ ,

$$\varphi(x) = I_n(f) = \int_{(\mathbb{R}^d)^n} f(\mathbf{u}_1, ..., \mathbf{u}_n) \, dW(\mathbf{u}_1, x) \cdots dW(\mathbf{u}_n, x),$$

where  $f \in \hat{H}^{-(nd+1)/2}(\mathbb{R}^{nd})$ .  $K_n^{(-n)}$  can be viewed as the dual of  $K_n^{(n)}$  with the pairing  $\langle \cdot, \cdot \rangle$ : For  $\varphi \in K_n^{(n)}$  represented by  $f \in \hat{H}^{(nd+1)/2}(\mathbb{R}^{nd})$  and  $\psi \in K_n^{(-n)}$  represented by  $g \in \hat{H}^{-(nd+1)/2}(\mathbb{R}^{nd})$ ,  $\langle \psi, \varphi \rangle = n! \langle g, f \rangle$ .

EXAMPLE 1. For  $H_n(x, \sigma^2) = (1/n!)(-\sigma^2)^n \exp(x^2/2\sigma^2) D_x^n \exp(-x^2/2\sigma^2)$ and  $\Delta = (\varepsilon, \varepsilon, ..., \varepsilon) \in \mathbb{R}^d_+$ , consider  $\varphi_{\Delta} = n! H_n[(1/\varepsilon^d) \langle x, 1_{[t,t+\Delta[} \rangle, 1/\varepsilon^d], n > 2$ , which is in  $K_n$ . In fact,  $\varphi_{\Delta}$  is the multiple Wiener integral of  $(1/(\varepsilon^d)^n)$  $1_{[t,t+\Delta[}(\mathbf{u}_1) \cdots 1_{[t,t+\Delta[}(\mathbf{u}_n)),$  where  $[t, t + \Delta[ = \{\mathbf{x} \in \mathbb{R}^d_+; t < \mathbf{x} < t + \Delta\}$ . Since  $\bigotimes_n (1/\varepsilon^d) 1_{[t,t+\Delta[} \to \bigotimes_n \delta_t \text{ in } \hat{H}^{-(nd+1)/2}(\mathbb{R}^{nd})$  as  $\varepsilon \to 0$ ,  $\lim_{\varepsilon \to 0} \varphi_{\Delta}$  is in  $K_n^{(-n)}$  and is represented by  $\bigotimes_n \delta_t$ . In particular, for n = 1,  $\lim_{\varepsilon \to 0} (1/\varepsilon^d) \langle x, 1_{[t,t+\Delta[} \rangle = I_1(\delta_t) \text{ is in } K_1^{(-1)}.$ 

Define  $(L^2)^+ = \sum_{n=0}^{\infty} \bigoplus K_n^{(n)}$  and  $(L^2)^- = \sum_{n=0}^{\infty} \bigoplus K_n^{(-n)}$ , where  $K_0^{(0)}$  is the real number system. Thus we have

$$(L^2)^+ \subset L^2(\mathscr{S}^*) \subset (L^2)^-.$$

 $(L^2)^+$  is called the space of test functionals and  $(L^2)^-$  is called the space of generalized functionals. For  $\varphi = \sum_{n=0}^{\infty} \varphi_n$  in  $(L^2)^-$  and  $\psi = \sum_{n=0}^{\infty} \psi_n$  in  $(L^2)^+$ ,  $\langle \varphi, \psi \rangle = \sum_{n=0}^{\infty} \langle \varphi_n, \psi_n \rangle$ . We can see that the S-transform extends to  $(L^2)^-$ .

In the Hida theory  $\{\dot{B}(t), t \in \mathbb{R}\} := \{\delta_t; t \in \mathbb{R}\}\$  is viewed as a coordinate system in  $\mathscr{S}^*$  so as to take time into account. Derivatives are then taken with respect to this coordinate system. This idea can be carried over to higher dimensions.

DEFINITION 2. Let U be the S-transform of  $\varphi \in (L^2)^-$ . Suppose the first variation of U at  $\xi$  is given by

$$(\delta U)_{\xi}(\eta) = \int_{\mathbb{R}^d} U'(\xi, \mathbf{u}) \, \eta(\mathbf{u}) \, d\mathbf{u}; \eta \in \mathscr{S}(\mathbb{R}^d).$$

If  $U'(\cdot, \mathbf{t})$  is an S-transform, then  $\partial_t \varphi$  is defined to be the generalized Wiener functional with S-transform  $U'(\cdot, \mathbf{t})$ , i.e.,

$$S(\partial_{\mathbf{t}}\varphi)(\xi) = U'(\xi, \mathbf{t}).$$

The adjoint  $\partial_t^*$  of  $\partial_t$  is defined by  $\langle \partial_t^* \psi, \varphi \rangle = \langle \psi, \partial_t \varphi \rangle$ ,  $\psi \in (L^2)^-$ ,  $\varphi \in (L^2)^+$ . Thus  $\partial_t$  is a linear operator whose domain is not all of  $(L^2)^-$ . The following, however, can easily be shown.

THEOREM 3. (A) For  $\varphi = \int_{(\mathbb{R}^d)^n} f(\mathbf{u}_1, ..., \mathbf{u}_n) dW(\mathbf{u}_1) \cdots dW(\mathbf{u}_n)$  in  $K_n^{(n)}$ ,

$$\partial_t \varphi = n \int_{(\mathbb{R}^d)^{n-1}} f(\mathbf{t}, \mathbf{u}_1, ..., \mathbf{u}_{n-1}) \, dW(\mathbf{u}_1) \cdots dW(\mathbf{u}_{n-1}).$$

(B) For 
$$\varphi = \int_{(\mathbb{R}^d)^n} f(\mathbf{u}_1, ..., \mathbf{u}_n) dW(\mathbf{u}_1) \cdots dW(\mathbf{u}_n)$$
 in  $K_n^{(-n)}$ ,  
 $\partial_t^* \varphi = \int_{(\mathbb{R}^d)^{n+1}} (\delta_t \otimes f)(\mathbf{u}_1, ..., \mathbf{u}_{n+1}) dW(\mathbf{u}_1) \cdots dW(\mathbf{u}_{n+1}).$ 

Here,  $\hat{\otimes}$  indicates symmetric tensor product. Consequently,

- (1)  $\partial_t : K_n^{(n)} \to K_{n-1}^{(n-1)}$  and  $\partial_t^* : K_n^{(-n)} \to K_{n+1}^{-(n+1)}$  and,
- (2) for  $\varphi = \sum_{n=0}^{\infty} \varphi_n$  in  $(L^2)^-$ ,

$$S(\partial_t^* \varphi)(\xi) = \sum_{n=0}^{\infty} S(\partial_t^* \varphi_n)(\xi) = \sum_{n=0}^{\infty} \xi(t) S\varphi_n(\xi) = \xi(t) S\varphi(\xi).$$

DEFINITION 3. Suppose  $\varphi(\tau) \in (L^2)^-$ ,  $\tau \in [a, b]^d$ , and it is true that

(1) For every  $\psi$  in  $(L^2)^+$ ,  $\tau \to \langle \varphi(\tau), \psi \rangle$  is measurable and integrable, and

(2)  $\psi \to \int_{[a,b]^d} \langle \varphi(\tau), \psi \rangle d\tau$  is a continuous linear functional on  $(L^2)^+$ .

Then  $\int_{[a,b]^d} \varphi(\tau) d\tau$  is defined as the element of  $(L^2)^-$  such that

$$\left\langle \int_{[a,b]^d} \varphi(\tau) d\tau, \psi \right\rangle = \int_{[a,b]^d} \langle \varphi(\tau), \psi \rangle d\tau,$$

where  $\psi \in (L^2)^+$ .

One can similarly define  $\int_{([a,b]^d)^n} \varphi(\mathbf{t}_1,\mathbf{t}_2,...,\mathbf{t}_n) d\mathbf{t}_1 d\mathbf{t}_2 \cdots d\mathbf{t}_n$ . These are just integrals of the Pettis type [3]. It is easy to show that if  $\int_{[a,b]^d} \|\varphi(\tau)\|_{-}^2 d\tau < \infty$ , then  $\int_{[a,b]^d} \varphi(\tau) d\tau$  exists and

$$\left\|\int_{[a,b]^d}\varphi(\tau)\,d\tau\right\|_{-}^2 \leq (b-a)^d \int_{[a,b]^d} \|\varphi(\tau)\|_{-}^2\,d\tau.$$

EXAMPLE 2. Suppose that  $\varphi(\mathbf{t}) = \int_{(\mathbb{R}^d)^n} f(\mathbf{t}, \mathbf{u}_1, ..., \mathbf{u}_n) dW(\mathbf{u}_1) \cdots dW(\mathbf{u}_n)$ , where f is in  $L^2(([a, b]^d \times (\mathbb{R}^d)^n))$ . The proof of existence of  $\int_{[a, b]^d} \partial_t^* \varphi(\mathbf{t}) d\mathbf{t}$ and the calculation of its value goes as follows:

$$\partial_t^* \varphi(\mathbf{t}) = \int_{(\mathbb{R}^d)^{n+1}} (\delta_t \widehat{\otimes} f(\mathbf{t}))(\mathbf{u}_1, ..., \mathbf{u}_{n+1}) \, dW(\mathbf{u}_1) \cdots dW(\mathbf{u}_{n+1})$$

and

$$\int_{[a,b]^d} \|\partial_t^* \varphi(t)\|_{-}^2 dt = \int_{[a,b]^d} (n+1)! \|\delta_t \widehat{\otimes} f(t)\|_{-}^2 dt.$$

