JOURNAL OF MULTIVARIATE ANALYSIS 37, 1-23 (1991)

White Noise Approach to Multiparameter Stochastic Integration

MYLAN REDFERN

Uniuersity of Southern Mississippi

Communicated by the Editors

In this paper we will set up the Hida theory of generalized Wiener functionals using $\mathcal{S}^*(\mathbb{R}^d)$, the space of tempered distributions on \mathbb{R}^d , and apply the theory to multiparameter stochastic integration. With the partial ordering on \mathbb{R}^d_+ : $(s_1, ..., s_d) < (t_1, ..., t_d)$ if $s_i < t_i$, $1 \le i \le d$, the Wiener process

 $W((t_1, ..., t_d), x) = \langle x, 1_{[0,t_1]\times \cdots \times [0,t_d]} \rangle, x \in \mathcal{S}^*(\mathbb{R}^d)$

is a generalization of a Brownian motion and there is the Wiener-Ito decomposition: $L^2(\mathscr{S}^*(\mathbb{R}^d)) = \sum_{n=0}^{\infty} \bigoplus K_n$, where K_n is the space of *n*-tuple Wiener integrals. As in the one-dimensional case, there are the continuous inclusions

$$
(L^2)^+ \subset L^2(\mathcal{S}^*(\mathbb{R}^d)) \subset (L^2)^-,
$$

and (L^2) ⁻ is considered the space of generalized Wiener functionals. We prove that the multidimensional Ito stochastic integral is a special case of an element of $(L^2)^-$. For $d = 2$ the Ito integral is not sufficient for representing elements of $L^2(\mathcal{S}^*(\mathbb{R}^2))$. We show that the other stochastic integral involved can also be realized in the Hida setting. For $F \in \mathcal{S}^*(\mathbb{R})$ we will define $F(W(s, t), x)$ as an element of (L^2) ⁻ and obtain a generalized Ito formula. © 1991 Academic Press, Inc.

1. INTRODUCTION

Using the Hida theory of generalized Brownian functionals, Kubo and Takenaka in [9], have shown that for a nonanticipating process φ such that $E\left[\frac{b}{a}|\varphi(t, \omega)|^2 dt < \infty\right]$,

$$
\int_a^b \varphi(t, \omega) dB(t, \omega) = \int_a^b \partial_t^* \varphi(t) dt,
$$

where the integral on the left is the Ito stochastic integral with respect to the Brownian motion $B(t, \omega)$. In [8] Kubo defined the composition

Received October 13, 1988; revised September 21, 1990. A

AMS 1980 subject classifications: 60H05, 60H20, 60J65.

Key words and phrases: Hida theory, multiparameter, stochastic integral, Ito formula.
 1

 $F(B(t))$, $t > 0$, for the tempered distribution F and obtained an Ito formula for these generalized Brownian functionals:

$$
F(B(b)) - F(B(a)) = \int_a^b \partial_t^* F'(B(t)) dt + \frac{1}{2} \int_a^b F''(B(t)) dt.
$$

The purpose of this paper is to set up the Hida theory on $\mathscr{S}^*(\mathbb{R}^d)$ for $d>1$ and exhibit an Ito formula for the generalized Wiener functional $F(W(s, t))$, $(s, t) \in \mathbb{R}^2_+$, where W is a two-dimensional parameter Wiener process and $F \in \mathcal{S}^*(\mathbb{R})$. Towards this end we will show that

$$
\int_{[a,b]^d} \varphi(\mathbf{t},\omega) \, dW(\mathbf{t},\omega) = \int_{[a,b]^d} \partial_t^* \varphi(\mathbf{t}) \, d\mathbf{t}.
$$

Here the integral on the left is the d-dimensional Ito integral. In dimension two another stochastic integral, $[\int_{x+y^2(x,y^2)} g(z, z', \omega) dW(z) dW(z')$ defined by Wong and Zakai $\begin{bmatrix} 131 \end{bmatrix}$ is required for the Ito formula. This integral exists provided

(1) φ is measurable with respect to the σ -field generated by $\{W(\mathbf{u})\}$; $(a, a) < u < z \vee z'$, and

$$
(2) \quad E\int_{[a,b]^2}\int_{[a,b]^2}|\varphi(z,z',\omega)|^2\,dz\,dz' < \infty.
$$

We will show that

$$
\begin{aligned}\n\left[\int_{[a,b]^2 \times [a,b]^2}\right] \varphi(\mathbf{z},\mathbf{z}',\omega) \, dW(\mathbf{z}) \, dW(\mathbf{z}') \\
= \int_{[a,b]^2} \int_{[a,b]^2} \partial_{\mathbf{z}}^* \partial_{\mathbf{z}}^* \mathbf{1}_G(\mathbf{z},\mathbf{z}') \, \varphi(\mathbf{z},\mathbf{z}') \, d\mathbf{z} \, d\mathbf{z}',\n\end{aligned}
$$

where $G = \{z, z' \in [a, b]^2; z \text{ and } z' \text{ are unordered}\}.$

Finally we will prove the Ito formula: For $0 < a_1 < b_1$ and $0 < a_2 < b_2$,

$$
F(W(b_1, b_2)) - F(W(b_1, a_2)) - (F(W(a_1, b_2)) - F(W(a_1, a_2)))
$$

\n
$$
= \int_{a_2}^{b_2} \int_{a_1}^{b_1} \partial_{(s, t)}^* F'(W(s, t)) ds dt
$$

\n
$$
+ \frac{1}{2} \left[\int_{0}^{b_2} \int_{0}^{b_1} \int_{0}^{b_2} \int_{0}^{b_1} - \int_{0}^{a_2} \int_{0}^{b_1} \int_{0}^{a_2} \int_{0}^{b_1}
$$

\n
$$
+ \int_{0}^{a_2} \int_{0}^{a_1} \int_{0}^{a_2} \int_{0}^{a_1} - \int_{0}^{b_2} \int_{0}^{a_1} \int_{0}^{b_2} \int_{0}^{a_1}
$$

\n
$$
\times \partial_{(u, v)}^* \partial_{(s, t)}^* 1_G((s, t), (u, v)) F''(W((s, t) \vee (u, v)) ds dt du dv \right]
$$

$$
+\frac{b_1}{2}\int_{a_2}^{b_2}F''(W(b_1, t)) dt - \frac{a_1}{2}\int_{a_2}^{b_2}F''(W(a_1, t)) dt
$$

+
$$
\int_{a_1}^{b_1} \left[\int_{a_2}^{b_2} \int_0^u \partial_{(s, t)}^* \frac{t}{2} F''' W(u, t) \right] ds dt \right] du.
$$

Section 1 develops the parts of the multidimensional Hida theory which are pertinent to our work. We will define the space of generalized Wiener functionals (L^2) ⁻ and the operators ∂ , and ∂_t^* . In Section 2 we will recall the definitions of the d-dimensional Ito stochastic integral and the Wong-Zakai integral. We show in Section 3 that both these integrals can be realized in the Hida setting. Section 4 includes the definition of $F(W(t))$ and the proof of the Ito formula.