But,

$$\begin{split} \|\delta_{\mathbf{t}} \widehat{\otimes} f(\mathbf{t})\|_{-}^{2} &= \int_{\mathbb{R}^{d(n+1)}} \frac{|\mathscr{F}(\delta_{\mathbf{t}} \widehat{\otimes} f(\mathbf{t}))(\lambda)|^{2}}{(1+|\lambda|^{2})^{(d(n+1)+1)/2}} d\lambda \\ &= \int_{\mathbb{R}^{d(n+1)}} \frac{|\exp(-2\pi i(\lambda_{1},...,\lambda_{d})\cdot\mathbf{t}) \mathscr{F}(f(\mathbf{t}))(\lambda_{d+1},...,\lambda_{nd+d})|^{2}}{(1+|\lambda|^{2})^{((n+1)d+1)/2}} d\lambda \\ &= \int_{\mathbb{R}^{d(n+1)}} \frac{|\mathscr{F}(f(\mathbf{t}))(\lambda_{d+1},...,\lambda_{nd+d})|^{2}}{(1+|\lambda|^{2})^{((n+1)d+1)/2}} d\lambda \\ &\leqslant \operatorname{const} \times \int_{(\mathbb{R}^{d})^{n}} \frac{|\mathscr{F}(f(\mathbf{t}))(\lambda_{1},...,\lambda_{nd})|^{2}}{(1+|\lambda|^{2})^{(nd+1)/2}} d\lambda \\ &= \operatorname{const} \times \|\varphi(\mathbf{t})\|_{-}^{2}. \end{split}$$

Thus,

$$\int_{[a,b]^d} \|\delta_{\mathbf{t}} \widehat{\otimes} f(\mathbf{t})\|_{-}^2 d\mathbf{t} < \infty$$

and  $\int_{[a,b]^d} \partial_t^* \varphi(t) dt$  exists. Furthermore, we have that

$$S\left(\int_{[a,b]^d} \partial_t^* \varphi(\mathbf{t}) d\mathbf{t}\right) (\xi)$$
  
=  $\int_{[a,b]^d} S(\partial_t^* \varphi(\mathbf{t}))(\xi) d\mathbf{t} = \int_{[a,b]^d} \xi(\mathbf{t}) S(\varphi(\mathbf{t}))(\xi) d\mathbf{t}$   
=  $\int_{[a,b]^d} \xi(\mathbf{t}) \int_{(\mathbb{R}^d)^n} f(\mathbf{t}, \mathbf{u}_1, ..., \mathbf{u}_n) \xi(\mathbf{u}_1) \cdots \xi(\mathbf{u}_n) d\mathbf{u}_1 \cdots d\mathbf{u}_n d\mathbf{t}$   
=  $\int_{(\mathbb{R}^d)^{n+1}} 1_{[a,b]^d} (\mathbf{t}) f(\mathbf{t}, \mathbf{u}_1, ..., \mathbf{u}_n) \xi(\mathbf{t}) \xi(\mathbf{u}_1) \cdots \xi(\mathbf{u}_n) d\mathbf{t} d\mathbf{u}_1 \cdots d\mathbf{u}_n.$ 

Letting  $h(\mathbf{u}_1, ..., \mathbf{u}_{n+1})$  be the symmetrization of  $1_{[a,b]^d}(\mathbf{u}_1) f(\mathbf{u}_1, ..., \mathbf{u}_{n+1})$ , we then have that

$$\int_{[a,b]^d} S(\partial_t^* \varphi(t))(\xi) dt$$
  
=  $\int_{(\mathbb{R}^d)^{n+1}} h(\mathbf{u}_1, ..., \mathbf{u}_{n+1}) \xi(\mathbf{u}_1) \cdots \xi(\mathbf{u}_{n+1}) d\mathbf{u}_1 \cdots d\mathbf{u}_{n+1}$   
=  $S\left[\int_{(\mathbb{R}^d)^{n+1}} h(\mathbf{u}_1, ..., \mathbf{u}_{n+1}) dW(\mathbf{u}_1) \cdots dW(\mathbf{u}_{n+1})\right](\xi).$ 

Hence,

$$\int_{[a,b]^d} \partial_t^* \varphi(\mathbf{t}) d\mathbf{t} = \int_{(\mathbb{R}^d)^{n+1}} h(\mathbf{u}_1, ..., \mathbf{u}_{n+1}) dW(\mathbf{u}_1) \cdots dW(\mathbf{u}_{n+1}).$$

## 3. STOCHASTIC INTEGRALS OF PROCESSES WITH MULTIDIMENSIONAL TIME PARAMETER

Let < be the partial ordering on  $\mathbb{R}^d_+$  where  $(x_1, ..., x_d) < (y_1, ..., y_d)$  if and only if  $x_i \leq y_i$ ;  $1 \leq i \leq d$ . Assume  $\{W(\mathbf{t}, \omega); \mathbf{t} \in \mathbb{R}^d_+\}$  is a Wiener process on a probability space  $\{\Omega, \mathcal{F}, P\}$  and denote by  $\mathcal{F}_{\mathbf{a}}$  the  $\sigma$ -field generated by  $\{W(\mathbf{t}); \mathbf{t} < \mathbf{a}\}$ .

Let  $T = [a, b] \subset \mathbb{R}^1_+$  and consider the Wiener process  $\{W(\mathbf{t}); \mathcal{F}_{\mathbf{t}}, \mathbf{t} \in T^d\}$ . Cairoli [1] defined the following Ito-type stochastic integral for d=2 which extends to any d>2. Assume  $\varphi(\mathbf{t}, \omega)$  satisfies the following conditions:

(1)  $\varphi(\mathbf{t}, \omega)$  is a bimeasurable function of  $(\mathbf{t}, \omega)$  with respect to  $\mathscr{G} \otimes \mathscr{F}$ , where  $\mathscr{G}$  denotes the  $\sigma$ -field of Borel sets in  $T^d$ .

(2) For each  $t \in T^d$ ,  $\varphi(t, \omega)$  is  $\mathscr{F}_t$ -measurable. In this case  $\varphi$  is said to be non-anticipating.

(3) 
$$\int_{T^d} E\varphi^2(\mathbf{t},\omega) d\mathbf{t} < \infty$$
.

First suppose that  $\varphi$  is simple, i.e.,  $\varphi(\mathbf{t}, \omega) = \varphi_v(\omega)$ ,  $\mathbf{t} \in \Delta_v$ , v = 1, 2, ..., k, and  $\varphi = 0$  elsewhere, and that  $\Delta_v$  are disjoint rectangles  $\Delta_v = \prod_{i=1}^{d} [a_i^v, b_i^v] \subset T^d$ . Then the Ito integral of  $\varphi$  is

$$\int_{T^d} \varphi(\mathbf{t}, \omega) \, dW(\mathbf{t}, \omega) := \sum_{v} \varphi_v(\omega) \, \varDelta_v \, W(\omega),$$

where for a rectangle  $\Delta = \prod_{i=1}^{d} [a_i, b_i[, \Delta W(\omega) = \sum_{\mathbf{x}} (-1)^{\pi(t)} W(\mathbf{t}, \omega)]$ , the sum being taken over the  $2^d$  vertices  $\{\mathbf{t}; t_i = a_i \text{ or } b_i\}$  and  $\pi(\mathbf{t})$  is the number of  $b_i$ 's in t. The definition of  $\int_{T^d} \varphi(\mathbf{t}) dW(\mathbf{t})$  is then extended to non-simple  $\varphi$  by a standard completion argument.

Wong and Zakai [13] have defined a second type of stochastic integral which we will now describe. Both of these are necessary to represent elements of  $L^2(\mathscr{S}^*(\mathbb{R}^2))$ .

For (s, t),  $(u, v) \in T^2$  we will use  $(s, t) \vee (u, v)$  to denote  $(\max\{s, u\}, \max\{v, t\})$ . Let  $G = \{(\mathbf{z}, \mathbf{z}') \in T^2 \times T^2; \mathbf{z} \text{ and } \mathbf{z}' \text{ are unordered}\}$ . Suppose that  $\psi(\omega, \mathbf{z}, \mathbf{z}')$  is a function defined on  $\Omega \times T^2 \times T^2$  satisfying

(1)  $\psi(\omega, \mathbf{z}, \mathbf{z}')$  is jointly measurable with respect to  $\mathscr{F} \otimes \mathscr{G} \otimes \mathscr{G}$ .

(2) For each  $\mathbf{z}, \mathbf{z}' \in T^2$ , the function  $\psi(\omega, \mathbf{z}, \mathbf{z}')$  is measurable with respect to  $\mathscr{F}_{\mathbf{z} \vee \mathbf{z}'}$ .

(3) 
$$E \int_{T^2 \times T^2} \psi^2(\mathbf{z}, \mathbf{z}') d\mathbf{z} d\mathbf{z}' < \infty$$
.