2. THE HIDA THEORY OF GENERALIZED WIENER FUNCTIONALS

Let $\mathscr{S}(\mathbb{R}^d)$ be the Schwartz space of rapidly decreasing smooth real valued functions on \mathbb{R}^d . The dual space $\mathscr{S}^*(\mathbb{R}^d)$ of $\mathscr{S}(\mathbb{R}^d)$ consists of the tempered distributions. Thus we have the continuous inclusions $\mathscr{S}(\mathbb{R}^d) \subset L^2(\mathbb{R}^d) \subset \mathscr{S}^*(\mathbb{R}^d)$. The cannonical bilinear form connecting \mathscr{S} and \mathscr{S}^* will be denoted by $\langle x, \xi \rangle$, $x \in \mathscr{S}^*$ and $\xi \in \mathscr{S}$. Also, \mathscr{S} is a countably Hilbert nuclear space [7], i.e., $\mathscr S$ is topologized by a Family $\{\|\cdot\|_p\}$; $p = 1, 2, ...$ of Hilbertian norms with the following structure: Let \mathscr{S}_p be the completion of $\mathscr S$ with respect to the norm $\|\cdot\|_p$. Then

$$
\mathcal{S} = \bigcap_{p} \mathcal{S}_p' \subset \cdots \mathcal{S}_2 \subset \mathcal{S}_1 \subset \mathcal{S}_0 = L^2(\mathbb{R}^d) \subset \mathcal{S}_1^* \subset \mathcal{S}_2^* \subset \cdots \subset \bigcup_{p} \mathcal{S}_p^* = \mathcal{S}^*,
$$

where the inclusions \overline{a} and \overline{a} are Hilbert-Schmidt, included the inclusions of the inclusions of the inclusions of the inclusion of the inclu where the inclusions $\sigma_{p+1} - \sigma_p$ are rimodif-seminary and the inclusive polynomial $\mu_{p} = \nu$ and continuous, for the *n*ti-frem polynomial $H_n(x) = (-1)$ cap(x D_x cap(x x), for $h_n(x) = (2 \kappa \sqrt{\kappa})$
 H_{n+1} : $\sqrt{2(2 \kappa \sqrt{\kappa})}$. Then $(1, 10)$ is a complete orthonormal system in $\sum_{n=1}^{\infty}$ and $(k-1)^{\infty}$, $\sum_{n=1}^{\infty}$, where k, t, $\sum_{n=1}^{\infty}$ k (k) is L (is f and $\{n_{n_1n_2...n_d}\}_{n_1,n_2,...,n_d=0}$, where $n_{n_1n_2...n_d}(1,...,1_d) = \prod_{i=1}^d n_{n_i}(i_i)$, is a c.o.i.s. in L (in). Let us denote this vasis by $\sum_{n} \int_{n=0}^{n+1}$ or $f \in \mathcal{F}$ (in) and being denoted by $\sum_{n=0}^{\infty}$ ($2n+1$). $\sum_{n=0}^{\infty}$, in the special $\sum_{n=0}^{\infty}$. being denoted by $($ ', It that $J_p = J_{-p}$.
The characteristic space (Yet \Box), which characteristic determined by the characteristic space of the characteristic

The probability space $(s^+(w)), \mathcal{B}, \mu)$ determined by the characteristic functional $C(\xi) = \exp(-\frac{1}{2} ||\xi||^2)$ is called the *d*-dimensional white noise space. Here, $|| \cdot ||$ is the $L^2(\mathbb{R}^d)$ norm. For $\xi \in \mathcal{S}$, the random variable

 $\langle x, \xi \rangle$ on $({\mathscr{S}}^{*}(\mathbb{R}^{d}), \mathscr{B}, \mu)$ is normally distributed with mean 0 and variance $||\xi||^2$. Moreover, since $\mathscr{S}(\mathbb{R}^d)$ is dense in $L^2(\mathbb{R}^d)$, if $f \in L^2(\mathbb{R}^d)$, $\langle \cdot, f \rangle$ is Gaussian with mean 0 and variance $||f||^2$. We thus have that $\{(x, 1) : A \text{ is a Borel subset of } \mathbb{R}^d \text{ with finite Lebesgue measure }\}$ is a normal random measure on $(\mathscr{S}^*(\mathbb{R}^d), \mathscr{B}, \mu)$.

For a positive integer d, set $\mathbb{R}^d_+ = \{ \mathbf{a} = (a_1, ..., a_d) \in \mathbb{R}^d : a_i \ge 0 \}$ and denote by $\mathbb{R}_{\mathbf{a}}$ the rectangle $\prod_{i=1}^{d} [\mathbf{0}, a_i]$. For $\mathbf{a} \in \mathbb{R}_{+}^{d}$ and $x \in \mathcal{S}^{*}(\mathbb{R}^{d})$, $W(\mathbf{a}, x) = \langle x, 1_{\mathbb{R}} \rangle$ is a Wiener process with d-dimensional time. For $d = 1$ we have the Brownian motion $B(t, x) = \langle x, 1_{[0, t]} \rangle$.

THEOREM 1. (Wiener-Ito decomposition). $L^2(\mathscr{S}^*(\mathbb{R}^d))$ has the direct orthogonal decomposition $L^2(\mathcal{S}^*(\mathbb{R}^d)) = \sum_{n=0}^{\infty} \bigoplus K_n$, where $K_0 = \mathbb{R}$ and for $n > 1$, K_n is the space of n-tuple Wiener integrals based on the normal random measure $W_A = \langle x, 1_A \rangle$ mentioned above; i.e., each φ in K_n has the form

$$
\varphi(x) := I_n(f) = \int_{(\mathbb{R}^d)^n} f(\mathbf{u}_1, ..., \mathbf{u}_n) dW(\mathbf{u}_1, x) \cdots dW(\mathbf{u}_n, x),
$$

where $f \in \hat{L}^2((\mathbb{R}^d)^n)$: the $L^2((\mathbb{R}^d)^n)$ functions which are symmetric in the **u**_i's. Moreover, $(\varphi, \psi)_{L^2(\mathscr{D}^*(\mathbb{R}^d))} = n! (f, g)_{L^2(\mathbb{R}^d)^n}$, where $\psi \in K_n$ is the multiple Wiener integral of g.

For the proof of this theorem see Ito [6]. It is also shown there that if ${n_i}_{i=1}^k$ is an orthonormal set in $L^2(\mathbb{R}^d)$ and $p_1 + \cdots + p_k = n$, then

$$
\int_{(\mathbb{R}^d)^n} \eta_1(\mathbf{u}_1) \cdots \eta_1(\mathbf{u}_{p_1}) \eta_2(\mathbf{u}_{p_1+1}) \cdots \eta_2(\mathbf{u}_{p_1+p_2}) \cdots
$$
\n
$$
\times \eta_k(\mathbf{u}_{p_1+\cdots+p_k-1}) \cdots \eta_k(\mathbf{u}_n) dW(\mathbf{u}_1) \cdots dW(\mathbf{u}_n)
$$
\n
$$
= (\sqrt{2})^{-n} \prod_{i=1}^k H_{p_i} \bigg(\int \eta_i dW / \sqrt{2} \bigg),
$$

where Hermite polynomial of degree polynomial of degree pi. This product is called a pi. This product is where H_{p_i} is the fremme polynomial of degree p_i . This product is called a α c.o.n.s. c.o.n.s. α , $\sum_{i=1}^{\infty} a_i v_i$. Note that for a Borel set A with for a Borel set A with finite Lebesgue and $\sum_{i=1}^{\infty} a_i v_i$. of degree *n* based on $\{\eta_i\}$. Note that for a Borel set *A* with finite Lebesgue measure $\int_A dW(\mathbf{u}) = \langle x, 1_A \rangle$. Thus, for $f \in L^2(\mathbb{R}^d)$, $\langle x, f \rangle = \int_{\mathbb{R}^d} f(\mathbf{u}) dW(\mathbf{u})$. Last the Higa theory, functionals in L2(.Yet (R), $\langle x, y \rangle = \int_{\mathbb{R}^d} f(u) u w(u)$.

In the Filia theory, functionals in $L^2(\mathcal{F}^+(\mathbb{R}^n))$ are studied by means a transformation to a space of functionals on $\mathscr{S}(\mathbb{R}^d)$. Once this transformation is made, the resulting functional has a very nice form which allows us to work in $\sum_{n=0}^{\infty} \bigoplus_{n=0}^{\infty} \sqrt{n!} \hat{L}^2((\mathbb{R}^d)^n)$. DEFINITION 1. The S-transform on $L^2(\mathcal{S}^*(\mathbb{R}^d))$ is defined by

$$
(S\varphi)(\xi) = \int_{\mathscr{S}^*} \varphi(x+\xi) \, d\mu(x),
$$

where $\omega \in L^2(\mathcal{S}^*(\mathbb{R}^d))$ and $\xi \in \mathcal{S}$.

The image of the S-transform is a space of functionals on $\mathscr S$ and is topologized so as to make S a Hilbert space isomorphism, see [5]. Just as in the one-dimensional case, when restricted to K_n , the S-transform has a particularly simple form.

THEOREM 2 (Integral representation theorem). Suppose $\varphi \in K_n$ is of the form

$$
\varphi(x) = \int_{(\mathbb{R}^d)^n} f(\mathbf{u}_1, ..., \mathbf{u}_n) dW(\mathbf{u}_1, x) \cdots dW(\mathbf{u}_n, x),
$$

with $f \in \hat{L}^2((\mathbb{R}^d)^n)$. Then

$$
(S\varphi)(\xi) = \int_{(\mathbb{R}^d)^n} f(\mathbf{u}_1, \ldots, \mathbf{u}_n) \xi(\mathbf{u}_1) \cdots \xi(\mathbf{u}_n) d\mathbf{u}_1 \cdots d\mathbf{u}_n.
$$

Remark. The proof is essentially that of the one-dimensional case found in [5] for the transformation \mathscr{T} .

Generalized Wiener functionals arise in the following way. For $\alpha \in \mathbb{R}$, let $H^{\alpha}(\mathbb{R}^{nd})$ be the Sobolev space of order α over \mathbb{R}^{nd} , i.e., $H^{\alpha}(\mathbb{R}^{nd}) =$ ${f \in \mathscr{S}^*(\mathbb{R}^{nd})$: $\int_{\mathbb{R}^{nd}} (1 + |\lambda|^2)^{\alpha} |(\mathscr{F}f)(\lambda)|^2 d\lambda < \infty$, \mathscr{F} being the Fourier transform. This is a Hilbert space with dual $H^{-\alpha}(\mathbb{R}^{nd})$. $\sum_{k=1}^{\infty} E(n)$ to be the elements of K, which are not will Wiener integrals

Define Λ_n^{av} to be the elements of Λ_n which are *n*-tuple wiener integrals $\hat{L}^2((\mathbb{R}^d)^n)$. We then have

and $K_n^{(-)}$ is defined as the space of generalized *n*-tuple wiener integrals of elements in $H = C^{\infty}$ $\left(\mathbb{R}^m\right)$, where precisely, lot $\varphi = I_n$, j , $j \in L$ (\mathbb{R}^m , j , j , $k \in \mathbb{R}$, \mathbb{R}^m , $j \in L$ define $\|\phi\| = (\sqrt{n!}) \|J\|_{\hat{H}^{-(nd+1)/2}(\mathbb{R}^{nd})}$ and let $\Lambda_n^{\leq n}$ be the com-

$$
\varphi(x) = I_n(f) = \int_{(\mathbb{R}^d)^n} f(\mathbf{u}_1, ..., \mathbf{u}_n) dW(\mathbf{u}_1, x) \cdots dW(\mathbf{u}_n, x),
$$

where $f \in \hat{H}^{-(nd+1)/2}(\mathbb{R}^{nd})$. $K_{n}^{(-n)}$ can be viewed as the dual of $K_{n}^{(n)}$ with the pairing $\langle \cdot, \cdot \rangle$: For $\varphi \in K_n^{(n)}$ represented by $f \in \hat{H}^{(nd+1)/2}(\mathbb{R}^{nd})$ and $\psi \in K_n^{(-)}$ represented by $g \in \hat{H}^{-(nd+1)/2}(\mathbb{R}^{nd})$, $\langle \psi, \varphi \rangle = n! \langle g, f \rangle$.