Assume that  $\psi(\omega, \mathbf{z}, \mathbf{z}')$  is simple:  $\psi(\omega, \mathbf{z}, \mathbf{z}') = \alpha(\omega)$  for  $\mathbf{z} \in \Delta_1$  and  $\mathbf{z}' \in \Delta_2$ and zero elsewhere. For n = 1, 2, ..., partition T into segments of length  $(b-a)/2^n$  and let  $P_n$  be the partition induced on  $T^2$ , with partition points  $\{\mathbf{z}_{ij}\}_{i,j=1}^{2^n-1}$ , and let  $\Delta_{ij} = [\mathbf{z}_{ij}, \mathbf{z}_{i+1,j+1}]$ . For  $\Delta_{ij} W = W(\mathbf{z}_{i+1,j+1}) - W(\mathbf{z}_{i+1,j}) + W(\mathbf{z}_{ij}) - W(\mathbf{z}_{i,j+1})$ , define

$$I_{2}^{n}(\psi) = \sum_{\substack{i, j=1\\k, m=1}}^{2^{n}-1} \psi(\mathbf{z}_{ij}, \mathbf{z}_{km}) \, 1_{G}(\mathbf{z}_{ij}, \mathbf{z}_{km}) \, \varDelta_{ij} \, W \varDelta_{km} \, W.$$

It is shown in [13], that  $I_2^n(\psi)$  converges in  $L^2(\Omega)$  as  $n \to \infty$ . The integral is then defined to be this limit:

$$\left[\int_{T^2 \times T^2}\right] \psi(\mathbf{z}, \mathbf{z}') \, dW(\mathbf{z}) \, dW(\mathbf{z}') := \liminf_{n \to \infty} \operatorname{q.m.} I_2^n(\psi).$$

Note that if  $\Delta_1 \times \Delta_2 \subset G$ , then  $I_2(\psi) = \alpha \Delta_1 W \Delta_2 W$ . The definition can now be extended to all functions satisfying the above conditions by approximating with linear combinations of simple functions.

## 4. STOCHASTIC INTEGRALS USING THE HIDA THEORY

For a non-anticipating process  $\varphi(t, x)$ ,  $t \in [a, b] \subset \mathbb{R}^1_+$  and  $x \in \mathscr{S}^*(\mathbb{R})$ , such that  $E \int_a^b |\varphi(t)|^2 dt < \infty$ , the Ito integral  $\int_a^b \varphi(t, x) dB(t, x)$  with respect to the Brownian motion  $B(t, x) = \langle x, 1_{[0,t]} \rangle$  is defined, and Kubo and Takenaka [9] have shown that

$$\int_a^b \varphi(t, x) \, dB(t, x) = \int_a^b \partial_t^* \varphi(t) \, dt.$$

The result is also true for d-dimensional time, where B(t, x) is replaced with the Wiener process  $W(t, x) = \langle x, 1_{[0,t[} \rangle, t \in \mathbb{R}^d_+ \text{ and } x \in \mathscr{S}^*(\mathbb{R}^d)$ . The integral on the right, however, may exist whether or not  $\varphi$  is non-anticipating.

THEOREM 4. Suppose  $\varphi(\tau)$  is a stochastic process on  $L^2(\mathscr{S}^*)$  such that  $E \int_{[a,b]^d} |\varphi(\tau)|^2 d\tau < \infty$  and  $E \int_{[a,b]^d} \int_{[a,b]^d} |\partial_{\tau'}\varphi(\tau) \overline{\partial_{\tau}\varphi(\tau')}| d\tau d\tau' < \infty$ , then  $\int_{[a,b]^d} \partial_{\tau}^* \varphi(\tau) d\tau$  exists and  $E |\int_{[a,b]^d} \partial_{\tau}^* \varphi(\tau) d\tau|^2 = E \int_{[a,b]^d} |\varphi(\tau)|^2 d\tau + E \int_{[a,b]^2} \int_{[a,b]^2} \partial_{\tau'}\varphi(\tau) d\tau$  d $\tau'$ .

*Remark.* The proof of this theorem for the one-dimensional case can be found in [11] and it requires no change for higher dimensions.

THEOREM 5. If  $\varphi(\tau, x)$ ,  $\tau \in \mathbb{R}^d$ ,  $x \in \mathscr{S}^*(\mathbb{R}^d)$ , d > 1 is a nonanticipating process such that  $E \int_{[a,b]^d} |\varphi(\tau)|^2 d\tau < \infty$ , then

$$\int_{[a,b]^d} \varphi(\tau) \, dW(\tau) = \int_{[a,b]^d} \partial_{\tau}^* \varphi(\tau) \, d\tau,$$

where the integral on the left is the d-dimensional Ito integral.

Note. Since  $\varphi(\tau)$  is nonanticipating,  $E \int_{[a,b]^2} \int_{[a,b]^2} \partial_{\tau'} \varphi(\tau) \overline{\partial_{\tau} \varphi(\tau')} d\tau d\tau' = 0$  and we have that  $\int_{[a,b]^d} \partial_{\tau}^* \varphi(\tau) d\tau$  exists.

The proof of this theorem for d=1 hinges on being able to write a multiple Wiener integral as an iterated stochastic integral. This, of course, cannot be done in general for higher dimensions because < is not a linear ordering. We do, however, have the following

LEMMA 1. Let  $g(\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_{n+1}) = 1_{[(a,...,a)\mathbf{u}_{n+1}[^n}(\mathbf{u}_1, ..., \mathbf{u}_n) f(\mathbf{u}_{n+1}, \mathbf{u}_1, ..., \mathbf{u}_n)$ , where  $f \in L^2(([a, b]^d)^{n+1})$  and  $\hat{g}$  is the symmetrization of g. Then

$$\int_{([a,b]^d)^{n+1}} g(\mathbf{u}_1, ..., \mathbf{u}_{n+1}) \, dW(\mathbf{u}_1) \cdots dW(\mathbf{u}_{n+1})$$
  
=  $(n+1) \int_{[a,b]^d} \left[ \int_{[(a,...,a),\mathbf{u}_{n+1}[^n]} \hat{g}(\mathbf{u}_1, ..., \mathbf{u}_{n+1}) \times dW(\mathbf{u}_1) \cdots dW(\mathbf{u}_n) \right] dW(\mathbf{u}_{n+1}).$ 

*Proof.* Because of the cumbersome notation we prove the lemma only for d=2. By [6] we may assume that

$$f(\mathbf{u}_{n+1}, \mathbf{u}_1, ..., \mathbf{u}_n) = \mathbf{1}_{A_{n+1} \times A_1 \times \cdots \times A_n}(\mathbf{u}_{n+1}, \mathbf{u}_1, ..., \mathbf{u}_n),$$

where the  $A_i$ 's are disjoint rectangles in  $[a, b]^2$ . Let

$$D = \{(x, y); (x, y) \in [a, b]^2 \text{ and } x \leq y\}$$
  

$$D_i = [c_{i-1}, c_i[, \quad i = 1, ..., 2^m - 1, \text{ where } c_i = a + i(b-a)/2^m,$$
  

$$E_i = [c_i, b], \quad i = 1, ..., 2^m - 1.$$

Then  $\lim_{m\to\infty} \sum_{i=1}^{2^m-1} 1_{D_i \times E_i} = 1_D$ , and since

$$1_{[(a,a),(s,t)]^n}((x_1, y_1), ..., (x_n, y_n))$$
  
=  $1_D(x_1, s) \cdots 1_D(x_n, s) 1_D(y_1, t) \cdots 1_D(y_n, t),$ 

we have that, pointwise and in  $L^2([a, b]^2)^{n+1}$ ,  $g((x_1, y_1), ..., (x_n, y_n), (s, t))$ is the limit of  $\sum_{i_1,...,i_n,j_1,...,j_n} [\prod_{p=1}^n 1_{D_{i_p} \times E_{i_p}}(x_p, s) 1_{D_{j_p} \times E_{j_p}}(y_p, t)] 1_{A_1}(x_1, y_1) \cdots 1_{A_{n+1}}(s, t)$  or

$$\sum_{\substack{i_1,\ldots,i_n\\j_1,\ldots,j_n}} \left[ \prod_{k=1}^n 1_{(D_{i_k} \times D_{i_k}) \cap A_k}(x_k, y_k) \right] 1_{(E_{i_1} \times E_{j_1}) \cap \cdots \cap (E_{i_n} \times E_{j_n}) \cap A_{n+1}}(s, t).$$