EXAMPLE 1. For $H_n(x, \sigma^2) = (1/n!)(-\sigma^2)^n \exp(x^2/2\sigma^2)D_x^n \exp(-x^2/2\sigma^2)$ and $\Delta=(\varepsilon, \varepsilon, ..., \varepsilon) \in \mathbb{R}^d_+$, consider $\varphi_{\Delta}=n!H_n[(1/\varepsilon^d)\langle x, 1_{[t,t+d]} \rangle, 1/\varepsilon^d],$ $n > 2$, which is in K_n . In fact, φ_A is the multiple Wiener integral of $(1/(\varepsilon^d)^n)$ 1_{[t,t+d[}(u₁)...] $\prod_{i=1}^{n}$... where $[t, t + \Delta] = \{x \in \mathbb{R}^+ \}$; $t < x < t + \Delta$. Since \widehat{Q}_{α} (1/ ϵ^d) 1 C_{trate} $\rightarrow \widehat{Q}_{\alpha}$, δ , in $\widehat{H}^{-(nd+1)/2}(\mathbb{R}^{nd})$ as $\epsilon \rightarrow 0$, lim, δq , is in $K^{(-n)}$ and is represented by $\widehat{\otimes}$ δ . In particular, for $n = 1$, $\lim_{\epsilon \to 0} (1/\epsilon^d) \langle x, 1_{\epsilon_1 + \epsilon_2} \rangle = I_1(\delta)$ is in $K_1^{(-)}$.

Define $(L^2)^+ = \sum_{n=0}^{\infty} \bigoplus K_n^{(n)}$ and $(L^2)^- = \sum_{n=0}^{\infty} \bigoplus K_n^{(-n)}$, where $K_0^{(0)}$ is the real number system. Thus we have

$$
(L^2)^+ \subset L^2(\mathscr{S}^*) \subset (L^2)^-.
$$

 $(L^2)^+$ is called the space of test functionals and $(L^2)^-$ is called the space of generalized functionals. For $\varphi = \sum_{n=0}^{\infty} \varphi_n$ in $(L^2)^{-}$ and $\psi = \sum_{n=0}^{\infty} \psi_n$ in $(L^2)^+$, $\langle \varphi, \psi \rangle = \sum_{n=0}^{\infty} \langle \varphi_n, \psi_n \rangle$. We can see that the S-transform extends to $(L^2)^{-}$.

In the Hida theory $\{\dot{B}(t), t \in \mathbb{R}\} := \{\delta_t; t \in \mathbb{R}\}\$ is viewed as a coordinate system in \mathcal{S}^* so as to take time into account. Derivatives are then taken with respect to this coordinate system. This idea can be carried over to higher dimensions.

DEFINITION 2. Let U be the S-transform of $\varphi \in (L^2)^-$. Suppose the first variation of U at ζ is given by

$$
(\delta U)_{\zeta}(\eta) = \int_{\mathbb{R}^d} U'(\zeta, \mathbf{u}) \eta(\mathbf{u}) d\mathbf{u}; \eta \in \mathscr{S}(\mathbb{R}^d).
$$

If $U'(\cdot, t)$ is an S-transform, then ∂ , φ is defined to be the generalized Wiener functional with S-transform $U'(\cdot, t)$, i.e.,

$$
S(\partial_{t}\varphi)(\xi) = U'(\xi, t).
$$

The adjoint ∂_t^* of ∂_t is defined by $\langle \partial_t^* \psi, \varphi \rangle = \langle \psi, \partial_t \varphi \rangle, \psi \in (L^2)^{-}$, First equal c_t or c_t is dominar by $\langle c_t \psi, \psi \rangle = \langle \psi, c_t \psi \rangle$, $\psi \in (L^2)$. $\psi \in (\mathcal{L}^*)$. Thus v_t is a finear operator whose

THEOREM 3. (A) For $\varphi = \int_{(R^d)^n} f(u_1, ..., u_n) dW(u_1) \cdots dW(u_n)$ in $K_n^{(n)}$,

$$
\partial_{\mathbf{t}}\varphi=n\int_{(\mathbb{R}^d)^{n-1}}f(\mathbf{t},\mathbf{u}_1,\ldots,\mathbf{u}_{n-1})\,dW(\mathbf{u}_1)\cdots dW(\mathbf{u}_{n-1}).
$$

(B) For
$$
\varphi = \int_{(\mathbb{R}^d)^n} f(\mathbf{u}_1, ..., \mathbf{u}_n) dW(\mathbf{u}_1) \cdots dW(\mathbf{u}_n)
$$
 in $K_n^{(-n)}$,
\n
$$
\partial_t^* \varphi = \int_{(\mathbb{R}^d)^{n+1}} (\delta_t \hat{\otimes} f)(\mathbf{u}_1, ..., \mathbf{u}_{n+1}) dW(\mathbf{u}_1) \cdots dW(\mathbf{u}_{n+1}).
$$

Here, $\widehat{\otimes}$ indicates symmetric tensor product. Consequently,

- (1) $\partial_{t}: K_{n}^{(n)} \to K_{n-1}^{(n-1)}$ and $\partial_{t}^{*}: K_{n}^{(-n)} \to K_{n+1}^{-(n+1)}$ and,
- (2) for $\varphi = \sum_{n=0}^{\infty} \varphi_n$ in $(L^2)^{-}$,

$$
S(\partial_t^* \varphi)(\xi) = \sum_{n=0}^{\infty} S(\partial_t^* \varphi_n)(\xi) = \sum_{n=0}^{\infty} \xi(t) S\varphi_n(\xi) = \xi(t) S\varphi(\xi).
$$

DEFINITION 3. Suppose $\varphi(\tau) \in (L^2)^{-}$, $\tau \in [a, b]^d$, and it is true that

(1) For every ψ in $(L^2)^+$, $\tau \rightarrow \langle \varphi(\tau), \psi \rangle$ is measurable and integrable, and

(2) $\psi \rightarrow \int_{\gamma_1} \psi_2 \langle \omega(\tau), \psi \rangle d\tau$ is a continuous linear functional αn (\vec{I} 2) +

Then $\int_{[a,b]^d} \varphi(\tau) d\tau$ is defined as the element of $(L^2)^-$ such that

$$
\left\langle \int_{[a,b]^d} \varphi(\tau) d\tau, \psi \right\rangle = \int_{[a,b]^d} \left\langle \varphi(\tau), \psi \right\rangle d\tau,
$$

where $\psi \in (L^2)^+$.

 \overline{O} can similarly define \overline{O} can consider the \overline{O} can consider the consequence are \overline{O} $\int_{\mathbb{R}} |u(t)|^p e^{-\int_{\mathbb{R}} |u(t)|^p}$ is the Pettis type $\int_{\mathbb{R}} |u(t)|^p e^{-\int_{\mathbb{R}} |u(t)|^p}$ is easy to show that if \int_{a}^{b} llo(x)ll² dx / ∞ then \int_{a}^{b} , $a(x) dx$ exists and

$$
\left\|\int_{[a,b]^d}\varphi(\tau)\,d\tau\right\|^2_{-}\leqslant (b-a)^d\int_{[a,b]^d}\|\varphi(\tau)\|^2_{-}\,d\tau.
$$

 $\mathbf{E} = \mathbf{A} \cdot \mathbf{A} = \mathbf{A} \cdot \mathbf{A} + \mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A}$ $\sum_{i=1}^{n}$ in Let $\sum_{i=1}^{n}$ in Let $\sum_{i=1}^{n}$ ($\sum_{i=1}^{n}$). The proof of $\sum_{i=1}^{n}$ denotes on $\sum_{i=1}^{n}$ where f is in $L^2((\lceil a, b \rceil)^d \times (\mathbb{R}^d)^n)$. The proof of existence of $\int_{[a, b]^d} \partial_t^* \varphi(t) dt$ and the calculation of its value goes as follows:

$$
\partial_t^* \varphi(\mathbf{t}) = \int_{(\mathbb{R}^d)^{n+1}} (\delta_{\mathbf{t}} \widehat{\otimes} f(\mathbf{t}))(\mathbf{u}_1, ..., \mathbf{u}_{n+1}) dW(\mathbf{u}_1) \cdots dW(\mathbf{u}_{n+1})
$$

and

$$
\int_{[a,b]^d} \|\partial_t^* \varphi(t)\|^2 \, dt = \int_{[a,b]^d} (n+1)! \, \|\delta_t \hat{\otimes} f(t)\|^2 \, dt.
$$

But,

$$
\|\delta_{\mathbf{t}}\hat{\otimes} f(\mathbf{t})\|_{-}^{2} = \int_{\mathbb{R}^{d(n+1)}} \frac{|\mathcal{F}(\delta_{\mathbf{t}}\hat{\otimes} f(\mathbf{t}))(\lambda)|^{2}}{(1+|\lambda|^{2})^{(d(n+1)+1)/2}} d\lambda
$$

\n
$$
= \int_{\mathbb{R}^{d(n+1)}} \frac{|\exp(-2\pi i(\lambda_{1}, ..., \lambda_{d}) \cdot \mathbf{t}) \mathcal{F}(f(\mathbf{t}))(\lambda_{d+1}, ..., \lambda_{nd+d})|^{2}}{(1+|\lambda|^{2})^{((n+1)d+1)/2}} d\lambda
$$

\n
$$
= \int_{\mathbb{R}^{d(n+1)}} \frac{|\mathcal{F}(f(\mathbf{t}))(\lambda_{d+1}, ..., \lambda_{nd+d})|^{2}}{(1+|\lambda|^{2})^{((n+1)d+1)/2}} d\lambda
$$

\n
$$
\leq \text{const} \times \int_{(\mathbb{R}^{d})^{n}} \frac{|\mathcal{F}(f(\mathbf{t}))(\lambda_{1}, ..., \lambda_{nd})|^{2}}{(1+|\lambda|^{2})^{(nd+1)/2}} d\lambda
$$

\n
$$
= \text{const} \times ||\varphi(\mathbf{t})||^{2}.
$$

Thus,

$$
\int_{[a,b]^d} \|\delta_{\mathbf{t}}\hat{\otimes} f(\mathbf{t})\|^2 - d\mathbf{t} < \infty
$$

and $\int_{[a,b]^d} \partial_t^* \varphi(t) dt$ exists. Furthermore, we have that

$$
S\left(\int_{[a,b]^d} \partial_t^* \varphi(t) dt\right)(\xi)
$$

=
$$
\int_{[a,b]^d} S(\partial_t^* \varphi(t))(\xi) dt = \int_{[a,b]^d} \xi(t) S(\varphi(t))(\xi) dt
$$

=
$$
\int_{[a,b]^d} \xi(t) \int_{(\mathbb{R}^d)^n} f(t, u_1, ..., u_n) \xi(u_1) \cdots \xi(u_n) du_1 \cdots du_n dt
$$

=
$$
\int_{(\mathbb{R}^d)^{n+1}} 1_{[a,b]^d} (t) f(t, u_1, ..., u_n) \xi(t) \xi(u_1) \cdots \xi(u_n) dt du_1 \cdots du_n.
$$

Letting $h(\mathbf{u}_1, ..., \mathbf{u}_{n+1})$ be the symmetrization of $1_{[a,b]^d}(\mathbf{u}_1) f(\mathbf{u}_1, ..., \mathbf{u}_{n+1})$, we then have that

$$
\int_{[a,b]^d} S(\partial_t^* \varphi(\mathbf{t}))(\xi) d\mathbf{t}
$$
\n
$$
= \int_{(\mathbb{R}^d)^{n+1}} h(\mathbf{u}_1, ..., \mathbf{u}_{n+1}) \xi(\mathbf{u}_1) \cdots \xi(\mathbf{u}_{n+1}) d\mathbf{u}_1 \cdots d\mathbf{u}_{n+1}
$$
\n
$$
= S \left[\int_{(\mathbb{R}^d)^{n+1}} h(\mathbf{u}_1, ..., \mathbf{u}_{n+1}) dW(\mathbf{u}_1) \cdots dW(\mathbf{u}_{n+1}) \right] (\xi).
$$