For sets A and B, A < B indicates that for any x in A, x < y for every y in B. Note that  $(D_{i_k} \times D_{j_k}) \cap A_k < (E_{i_1} \times E_{j_1}) \cap \cdots \cap (E_{i_n} \times E_{j_n}) \cap A_{n+1}$  for k = 1, ..., n. Therefore, we can see that

$$g(\mathbf{u}_1, ..., \mathbf{u}_{n+1}) = \lim \sum_{\mathbf{z}_{i_1}, ..., \mathbf{z}_{i_{n+1}}} \mathbf{1}_{\mathcal{A}_{\mathbf{z}_{i_1}}}(\mathbf{u}_1) \cdots \mathbf{1}_{\mathcal{A}_{\mathbf{z}_{i_n}}}(\mathbf{u}_n) \mathbf{1}_{\mathcal{A}_{\mathbf{z}_{i_{n+1}}}}(\mathbf{u}_{n+1}),$$

where  $\mathbf{z}_{i_k}$  is the lower left-hand corner of  $\Delta_{\mathbf{z}_{i_k}}$ , all the rectangles  $\Delta_{\mathbf{z}_{i_1}}, ..., \Delta_{\mathbf{z}_{i_{n+1}}}$  are disjoint, and  $\Delta_{\mathbf{z}_{i_k}} < \Delta_{\mathbf{z}_{i_{n+1}}}$  for k = 1, ..., n. Let

$$h(\mathbf{u}_1, ..., \mathbf{u}_{n+1}) = \mathbf{1}_{A_{\mathbf{i}_1}}(\mathbf{u}_1) \cdots \mathbf{1}_{A_{\mathbf{i}_n}}(\mathbf{u}_n) \mathbf{1}_{A_{\mathbf{i}_{n+1}}}(\mathbf{u}_{n+1})$$

with the above conditions. Then

$$\hat{h}(\mathbf{u}_1, ..., \mathbf{u}_{n+1}) = \frac{1}{(n+1)!} \sum_{\pi} \mathbf{1}_{\mathcal{A}_{\mathbf{z}_{\pi(1)}}}(\mathbf{u}_1) \cdots \mathbf{1}_{\mathcal{A}_{\mathbf{z}_{\pi(n)}}}(\mathbf{u}_n) \mathbf{1}_{\mathcal{A}_{\mathbf{z}_{\pi(n+1)}}}(\mathbf{u}_{n+1})$$

and the multiple weiner integral

$$\int_{[(a,a),\mathbf{u}_{n+1}[^{n}]} \hat{h}(\mathbf{u}_{1},...,\mathbf{u}_{n+1}) dW(\mathbf{u}_{1}) \cdots dW(\mathbf{u}_{n})$$

$$= \frac{1}{(n+1)!} \mathbf{1}_{d_{\mathbf{z}_{n+1}}}(\mathbf{u}_{n+1}) n! \Delta_{\mathbf{z}_{1}} W \Delta_{\mathbf{z}_{2}} W \cdots \Delta_{\mathbf{z}_{n}} W$$

$$= \frac{1}{(n+1)} \Delta_{\mathbf{z}_{1}} W \cdots \Delta_{\mathbf{z}_{n}} W \mathbf{1}_{d_{\mathbf{z}_{n+1}}}(\mathbf{u}_{n+1})$$

is measurable with respect to  $\mathscr{F}(W(\mathbf{u}_{n+1}))$  and in  $L^2([a, b]^2 \times \mathscr{S}^*)$ . We then have the iterated stochastic integral

$$(n+1)\int_{[a,b]^2} \left[ \int_{[(a,a),\mathbf{u}_{n+1}[^n} \hat{h}(\mathbf{u}_1, ..., \mathbf{u}_{n+1}) \, dW(\mathbf{u}_1) \cdots dW(\mathbf{u}_n) \right] dW(\mathbf{u}_{n+1})$$
  
=  $(n+1) \int_{[a,b]^2} \left[ \frac{1}{(n+1)} \, \Delta_{\mathbf{z}_1} W \cdots \Delta_{\mathbf{z}_n} W \mathbf{1}_{\mathbf{d}_{\mathbf{z}_{n+1}}}(\mathbf{u}_{n+1}) \right] dW(\mathbf{u}_{n+1})$   
=  $\Delta_{\mathbf{z}_1} W \cdots \Delta_{\mathbf{z}_n} W \Delta_{\mathbf{z}_{n+1}} W$   
=  $\int_{([a,b]^2)^{n+1}} h(\mathbf{u}_1, ..., \mathbf{u}_{n+1}) \, dW(\mathbf{u}_1) \cdots dW(\mathbf{u}_{n+1}).$ 

We now have that the result holds for functions of the form h and thus sums of such functions. By taking limits, we get the general result.

**Proof of Theorem 5.** By the Wiener-Ito decomposition of  $L^2(\mathscr{S}^*(\mathbb{R}^d))$ , it suffices to assume that  $\varphi(\tau)$  is a multiple Wiener integral. Let  $T = [a, b]^d$  and suppose

$$\varphi(\tau) = \int_{(\mathbb{R}^d)^n} f(\tau; \mathbf{u}_1, ..., \mathbf{u}_n) \, dW(\mathbf{u}_1) \cdots dW(\mathbf{u}_n), \qquad f \in L^2(T \times (\mathbb{R}^d)^n).$$

Since  $\varphi(\tau)$  is nonanticipating,

$$\varphi(\mathbf{\tau}) = \int_{[(a,...,a),\,\mathbf{\tau}[^n]} f(\mathbf{\tau};\,\mathbf{u}_1,\,...,\,\mathbf{u}_n)\,dW(\mathbf{u}_1)\cdots dW(\mathbf{u}_n).$$

Let  $g(\mathbf{u}_1, ..., \mathbf{u}_n, \tau) = \mathbb{1}_{[(a, ..., a), \tau[^n} (\mathbf{u}_1, ..., \mathbf{u}_n) f(\tau, \mathbf{u}_1, ..., \mathbf{u}_n)$ . Then

$$\int_{T} \partial_{\tau}^{*} \varphi(\tau) d\tau$$

$$= \int_{(T)^{n+1}} \hat{g}(\mathbf{u}_{1}, ..., \mathbf{u}_{n}, \tau) dW(\mathbf{u}_{1}) \cdots dW(\mathbf{u}_{n}) dW(\tau)$$

$$= (n+1) \int_{T} \left[ \int_{[(a,...,a),\tau[^{n}]} \hat{g}(\mathbf{u}_{1}, ..., \mathbf{u}_{n}, \tau) dW(\mathbf{u}_{1}) \cdots dW(\mathbf{u}_{n}) \right] dW(\tau).$$

But for  $\mathbf{u}_1 < \tau, ..., \mathbf{u}_n < \tau$ ,

$$\hat{g}(\mathbf{u}_1, ..., \mathbf{u}_n, \tau) = \frac{1}{(n+1)!} \sum_{\pi_{1,...,n}} f(\tau, \mathbf{u}_{\pi(1)}, ..., \mathbf{u}_{\pi(n)})$$
$$= \frac{1}{(n+1)!} n! \hat{f}(\tau; \mathbf{u}_1, ..., \mathbf{u}_n)$$

(where  $\hat{f}$  is the symmetrization of f in the variables  $\mathbf{u}_1, ..., \mathbf{u}_n$ ). Therefore,

$$\int_{T} \partial_{\tau}^{*} \varphi(\tau) d\tau = \int_{T} \left[ \int_{[(a,...,a),\tau[^{n}]} f(\tau, \mathbf{u}_{1}, ..., \mathbf{u}_{n}) dW(\mathbf{u}_{1}) dW(\mathbf{u}_{n}) \right] dW(\tau)$$
$$= \int_{[a,b]^{d}} \varphi(\tau) dW(\tau).$$

We will next consider the integral defined by Wong and Zakai [13]. This integral requires measurability with respect to  $\mathscr{F}_{z \vee z'}$  for  $z, z' \in [a, b]^2$ . We show that it also can be expressed in the white noise setting. We first, however, consider the existence of  $\int_{(\lfloor [a,b]^2)^2} \partial_{z'}^* \partial_{z}^* \varphi(z,z') dz dz'$ , where  $\varphi(z,z')$  may not be measurable with respect to  $\mathscr{F}_{z \vee z'}$ .

THEOREM 6. Let  $T = [a, b]^2$  and  $\varphi(\mathbf{z}, \mathbf{z}')$  be a stochastic process such that  $\int_{T^2} E |\varphi(\mathbf{z}, \mathbf{z}')|^2 d\mathbf{z} d\mathbf{z}' < \infty$ ,  $\int_{T^3} E |\partial_v \varphi(\mathbf{z}, \mathbf{z}')| (\overline{\partial_{\mathbf{z}'} \varphi(\mathbf{z}, \mathbf{v})} + \overline{\partial_{\mathbf{z}'} \varphi(\mathbf{v}, \mathbf{z})} + \overline{\partial_{\mathbf{z}'} \varphi(\mathbf{v}, \mathbf{z})} + \overline{\partial_{\mathbf{z}'} \varphi(\mathbf{v}, \mathbf{z})} + \overline{\partial_{\mathbf{z}'} \varphi(\mathbf{z}, \mathbf{v})}] d\mathbf{v} d\mathbf{z} d\mathbf{z}' < \infty$ , and  $\int_{T^4} E |\partial_u \partial_v \varphi(\mathbf{z}, \mathbf{z}') \overline{\partial_z \partial_{\mathbf{z}'} \varphi(\mathbf{u}, \mathbf{v})}| d\mathbf{v} d\mathbf{z} d\mathbf{z}' < \infty$ . Then  $\int_{T^2} \partial_{\mathbf{z}'}^2 \partial_{\mathbf{z}'}^2 \varphi(\mathbf{z}, \mathbf{z}') d\mathbf{z} d\mathbf{z}'$  exists and

$$E \left| \int_{T^2} \partial_{\mathbf{z}'}^* \partial_{\mathbf{z}}^* \varphi(\mathbf{z}, \mathbf{z}') \, d\mathbf{z} \, d\mathbf{z}' \right|^2 = \int_{T^2} E(|\varphi(\mathbf{z}, \mathbf{z}')|^2 + \varphi(\mathbf{z}, \mathbf{z}') \, \overline{\varphi(\mathbf{z}', \mathbf{z})}) \, d\mathbf{z} \, d\mathbf{z}'$$
$$+ \int_{T^3} E[\partial_{\mathbf{v}} \varphi(\mathbf{z}, \mathbf{z}') (\overline{\partial_{\mathbf{z}'} \varphi(\mathbf{z}, \mathbf{v})} + \overline{\partial_{\mathbf{z}'} \varphi(\mathbf{v}, \mathbf{z})})$$
$$+ \overline{\partial_{\mathbf{z}} \varphi(\mathbf{v}, \mathbf{z}')} + \overline{\partial_{\mathbf{z}} \varphi(\mathbf{z}', \mathbf{v})})] \, d\mathbf{v} \, d\mathbf{z} \, d\mathbf{z}'$$
$$+ \int_{T^4} E \, \partial_{\mathbf{u}} \partial_{\mathbf{v}} \varphi(\mathbf{z}, \mathbf{z}') \, \overline{\partial_{\mathbf{z}} \partial_{\mathbf{z}'} \varphi(\mathbf{u}, \mathbf{v})} \, d\mathbf{u} \, d\mathbf{v} \, d\mathbf{z} \, d\mathbf{z}'.$$

*Remark.* The idea for this proof is the same as for the one-dimensional case [11] but there are more cases to consider.