Hence,

$$
\int_{[a,b]^d} \partial_t^* \varphi(t) dt = \int_{(\mathbb{R}^d)^{n+1}} h(u_1, ..., u_{n+1}) dW(u_1) \cdots dW(u_{n+1}).
$$

3. STOCHASTIC INTEGRALS OF PROCESSES WITH MULTIDIMENSIONAL TIME PARAMETER

Let ϵ be the partial ordering on \mathbb{R}^d_+ where $(x_1, ..., x_d) \leq (y_1, ..., y_d)$ if and only if $x_i \leq y_i$; $1 \leq i \leq d$. Assume $\{W(t, \omega)\,; t \in \mathbb{R}_+^d\}$ is a Wiener process on a probability space $\{Q, \mathscr{F}, P\}$ and denote by $\mathscr{F}_\mathbf{a}$ the σ -field generated by $\{W(t); t < a\}.$

Let $T = [a, b] \subset \mathbb{R}^1_+$ and consider the Wiener process $\{W(t); \mathcal{F}_t, t \in T^d\}.$ Cairoli [1] defined the following Ito-type stochastic integral for $d=2$ which extends to any $d > 2$. Assume $\varphi(t, \omega)$ satisfies the following conditions:

(1) $\varphi(t, \omega)$ is a bimeasurable function of (t, ω) with respect to $\mathscr{G} \otimes \mathscr{F}$, where \mathscr{G} denotes the σ -field of Borel sets in T^d .

(2) For each $t \in T^d$, $\varphi(t, \omega)$ is \mathscr{F}_{τ} -measurable. In this case φ is said to be non-anticipating.

(3) $\int_{\mathcal{T}^d} E \varphi^2(t, \omega) dt < \infty$.

First suppose that φ is simple, i.e., $\varphi(t, \omega) = \varphi_v(\omega)$, $t \in \Delta_v$, $v = 1, 2, ..., k$, and $\varphi = 0$ elsewhere, and that φ are disjoint rectangles φ = $\prod_{i=1}^d [a_i^v, b_i^v] \subset T^d$. Then the Ito integral of φ is

$$
\int_{T^d} \varphi(\mathbf{t}, \omega) \, dW(\mathbf{t}, \omega) := \sum_{v} \varphi_v(\omega) \, \Delta_v \, W(\omega),
$$

 $\mathbf{v} = \mathbf{v} - \mathbf{v} + \mathbf{v}$ and $\mathbf{v} = \mathbf{v} - \mathbf{v} + \mathbf{v}$, $\mathbf{v} = \mathbf{v} - \mathbf{v} + \mathbf{v}$ where for a fecture $\Delta = \prod_{i=1}^{n} [u_i, v_i]$, $\Delta W(0) = \sum_{x} (-1) W(x, u_i)$, the sum being taken over the z vertices $\{t, t_i - u_i$ or v_i and $u(t)$ is the number of b_i 's in t. The definition of $\int_{T^d} \varphi(t) dW(t)$ is then extended to non-simple φ by a standard completion argument. M -simple φ by a standard completion argument.
We also define the second type of stochastic integral

while and zakar [13] have defined a second type of stochastic integral which we will now describe. Both of these are necessary to represent elements of $L^2(\mathcal{S}^*(\mathbb{R}^2))$. For (s, t), (u, U)E T2 we will use (s, t) v (u, u) to denote (max{s, u},

FOR (x, t) , $(u, v) \in I$ we will use $(x, t) \vee (u, v)$ to denote $(\text{max}\{x, u\})$, max $\{v, t\}$). Let $G = \{(\mathbf{z}, \mathbf{z}') \in T^2 \times T^2$; \mathbf{z} and \mathbf{z}' are unordered. Suppose that $\psi(\omega, \mathbf{z}, \mathbf{z}')$ is a function defined on $\Omega \times T^2 \times T^2$ satisfying

(1) $\psi(\omega, \mathbf{z}, \mathbf{z}')$ is jointly measurable with respect to $\mathcal{F} \otimes \mathcal{G} \otimes \mathcal{G}$.

(2) For each $z, z' \in T^2$, the function $\psi(\omega, z, z')$ is measurable with respect to $\mathscr{F}_{\mathbf{x} \times \mathbf{x}}$.

$$
(3) \quad E\int_{T^2\times T^2}\psi^2(\mathbf{z},\mathbf{z}')\,d\mathbf{z}\,d\mathbf{z}'<\infty.
$$

Assume that $\psi(\omega, z, z')$ is simple: $\psi(\omega, z, z') = \alpha(\omega)$ for $z \in A_1$ and $z' \in A_2$, and zero elsewhere. For $n = 1, 2, ...$, partition T into segments of length $(b-a)/2^n$ and let P_n be the partition induced on T², with partition points ${z_{ij}\}_{i,j=1}^{2^n-1}$, and let $A_{ij}=[z_{ij},z_{i+1,j+1}[\text{For } A_{ij}W=W(z_{i+1,j+1})-1]$ $W(\mathbf{z}_{i+1,i}) + W(\mathbf{z}_{ij}) - W(\mathbf{z}_{i,i+1}),$ define

$$
I_2^n(\psi) = \sum_{\substack{i,j=1\\k,m=1}}^{2^n-1} \psi(\mathbf{z}_{ij}, \mathbf{z}_{km}) \mathbb{1}_G(\mathbf{z}_{ij}, \mathbf{z}_{km}) \Delta_{ij} W \Delta_{km} W.
$$

It is shown in [13], that $I_0^n(\psi)$ converges in $L^2(\Omega)$ as $n \to \infty$. The integral is then defined to be this limit:

$$
\left[\int_{T^2\times T^2}\right]\psi(\mathbf{z},\mathbf{z}')\,dW(\mathbf{z})\,dW(\mathbf{z}'):=\liminf_{n\to\infty}\lim_{n\to\infty}I_2^n(\psi).
$$

Note that if $A_1 \times A_2 \subset G$, then $I_2(\psi) = \alpha A_1 W A_2 W$. The definition can now be extended to all functions satisfying the above conditions by approximating with linear combinations of simple functions.

4. STOCHASTIC INTEGRALS USING THE HIDA THEORY

For a non-anticipating process $a(t, y)$, to Eq. b] c R¹, and $x = \theta^*$ (R) such that $F(b|g(t))$ dt $\epsilon \infty$, the Ito integral $(b|g(t, x), B(t, y))$ with respect to the Brownian motion $B(t, x) = \langle x, 1_{[0, t]}\rangle$ is defined, and Kubo and Takenaka [9] have shown that

$$
\int_a^b \varphi(t,x) \, dB(t,x) = \int_a^b \partial_t^* \varphi(t) \, dt.
$$

The result is also true for d-dimensional time, where $B(t, x)$ is replaced with the Wiener process $W(t, x) = \langle x, 1_{[0, t]} \rangle$, $t \in \mathbb{R}_+^d$ and $x \in \mathcal{S}^*(\mathbb{R}^d)$. The integrated process $W(x, x) = \sqrt{x}$, $\frac{1}{0}$, $\left[\frac{0}{1}t\right]$, $\left[\frac{1}{1}t\right]$, and $x \in \mathcal{F}$ (is). It
.

THEOREM 4. Suppose $\varphi(\tau)$ is a stochastic process on $L^2(\mathscr{S}^*)$ such that E $\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right)$ s \sim $\int [a,b]^{a}$ \mathcal{L} $\frac{1}{2}$ decreased $\frac{1}{2}$ and $\frac{1}{2}$ $\sim \omega$ and $E \int_{[a,b]^d} \int_{[a,b]^d} |v_t \varphi(t) v_x \psi(t)| d\mu dt$
axists and $E \int_{a}^{a} dx$ for $d\mu/2 = E \int_{a}^{b} \int_{a}^{b} |v(t)| d\mu$ \overline{H} a, \overline{H}

Remark. The proof of this theorem for the one-dimensional case can be found in [11] and it requires no change for higher dimensions.

THEOREM 5. If $\varphi(\tau, x)$, $\tau \in \mathbb{R}^d$, $x \in \mathcal{S}^*(\mathbb{R}^d)$, $d>1$ is a nonanticipating process such that $E \int_{[a,b]^d} |\varphi(\tau)|^2 d\tau < \infty$, then

$$
\int_{[a,b]^d} \varphi(\tau) dW(\tau) = \int_{[a,b]^d} \partial_{\tau}^* \varphi(\tau) d\tau,
$$

where the integral on the left is the d-dimensional Ito integral.

Note. Since $g(r)$ is nonanticipating, $E[\cos \theta, \cos \theta, \cos \theta]$ $d\tau d\tau' = 0$ and we have that $\int_{-\infty}^{\infty} \frac{\partial^* g(\tau)}{\partial \tau} d\tau$ exists.

The proof of this theorem for $d = 1$ hinges on being able to write a multiple Wiener integral as an iterated stochastic integral. This, of course, cannot be done in general for higher dimensions because < is not a linear ordering. We do, however, have the following

LEMMA 1. Let $g(\mathbf{u}, \mathbf{u}_2, \mathbf{u}_3) = 1, \ldots, S$ u. $(\mathbf{u}, \mathbf{u}_3)$ $\mathbb{E}[\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_{n+1}] = \mathbf{u}_1 + \mathbf{u}_2 + \mathbf{u}_3 + \mathbf{u}_4$
 $\mathbf{u}_2 = \mathbf{u}_3 + \mathbf{u}_4 + \mathbf{u}_5$ where $\mathbf{f} \in L^2((\Gamma_a, b_1)^d)^{n+1}$ and $\hat{\mathbf{\sigma}}$ is the symmetrization of $\mathbf{\sigma}$. Then

$$
\int_{(\lbrack a,b\rbrack)^{d})^{n+1}} g(\mathbf{u}_{1},...,\mathbf{u}_{n+1}) dW(\mathbf{u}_{1}) \cdots dW(\mathbf{u}_{n+1})
$$
\n
$$
= (n+1) \int_{[a,b]^{d}} \left[\int_{(\lbrack (a,...,a),\mathbf{u}_{n+1} \rbrack^{n}} \hat{g}(\mathbf{u}_{1},...,\mathbf{u}_{n+1}) \right. \times dW(\mathbf{u}_{1}) \cdots dW(\mathbf{u}_{n}) \right] dW(\mathbf{u}_{n+1}).
$$

Proof. Because of the cumbersome notation we prove the lemma only for $d = 2$. By [6] we may assume that

$$
f(\mathbf{u}_{n+1}, \mathbf{u}_1, ..., \mathbf{u}_n) = 1_{A_{n+1} \times A_1 \times ... \times A_n}(\mathbf{u}_{n+1}, \mathbf{u}_1, ..., \mathbf{u}_n),
$$

where the A_i 's are disjoint rectangles in [a, b]². Let

$$
D = \{(x, y); (x, y) \in [a, b]^2 \text{ and } x \le y\}
$$

\n
$$
D_i = [c_{i-1}, c_i], \quad i = 1, ..., 2^m - 1, \text{ where } c_i = a + i(b - a)/2^m,
$$

\n
$$
E_i = [c_i, b], \quad i = 1, ..., 2^m - 1.
$$

Then $\lim_{m \to \infty} \sum_{i=1}^{m-1} 1_{D_i \times E_i} = 1_D$, and since

$$
1_{[(a,a),(s,t)]^n}((x_1, y_1), ..., (x_n, y_n))
$$

= $1_D(x_1, s) \cdots 1_D(x_n, s) 1_D(y_1, t) \cdots 1_D(y_n, t),$

we have that, pointwise and in $L^2([a, b]^2)^{n+1}$, $g((x_1, y_1), ..., (x_n, y_n), (s, t))$ is the limit of $\sum_{i_1,...,i_n,j_1,...,j_n}$ $\prod_{p=1}^n 1_{D_{i_p} \times E_{i_p}}(x_p, s) 1_{D_{i_p} \times E_{j_p}}(y_p, t) \prod 1_{A_1}(x_1, y_1) \cdots$ $1_{A_{n+1}}(s, t)$ or

$$
\sum_{\substack{i_1,\dots,i_n \\ j_1,\dots,j_n}} \left[\prod_{k=1}^n 1_{(D_{i_k} \times D_{i_k}) \cap A_k}(x_k, y_k) \right] 1_{(E_{i_1} \times E_{j_1}) \cap \dots \cap (E_{i_n} \times E_{j_n}) \cap A_{n+1}}(s, t).
$$