**THEOREM 7.** Given a jointly measurable function  $\varphi(x, \mathbf{z}, \mathbf{z}')$  on  $\mathscr{S}^*(\mathbb{R}^2) \times [a, b]^2 \times [a, b]^2$  such that

(1) For each pair  $\mathbf{z}, \mathbf{z}', \varphi(\mathbf{x}, \mathbf{z}, \mathbf{z}')$  is measurable with respect to  $\mathscr{F}_{\mathbf{z} \vee \mathbf{z}'}$ 

(2) 
$$E \int_{[a,b]^2} \int_{[a,b]^2} \varphi^2(\mathbf{z},\mathbf{z}') d\mathbf{z} d\mathbf{z}' < \infty$$

it follows that

$$\int_{[a,b]^2} \int_{[a,b]^2} \partial_{\mathbf{z}'}^* \partial_{\mathbf{z}}^* \mathbf{1}_G(\mathbf{z},\mathbf{z}') \, \varphi(\mathbf{z},\mathbf{z}') \, d\mathbf{z} \, d\mathbf{z}'$$
$$= \left[ \int_{[a,b]^2 \times [a,b]^2} \right] \varphi(\mathbf{z},\mathbf{z}') \, dW(\mathbf{z}) \, dW(\mathbf{z}')$$

Here  $G = \{(\mathbf{z}, \mathbf{z}') \in [a, b]^2 \times [a, b]^2 \text{ such that } \mathbf{z} \text{ and } \mathbf{z}' \text{ are unordered} \}$  and  $\left[\int_{[a,b]^2 \times [a,b]^2} denotes the Wong and Zakai integral.}\right]$ 

LEMMA 2. Let  $T = [a, b]^2$ . For  $f \in L^2(T^{n+2})$ , let

$$g(\mathbf{u}_1, ..., \mathbf{u}_n, \mathbf{z}, \mathbf{z}') = \mathbf{1}_{\lceil (a,a), \mathbf{z} \vee \mathbf{z}' \rceil^n} (\mathbf{u}_1, ..., \mathbf{u}_n) \mathbf{1}_G (\mathbf{z}, \mathbf{z}') f(\mathbf{z}, \mathbf{z}', \mathbf{u}_1, ..., \mathbf{u}_n)$$

Then,

$$\int_{T} \cdots \int_{T} \hat{g}(\mathbf{u}_{1}, ..., \mathbf{u}_{n}, \mathbf{z}, \mathbf{z}') dW(\mathbf{u}_{1}) \cdots dW(\mathbf{u}_{n}) dW(\mathbf{z}) dW(\mathbf{z}')$$

$$= \frac{(n+2)(n+1)}{2} \left[ \int_{T \times T} \right] \left( \int_{[(a,a), \mathbf{z} \vee \mathbf{z}']^{n}} \hat{g}(\mathbf{u}_{1}, ..., \mathbf{u}_{n}, \mathbf{z}, \mathbf{z}') \times dW(\mathbf{u}_{1}) \cdots dW(\mathbf{u}_{n}) \right) dW(\mathbf{z}) dW(\mathbf{z}').$$

Proof. As in Lemma 1 we may assume that

$$f(\mathbf{z}, \mathbf{z}', \mathbf{u}_1, ..., \mathbf{u}_n) = \mathbf{1}_{A_{n+2} \times A_{n+1} \times A_1 \times \cdots \times A_n} (\mathbf{z}, \mathbf{z}', \mathbf{u}_1, ..., \mathbf{u}_n),$$

where the  $A_i$ 's are disjoint rectangles in  $[a, b]^2$ .

Note that  $G = G_1 \cup G_2$ , where  $G_1 = \{((s, t), (s_1, t_1)) | s < s_1 \text{ and } t > t_1\}$ and  $G_2 = \{((s, t), (s_1, t_1)) | s > s_1 \text{ and } t < t_1\}$ . Let  $D = \{(x, s) | x < s\}$  and  $D' = \{(x, s) | x > s\}$ . Then

$$1_{G_1}((s, t), (s_1, t_1)) = 1_D(s, s_1) 1_{D'}(t, t_1)$$

and

$$1_{G_2}((s, t), (s_1, t_1)) = 1_{D'}(s, s_1) 1_D(t, t_1).$$

Let  $P_q = \{c_i\}$  be the partition of [a, b] in segments of length  $(b-a)/2^q$ ,  $D_i = [c_{i-1}, c_i]$ ,  $E_i = [c_i, b]$ ,  $E'_i = [a, c_i]$ , so that

$$1_D(s, s_1) = \lim_{q \to \infty} \sum 1_{D_i \times E_i}(s, s_1)$$
 and  $1_{D'}(t, t_1) = \lim_{q \to \infty} \sum 1_{D_i \times E_i'}(t, t_1)$ .

## Thus

$$1_{](a,a),(s,t) \vee (s_{1},t_{1})[^{n}((x_{1}, y_{1}), ..., (x_{n}, y_{n}) 1_{G}((s, t), (s_{1}, t_{1})))}$$

$$= 1_{[(a,a),(s,t) \vee (s_{1},t_{1})[^{n}((x_{1}, y_{1}), ..., (x_{n}, y_{n}) 1_{G_{1}}((s, t), (s_{1}, t_{1})))]$$

$$+ 1_{[(a,a),(s,t) \vee (s_{1},t_{1})[^{n}((x_{1}, y_{1}), ..., (x_{n}, y_{n}) 1_{G_{2}}((s, t), (s_{1}, t_{1}))]]$$

$$= 1_{[(a,a),(s_{1},t)[^{n}((x_{1}, y_{1}), ..., (x_{n}, y_{n}) 1_{G_{1}}((s, t), (s_{1}, t_{1}))]]]$$

$$+ 1_{[(a,a),(s,t_{1})[^{n}((x_{1}, y_{1}), ..., (x_{n}, y_{n}) 1_{G_{2}}((s, t), (s_{1}, t_{1}))]]]$$

$$= 1_{D}(x_{1}, s_{1}) \cdots 1_{D}(x_{n}, s_{1}) 1_{D}(y_{1}, t) \cdots 1_{D}(y_{n}, t) 1_{D'}(s, s_{1}) 1_{D'}(t, t_{1})]]$$

Substituting this formula into the definition of g, one sees that

$$g(\mathbf{u}_1, ..., \mathbf{u}_n, \mathbf{z}, \mathbf{z}') = \lim \sum_{i_1, ..., i_{n+2}} \mathbf{1}_{\mathcal{A}_{\mathbf{i}_{i_1}}}(\mathbf{u}_1) \cdots \mathbf{1}_{\mathcal{A}_{\mathbf{i}_{i_n}}}(\mathbf{u}_n) \mathbf{1}_{\mathcal{A}_{\mathbf{i}_{i_{n+1}}}}(\mathbf{z}) \mathbf{1}_{\mathcal{A}_{\mathbf{i}_{i_{n+2}}}}(\mathbf{z}'),$$

where  $\Delta_{\mathbf{z}_{i_1}}, ..., \Delta_{\mathbf{z}_{i_{n+2}}}$  are disjoint rectangles,  $\Lambda_{\mathbf{z}_{i_{n+1}}} \times \Lambda_{\mathbf{z}_{i_{n+2}}} \subset G$ , and  $\Delta_{\mathbf{z}_{i_k}} < \Delta_{\mathbf{z}_{i_{n+1}} \vee \mathbf{z}_{i_{n+2}}}$  for k = 1, ..., n. Consider

 $h(\mathbf{u}_1, ..., \mathbf{u}_n, \mathbf{z}, \mathbf{z}') = \mathbf{1}_{\mathcal{A}_{\mathbf{z}_1}}(\mathbf{u}_1) \cdots \mathbf{1}_{\mathcal{A}_{\mathbf{z}_n}}(\mathbf{u}_n) \mathbf{1}_{\mathcal{A}_{\mathbf{z}_{n+1}}}(\mathbf{z}) \mathbf{1}_{\mathcal{A}_{\mathbf{z}_{n+2}}}(\mathbf{z}')$ 

with the above conditions. We obtain that

$$\begin{split} \int_{[(a,a),\mathbf{z} \vee \mathbf{z}']^n} \hat{h}(\mathbf{u}_1, ..., \mathbf{u}_n, \mathbf{z}, \mathbf{z}') dW(\mathbf{u}_1) \cdots dW(\mathbf{u}_n) \\ &= \int_{T^n} \mathbf{1}_{[(a,a),\mathbf{z} \vee \mathbf{z}']^n} (\mathbf{u}_1, ... \mathbf{u}_n) \frac{1}{(n+2)!} \\ &\times \sum_{\pi} \mathbf{1}_{d_{\mathbf{z}_{\pi(1)}}} (\mathbf{u}_1) \cdots \mathbf{1}_{d_{\mathbf{z}_{\pi(n+1)}}} (\mathbf{z}) \mathbf{1}_{d_{\mathbf{z}_{\pi(n+2)}}} (\mathbf{z}') dW(\mathbf{u}_1) \cdots dW(\mathbf{u}_n) \\ &= \int_{T^n} \frac{1}{(n+2)!} \left[ \sum_{\tau} \mathbf{1}_{d_{\mathbf{z}_{\pi(1)}}} (\mathbf{u}_1) \cdots \mathbf{1}_{d_{\mathbf{z}_{\pi(n)}}} (\mathbf{u}_n) \mathbf{1}_{d_{\mathbf{z}_{n+1}}} (\mathbf{z}) \mathbf{1}_{d_{\mathbf{z}_{n+2}}} (\mathbf{z}') \right] \\ &+ \sum_{\tau} \mathbf{1}_{d_{\mathbf{z}_{\tau(1)}}} (\mathbf{u}_1) \cdots \mathbf{1}_{d_{\mathbf{z}_{\tau(n)}}} (\mathbf{u}_n) \mathbf{1}_{d_{\mathbf{z}_{n+1}}} (\mathbf{z}') \mathbf{1}_{d_{\mathbf{z}_{n+2}}} (\mathbf{z}) \right] dW(\mathbf{u}_1) \cdots dW(\mathbf{u}_n) \\ &= \frac{1}{(n+2)!} n! \left[ \mathbf{1}_{d_{\mathbf{z}_{n+1}}} (\mathbf{z}) \mathbf{1}_{d_{\mathbf{z}_{n+2}}} (\mathbf{z}') + \mathbf{1}_{d_{\mathbf{z}_{n+1}}} (\mathbf{z}') \mathbf{1}_{d_{\mathbf{z}_{n+2}}} (\mathbf{z}) \right] d_{\mathbf{z}_1} W \cdots d_{\mathbf{z}_n} W, \end{split}$$

which is measurable with respect to  $\mathscr{F}(W(\mathbf{z} \vee \mathbf{z}'))$  and in  $L^2(T \times T \times \mathscr{S}^*)$ . We can then look at the Wong and Zakai integral:

$$\frac{(n+2)(n+1)}{2} \left[ \int_{T\times T} \right] \left( \int_{[(a,a),\mathbf{z}\,\vee\,\mathbf{z}']^n} \hat{h}(\mathbf{u}_1, ..., \mathbf{u}_n, \mathbf{z}, \mathbf{z}') \, dW(\mathbf{u}_1) \cdots dW(\mathbf{u}_n) \right)$$

$$\times dW(\mathbf{z}) \, dW(\mathbf{z}')$$

$$= \frac{1}{2} \left[ \int_{T\times T} \right] \left( (1_{d_{\mathbf{z}_{n+1}}}(\mathbf{z}) \, 1_{d_{\mathbf{z}_{n+2}}}(\mathbf{z}') + 1_{d_{\mathbf{z}_{n+1}}}(\mathbf{z}') \, 1_{d_{\mathbf{z}_{n+2}}}(\mathbf{z})) \, \varDelta_{\mathbf{z}_1} W \cdots \varDelta_{\mathbf{z}_n} W \right)$$

$$\times dW(\mathbf{z}) \, dW(\mathbf{z}')$$

$$= \mathcal{A}_{\mathbf{z}_1} W \cdots \mathcal{A}_{\mathbf{z}_n} W \mathcal{A}_{\mathbf{z}_{n+1}} W \, \varDelta_{\mathbf{z}_{n+2}} W$$

$$= \int_{T^{n+2}} h(\mathbf{u}_1, ..., \mathbf{u}_n, \mathbf{z}, \mathbf{z}') \, dW(\mathbf{u}_1) \cdots dW(\mathbf{u}_n) \, dW(\mathbf{z}) \, dW(\mathbf{z}').$$

The Lemma now follows easily for g.

16

*Proof of Theorem* 7. Here again let  $T = [a, b]^2$ . Also, set  $[(a, a), \mathbf{z} \vee \mathbf{z}'] = D$ . Assume

$$\varphi(\mathbf{x},\mathbf{z},\mathbf{z}') = \int_D \cdots \int_D f(\mathbf{z},\mathbf{z}',\mathbf{u}_1,...,\mathbf{u}_n) \, dW(\mathbf{u}_1) \cdots dW(\mathbf{u}_n), \, f \in L^2(T^{n+2}).$$

Defining  $g(\mathbf{u}_1, ..., \mathbf{u}_n, \mathbf{z}, \mathbf{z}') = 1_D(\mathbf{u}_1, ..., \mathbf{u}_n) - 1_G(\mathbf{z}, \mathbf{z}') f(\mathbf{z}, \mathbf{z}', \mathbf{u}_1, ..., \mathbf{u}_n)$ , we obtain

$$\int_{T^2} \int_{T^2} \partial_{\mathbf{z}'}^* \partial_{\mathbf{z}}^* \mathbf{1}_G(\mathbf{z}, \mathbf{z}') \, \varphi(\mathbf{z}, \mathbf{z}') \, d\mathbf{z} \, d\mathbf{z}'$$

$$= \int_{T^{n+2}} \hat{g}(\mathbf{u}_1, ..., \mathbf{u}_n, \mathbf{z}, \mathbf{z}') \, dW(\mathbf{u}_1) \cdots dW(\mathbf{u}_n) \, dW(\mathbf{z}) \, dW(\mathbf{z}')$$

$$= \frac{(n+2)(n+1)}{2} \left[ \int_{T \times T} \right] \left( \int_{D^n} \hat{g}(\mathbf{u}_1, ..., \mathbf{u}_n, \mathbf{z}, \mathbf{z}') \times dW(\mathbf{u}_1) \cdots dW(\mathbf{u}_n) \right) \, dW(\mathbf{z}) \, dW(\mathbf{z}').$$

Note that for  $\mathbf{u}_1, ..., \mathbf{u}_n < \mathbf{z} \vee \mathbf{z}'$ ,

$$\hat{g}(\mathbf{u}_1, ..., \mathbf{u}_n, \mathbf{z}, \mathbf{z}') = \frac{1}{(n+2)(n+1)} \mathbf{1}_G(\mathbf{z}, \mathbf{z}') [\hat{f}(\mathbf{z}, \mathbf{z}', \mathbf{u}_1, ..., \mathbf{u}_n) + \hat{f}(\mathbf{z}', \mathbf{z}, \mathbf{u}_1, ..., \mathbf{u}_n)],$$

where  $\hat{f}$  is the symmetrization of f in the variables  $\mathbf{u}_1, ..., \mathbf{u}_n$ . Thus we have

$$\begin{split} \int_{T} \int_{T} \partial_{\mathbf{z}'}^{*} \partial_{\mathbf{z}}^{*} \mathbf{1}_{G}(\mathbf{z}, \mathbf{z}') \, \varphi(\mathbf{z}, \mathbf{z}') \, d\mathbf{z} \, d\mathbf{z}' \\ &= \left[ \int_{T \times T} \right] \left( \int_{D^{n}} \mathbf{1}_{G}(\mathbf{z}, \mathbf{z}') \frac{1}{2} \left( f(\mathbf{z}, \mathbf{z}', \mathbf{u}_{1}, ..., \mathbf{u}_{n}) \right. \\ &+ f(\mathbf{z}', \mathbf{z}, \mathbf{u}_{1}, ..., \mathbf{u}_{n}) \right) \, dW(\mathbf{u}_{1}) \cdots dW(\mathbf{u}_{n}) \right) \, dW(\mathbf{z}) \, dW(\mathbf{z}') \\ &= \left[ \int_{T \times T} \right] \left( \mathbf{1}_{G}(\mathbf{z}, \mathbf{z}') \frac{1}{2} \left( \varphi(\mathbf{z}, \mathbf{z}') + \varphi(\mathbf{z}', \mathbf{z}) \right) \, dW(\mathbf{z}) \, dW(\mathbf{z}') \\ &= \left[ \int_{T \times T} \right] \varphi(\mathbf{z}, \mathbf{z}') \, dW(\mathbf{z}) \, dW(\mathbf{z}'). \end{split}$$

## 4. A GENERALIZED ITO FORMULA FOR TWO-DIMENSIONAL TIME

In order to develop our generalized Ito formula, we will need to define the generalized Wiener functional F(W(s, t)), where F is a tempered distribution. This is the analogue of the one-dimensional time case given by Kubo [8], Kuo [10], and Russek [12]. We will use the Russek approach which generalizes straightforwardly to higher dimensions.

Let  $H_n$ ,  $n \ge 0$ , denote the *n*th Hermite polynomial:  $H_0 = 1$  and

$$H_n(x) = \frac{(-1)^n}{\sqrt{n!}} \exp(x^2/2) D^n \exp(-x^2/2).$$

For  $f \in L^2(\mathbb{R}^d)$  with  $L^2$ -norm not zero, let I(f) represent the Wiener integral of f. The composition F(I(f)) is defined by

$$F(I(f)) = \sum_{n=0}^{\infty} a_n H_n(I(f)/\sigma), \qquad (*)$$

where  $\sigma = \|f\|_{L^2(\mathbb{R}^d)}$  and  $a_n = \langle F, H_n(x/\sigma) g_{\sigma^2}(x) \rangle; g_{\sigma^2}(x)$  denoting  $(\sqrt{2\pi} \sigma)^{-1} \exp(-x^2/(2\sigma^2)).$ 

**THEOREM 9.** The series (\*) is convergent in  $(L^2)^-$  and

$$SF(I(f))(\xi) = (F * g_{\sigma^2})(\langle f, \xi \rangle).$$

The proof of this theorem can be found in the Russek paper for d = 1, but the proof does not depend on the value of d.

The Ito formula below is a generalization of that given by Cairoli and Walsh [2] and Wong and Zakai [13]. For  $F \in \mathscr{S}(\mathbb{R})$ , one recognizes the second integral in the formula as  $\int_{[(a_1,a_2),(b_1,b_2)]} F''(W(z)) dJ(z)$  and we see the Cairoli–Walsh formula. The conditions that Wong and Zakai place on F to obtain their Ito formula ensure that F(W(z)) is a martingale on every increasing staircase. In this case only the first two integrals in the formula would remain and we also see their formula.

**Theorem 10.** For 
$$0 < a_1 < b_1$$
,  $0 < a_2 < b_2$ , and  $F \in \mathscr{G}^*(R)$ ,

$$F(W(b_1, b_2)) - F(W(b_1, a_2)) - (F(W(a_1, b_2)) - F(W(a_1, a_2)))$$

$$= \int_{a_2}^{b_2} \int_{a_1}^{b_1} \partial_{(s,t)}^* F'(W(s, t)) \, ds \, dt$$

$$+ \frac{1}{2} \left[ \int_{0}^{b_2} \int_{0}^{b_1} \int_{0}^{b_2} \int_{0}^{b_1} - \int_{0}^{b_2} \int_{0}^{a_1} \int_{0}^{b_2} \int_{0}^{a_1} + \int_{0}^{a_2} \int_{0}^{a_1} \int_{0}^{a_2} \int_{0}^{a_1} - \int_{0}^{a_2} \int_{0}^{b_1} \int_{0}^{b_2} \int_{0}^{b_1} \int_{0}^{b_2} \int_{0}^{a_1} \int_{0}^{a_2} \int_{0}^{a_1} \int_{0}^{a_2} \int_{0}^{a_1} \int_{0}^{a_2} \int_{0}^{b_1} \int_{0}^{a_2} \int_{0}^{b_1} \int_{0}^{a_2} \int_{0}^{b_1} \int_{0}^{b_2} \int_{0}^{a_1} \int_{0}^{a_2} \int_{0}^{a_1} \int_{0}^{a_2} \int_{0}^{a_1} \int_{0}^{a_2} \int_{0}^{a_1} \int_{0}^{a_2} \int_{0}^{a_1} \int_{0}^{a_2} \int_{0}^{b_1} \int_{0}^{a_2} \int_{0}^{b_1} \int_{0}^{a_2} \int_{0}^{b_1} \int_{0}^{a_2} \int_{0}^{b_1} \int_{0}^{a_2} \int_{0}^{b_1} \int_{0}^{a_2} \int_{0}^{b_1} \int_{0}^{a_2} \int_{0}^{a_1} \int_{0}^{a_1} \int_{0}^{a_2} \int_{0}^{a_1} \int_{0}^{a_2} \int_{0}^{a_1} \int_{0}^{a_1} \int_{0}^{a_1} \int_{0}^{a_2} \int_{0}^{a_1} \int_{0}$$

$$+\frac{b_1}{2}\int_{a_2}^{b_2} F''(W(b_1,t)) dt - \frac{a_1}{2}\int_{a_2}^{b_2} F''(W(a_1,t)) dt +\int_{a_1}^{b_1} \left(\int_{a_2}^{b_2} \int_0^u \partial_{(s,t)}^* \frac{t}{2} F'''(W(u,t)) ds dt\right) du,$$

where G is the set of unordered pairs in  $]0, (b_1, b_2)].$ 

*Remark.* We will derive our formula by considering the S-transformation.

LEMMA 3. Suppose that  $F \in \mathscr{G}^*(R)$ ,  $0 < a_1 < b_1$ , and  $0 < a_2 < b_2$ . Then

$$F(W(b_1, b_2)) - F(W(b_1, a_2)) - (F(W(a_1, b_2) - F(W(a_1, a_2)))$$
  
=  $\int_{a_2}^{b_2} \int_{0}^{b_1} \partial^*_{(s,r)} F'(W(b_1, r)) \, ds \, dr - \int_{a_2}^{b_2} \int_{0}^{a_1} \partial^*_{(s,r)} F'(W(a_1, r)) \, ds \, dr$   
+  $\frac{1}{2} \int_{a_2}^{b_2} (b_1 F''(W(b_1, r)) - a_1 F''(W(a_1, r))) \, dr$ 

Proof.

$$S(F(W(b_{1}, b_{2})) - F(W(b_{1}, a_{2})) - (F(W(a_{1}, b_{2})) - F(W(a_{1}, a_{2}))(\xi))$$

$$= g_{b_{1}b_{2}} * F\langle\xi, 1_{]0,(b_{1},b_{2})]\rangle - g_{b_{1}a_{2}} * F\langle\xi, 1_{]0,(b_{1},a_{2})]\rangle$$

$$- (g_{a_{1}b_{2}} * F\langle\xi, 1_{]0,(a_{1},b_{2})]\rangle - g_{a_{1}a_{2}} * F\langle\xi, 1_{]0,(a_{1},a_{2})]\rangle)$$

$$= \int_{a_{2}}^{b_{2}} \frac{d}{dr} (g_{b_{1}r} * F\langle\xi, 1_{]0,(b_{1},r)]}\rangle) dr$$

$$- \int_{a_{2}}^{b_{2}} \frac{d}{dr} (g_{a_{1}r} * F\langle\xi, 1_{]0,(a_{1},r)]}\rangle) dr.$$

The lemma now follows by a simple computation.

Lemma 4.

$$\int_{a_2}^{b_2} \int_0^{b_1} \partial_{(s,t)}^* F'(W(b_1,t)) \, ds \, dt - \int_{a_2}^{b_2} \int_0^{a_1} \partial_{(s,t)}^* F'(W(a_1,t)) \, ds \, dt$$

$$= \int_{a_1}^{b_1} \left( \int_{a_2}^{b_2} \int_0^{a_1} \partial_{(s,t)}^* \frac{t}{2} F'''(W(u,t)) \, ds \, dt \right) du$$

$$+ \int_{a_2}^{b_2} \int_0^{a_1} \int_{a_1}^{b_1} \int_0^t \partial_{(s,t)}^* \partial_{(u,v)}^* F''(W(u,t)) \, dv \, du \, ds \, dt$$

$$+ \int_{a_2}^{b_2} \int_{a_1}^{b_1} \partial_{(s,t)}^* F'(W(b_1,t)) \, ds \, dt.$$

Proof.

$$\int_{a_2}^{b_2} \int_{0}^{b_1} \partial_{(s,t)}^* F'(W(b_1,t)) \, ds \, dt - \int_{a_2}^{b_2} \int_{0}^{a_1} \partial_{(s,t)}^* F'(W(a_1,t)) \, ds \, dt$$
$$= \int_{a_2}^{b_2} \int_{0}^{a_1} \partial_{(s,t)}^* \left[ F'(W(b_1,t)) - F'(W(a_1,t)) \right] \, ds \, dt$$
$$+ \int_{a_2}^{b_2} \int_{a_1}^{b_1} \partial_{(s,t)}^* F'(W(b_1,t)) \, ds \, dt.$$

Now,

$$S\left(\int_{a_{2}}^{b_{2}}\int_{0}^{a_{1}}\partial_{(s,t)}^{*}\left[F'(W(b_{1},t))-F'(W(a_{1},t))\right]ds\,dt\right)(\xi)$$

$$=\int_{a_{2}}^{b_{2}}\int_{0}^{a_{1}}\xi(s,t)\left[g_{b_{1}t}*F'\langle\xi,1_{]0,(b_{1},t)}\right]\rangle - g_{a_{1}t}*F'\langle\xi,1_{]0,(a_{1},t)}\rangle\right]ds\,dt$$

$$=\int_{a_{2}}^{b_{2}}\int_{0}^{a_{1}}\xi(s,t)\left[\int_{a_{1}}^{b_{1}}\frac{d}{du}g_{ut}*F'\langle\xi,1_{]0,(u,t)}\rangle\right]du\,ds\,dt$$

$$=\int_{a_{1}}^{b_{1}}\left(\int_{a_{2}}^{b_{2}}\int_{0}^{a_{1}}\xi(s,t)\frac{t}{2}g_{ut}*F''\langle\xi,1_{]0,(u,t)}\rangle\right)ds\,dt\right)du$$

$$+\int_{a_{2}}^{b_{2}}\int_{0}^{a_{1}}\int_{a_{1}}^{b_{1}}\int_{0}^{t}\xi(s,t)\,\xi(u,v)\,g_{ut}*F''\langle\xi,1_{]0,(u,t)}\rangle\,dv\,du\,ds\,dt.$$

# Proof of Theorem 10. By the lemmas,

$$S([F(W(b_1, b_2)) - F(W(b_1, a_2))] - [F(W(a_1, b_2)) - F(W(a_1, a_2)] - \frac{b_1}{2} \int_{a_2}^{b_2} F''(W(b_1, t)) dt + \frac{a_1}{2} \int_{a_2}^{b_2} F''(W(a_1, t)) dt)(\xi) = \int_{a_1}^{b_1} \left( \int_{a_2}^{b_2} \int_{0}^{a_1} \xi(s, t) \frac{t}{2} g_{ut} * F''' \langle \xi, 1_{]0,(u,t)]} \rangle ds dt \right) du + \int_{a_2}^{b_2} \int_{0}^{a_1} \int_{a_1}^{b_1} \int_{0}^{t} \xi(s, t) \xi(u, v) g_{ut} * F'' \langle \xi, 1_{]0,(u,t)]} \rangle dv du ds dt + \int_{a_2}^{b_2} \int_{a_1}^{b_1} \xi(s, t) g_{b_1t} * F' \langle \xi, 1_{]0,(b_1,t)]} \rangle ds dt.$$

20

# Note that

$$\int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} \xi(s, t) g_{b_{1}t} * F' \langle \xi, 1_{]0, (b_{1}, t)]} \rangle ds dt$$

$$= \int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} \xi(s, t) \left[ g_{st} * F' \langle \xi, 1_{]0, (s, t)]} \right\rangle$$

$$+ \int_{s}^{b_{1}} \frac{d}{du} \left( g_{ut} * F' \langle \xi, 1_{]0, (u, t)]} \right) du \right] ds dt$$

$$= \int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} \xi(s, t) g_{st} * F' \langle \xi, 1_{]0, (s, t)]} \rangle ds dt$$

$$+ \int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} \int_{s}^{b_{1}} \xi(s, t) \frac{t}{2} g_{ut} * F'' \langle \xi, 1_{]0, (u, t)]} \rangle du ds dt$$

$$+ \int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} \int_{s}^{b_{1}} \xi(s, t) \frac{t}{2} g_{ut} * F''' \langle \xi, 1_{]0, (u, t)]} \rangle du ds dt$$

$$+ \int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} \int_{s}^{b_{1}} \int_{0}^{t} \xi(s, t) \xi(u, v) g_{ut} * F'' \langle \xi, 1_{]0, (u, t)]} \rangle dv du ds dt.$$

Thus,

$$S([F(W(b_{1}, b_{2})) - F(W(b_{1}, a_{2}))] - [F(W(a_{1}, b_{2})) - F(W(a_{1}, a_{2})] - \frac{b_{1}}{2} \int_{a_{2}}^{b_{2}} F''(W(b_{1}, t)) dt + \frac{a_{1}}{2} \int_{a_{2}}^{b_{2}} F''(W(a_{1}, t)) dt)(\xi) = \int_{a_{1}}^{b_{1}} \left( \int_{a_{2}}^{b_{2}} \int_{0}^{a_{1}} \xi((s, t) \frac{t}{2} g_{ut} * F''' \langle \xi, 1_{j0,(u,t)} \rangle ds dt \right) du + \int_{a_{2}}^{b_{2}} \int_{0}^{a_{1}} \int_{a_{1}}^{b_{1}} \int_{0}^{t} \xi(s, t) \xi(u, v) g_{ut} * F'' \langle \xi, 1_{j0,(u,t)} \rangle dv du ds dt$$
(1)  
$$+ \int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} \int_{s}^{b_{1}} \xi(s, t) g_{st} * F' \langle \xi, 1_{j0,(u,t)} \rangle dv du ds dt + \int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} \int_{s}^{b_{1}} \xi(s, t) \frac{t}{2} g_{ut} * F''' \langle \xi, 1_{j0,(u,t)} \rangle du ds dt + \int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} \int_{s}^{b_{1}} \int_{0}^{t} \xi(s, t) \xi(u, v) g_{ut} * F'' \langle \xi, 1_{j0,(u,t)} \rangle dv du ds dt.$$
(2)

Observing that we can insert  $1_G((s, t), (u, v))$  in integrals (1) and (2) above, we see that

$$\int_{a_{2}}^{b_{2}} \int_{0}^{a_{1}} \int_{a_{1}}^{b_{1}} \int_{0}^{t} \xi(s,t) \xi(u,v) g_{ut} * F'' \langle \xi, 1_{]0,(u,t)]} \rangle dv du ds dt$$

$$+ \int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} \int_{s}^{b_{1}} \int_{0}^{t} \xi(s,t) \xi(u,v) g_{ut} * F'' \langle \xi, 1_{]0,(u,t)]} \rangle dv du ds dt$$

$$= \int_{0}^{b_{2}} \int_{0}^{a_{1}} \int_{a_{1}}^{b_{1}} \int_{0}^{t} - \int_{0}^{a_{2}} \int_{0}^{a_{1}} \int_{a_{1}}^{b_{1}} \int_{0}^{t} + \int_{0}^{b_{2}} \int_{0}^{b_{1}} \int_{s}^{b_{1}} \int_{0}^{t} \int_{0}^{t} \int_{s}^{t} \int_{0}^{t} \int_{0}^{t} \int_{0}^{t} \int_{s}^{t} \int_{0}^{t} \int_{0}^{t} \int_{s}^{t} \int_{0}^{t} \int_{0}^{t} \int_{0}^{t} \int_{s}^{t} \int_{0}^{t} \int_{0}^{t$$

which, because of  $1_G$  is

$$\int_{0}^{b_{2}} \int_{0}^{b_{1}} \int_{0}^{b_{1}} \int_{0}^{t} - \int_{0}^{b_{2}} \int_{0}^{a_{1}} \int_{0}^{a_{1}} \int_{0}^{t} + \int_{0}^{a_{2}} \int_{0}^{a_{1}} \int_{0}^{a_{1}} \int_{0}^{t} - \int_{0}^{a_{2}} \int_{0}^{b_{1}} \int_{0}^{b_{1}} \int_{0}^{t} \int_{0}^{t}$$

which by symmetry in the variables v and t is

$$\frac{1}{2} \left[ \int_{0}^{b_{2}} \int_{0}^{b_{1}} \int_{0}^{b_{2}} \int_{0}^{b_{1}} - \int_{0}^{b_{2}} \int_{0}^{a_{1}} \int_{0}^{b_{2}} \int_{0}^{a_{1}} + \int_{0}^{a_{2}} \int_{0}^{a_{1}} \int_{0}^{a_{2}} \int_{0}^{a_{1}} - \int_{0}^{a_{2}} \int_{0}^{b_{1}} \int_{0}^{a_{2}} \int_{0}^{b_{1}} \right] \times (\xi(s, t) \, \xi(u, v) \, 1_{G}((s, t), \, (u, v)) \, g_{(s, t) \vee (u, v)} \\ * F'' \langle \xi, 1_{]0, ((s, t) \vee (u, v))]} \rangle) \, du \, dv \, ds \, dt$$

and the theorem follows.

## ACKNOWLEDGMENT

This work was done under the direction of Professor H. H. Kuo in partial fulfillment of the Ph. D. requirements at Louisiana State University. I thank Dr. Kuo for his helpful suggestions.

#### WHITE NOISE APPROACH

### References

- CAIROLI, R. (1972). Sur une equation differentielle stochastique. C. R. Acad. Sci. Paris Ser. A 274 1739-1742.
- [2] CAIRLOI, R., AND WALSH, J. B. (1975). Stochastic integrals in the plane. Acta Math. 134 111-183.
- [3] DIESTEL, J., AND UHL, J. J., JR., (1977). Vector measures. In Mathematical Surveys, No. 15, pp. 52–55, Amer. Math. Soc., Providence, RI.
- [4] HIDA, T. (1975). Analysis of Brownian Functionals. Carleton Math Lecture Notes No. 13. Carelton Univ., Ottowa.
- [5] HIDA, T. (1980). Brownian motion. In Appl. Math., Vol. 2, Springer-Verlag, New York, Berlin.
- [6] ITO, K. (1951). Multiple Wiener integrals. J. Math. Soc. Japan 3 157-169.
- [7] ITO, K. (1984). Foundations of Stochastic Differential Equations in Infinite Dimensional Spaces. Soc. Indus. App. Math., Philadelphia.
- [8] KUBO, I. (1983). Ito formula for generalized Brownian functionals. In Lecture Notes in Control and Information Sci., Vol. 49, pp. 156–166, Springer-Verlag, New York/Berlin.
- [9] KUBO, I., AND TAKENAKA, S. (1981). Calculus on Gaussian white noise, III. Proc. Japan Acad. Ser. A Math. 57 433-437.
- [10] KUO, H. H. (1983). Donsker's delta function as a generalized Brownian functional and its application. In *Lecture Notes in Control and Information Sci.*, Vol. 49, pp. 156–166, Springer-Verlag, New York/Berlin.
- [11] KUO, H. H., AND RUSSEK, A. (1988). White noise approach to stochastic integration. J. Multivariate Anal. 24, No. 2, 218–236.
- [12] RUSSEK, A. (1984). Hermite expansions of generalized Brownian functionals. Lecture Notes in Math., Vol. 1080, pp. 233-244. Springer-Verlag, New York/Berlin.
- [13] WONG, E., AND ZAKAI, M. (1974). Martingales and stochastic integrals for processes with a multidimensional parameter. Z. Wahrsch. Verw. Gebiete 29 109-122.