For sets A and B, $A < B$ indicates that for any x in A, $x < y$ for every y in B. Note that $(D_{i_k} \times D_{j_k}) \cap A_k < (E_{i_1} \times E_{j_1}) \cap \cdots \cap (E_{i_n} \times E_{j_n}) \cap A_{n+1}$ for $k = 1, ..., n$. Therefore, we can see that

$$
g(\mathbf{u}_1, ..., \mathbf{u}_{n+1}) = \lim_{\substack{\mathbf{z}_{i_1}, ..., \mathbf{z}_{i_{n+1}}}} \mathbf{1}_{\mathcal{A}_{z_{i_1}}}(\mathbf{u}_1) \cdots \mathbf{1}_{\mathcal{A}_{z_{i_n}}}(\mathbf{u}_n) \mathbf{1}_{\mathcal{A}_{z_{i_{n+1}}}}(\mathbf{u}_{n+1}),
$$

where z_{i_k} is the lower left-hand corner of $A_{z_{i_k}}$, all the rectangles $A_{z_{i_1}}, ..., A_{z_{i_{n+1}}}$ are disjoint, and $A_{z_{i_k}} < A_{z_{i_{n+1}}}$ for $k = 1, ..., n$. Let

$$
h(\mathbf{u}_1, \ldots, \mathbf{u}_{n+1}) = 1_{d_{\mathbf{z}_1}}(\mathbf{u}_1) \cdots 1_{d_{\mathbf{z}_n}}(\mathbf{u}_n) 1_{d_{\mathbf{z}_{n+1}}}(\mathbf{u}_{n+1})
$$

with the above conditions. Then

$$
\hat{h}(\mathbf{u}_1, ..., \mathbf{u}_{n+1}) = \frac{1}{(n+1)!} \sum_{n} 1_{A_{\mathbf{z}_{\pi(1)}}}(\mathbf{u}_1) \cdots 1_{A_{\mathbf{z}_{\pi(n)}}}(\mathbf{u}_n) 1_{A_{\mathbf{z}_{\pi(n+1)}}}(\mathbf{u}_{n+1})
$$

and the multiple weiner integral

$$
\int_{[(a,a),\mathbf{u}_{n+1}[^n]} \hat{h}(\mathbf{u}_1, ..., \mathbf{u}_{n+1}) dW(\mathbf{u}_1) \cdots dW(\mathbf{u}_n)
$$
\n
$$
= \frac{1}{(n+1)!} \mathbf{1}_{A_{\mathbf{z}_{n+1}}}(\mathbf{u}_{n+1}) n! A_{\mathbf{z}_1} W A_{\mathbf{z}_2} W \cdots A_{\mathbf{z}_n} W
$$
\n
$$
= \frac{1}{(n+1)} A_{\mathbf{z}_1} W \cdots A_{\mathbf{z}_n} W \mathbf{1}_{A_{\mathbf{z}_{n+1}}}(\mathbf{u}_{n+1})
$$

is measurable with respect to $\mathscr{F}(W(\mathbf{u}_{n+1}))$ and in $L^2([a, b]^2 \times \mathscr{S}^*)$. We then have the iterated stochastic integral

$$
(n+1)\int_{[a,b]^2} \left[\int_{[(a,a),u_{n+1}[}n} h(\mathbf{u}_1, ..., \mathbf{u}_{n+1}) dW(\mathbf{u}_1) \cdots dW(\mathbf{u}_n) \right] dW(\mathbf{u}_{n+1})
$$

\n
$$
= (n+1)\int_{[a,b]^2} \left[\frac{1}{(n+1)} d_{\mathbf{z}_1} W \cdots d_{\mathbf{z}_n} W 1_{d_{\mathbf{z}_{n+1}}}(\mathbf{u}_{n+1}) \right] dW(\mathbf{u}_{n+1})
$$

\n
$$
= d_{\mathbf{z}_1} W \cdots d_{\mathbf{z}_n} W d_{\mathbf{z}_{n+1}} W
$$

\n
$$
= \int_{([a,b]^2)^{n+1}} h(\mathbf{u}_1, ..., \mathbf{u}_{n+1}) dW(\mathbf{u}_1) \cdots dW(\mathbf{u}_{n+1}).
$$

We now have that the result holds for functions of the form h and thus sums of such functions. By taking limits, we get the general result.

Proof of Theorem 5. By the Wiener-Ito decomposition of $L^2(\mathcal{S}^*(\mathbb{R}^d))$, it suffices to assume that $\varphi(\tau)$ is a multiple Wiener integral. Let $T = [a, b]^d$ and suppose

$$
\varphi(\tau) = \int_{(\mathbb{R}^d)^n} f(\tau; \mathbf{u}_1, ..., \mathbf{u}_n) dW(\mathbf{u}_1) \cdots dW(\mathbf{u}_n), \qquad f \in L^2(T \times (\mathbb{R}^d)^n).
$$

Since $\varphi(\tau)$ is nonanticipating,

$$
\varphi(\tau) = \int_{[(a,\ldots,a),\tau]^{n}} f(\tau; \mathbf{u}_1, \ldots, \mathbf{u}_n) dW(\mathbf{u}_1) \cdots dW(\mathbf{u}_n).
$$

Let $g(\mathbf{u}_1, ..., \mathbf{u}_n, \tau) = 1_{[(a_1, ..., a), \tau]^n} (\mathbf{u}_1, ..., \mathbf{u}_n) f(\tau, \mathbf{u}_1, ..., \mathbf{u}_n)$. Then

$$
\int_{T} \partial_{\tau}^{*} \varphi(\tau) d\tau
$$
\n
$$
= \int_{(T)^{n+1}} \hat{g}(\mathbf{u}_{1},...,\mathbf{u}_{n},\tau) dW(\mathbf{u}_{1}) \cdots dW(\mathbf{u}_{n}) dW(\tau)
$$
\n
$$
= (n+1) \int_{T} \left[\int_{[(a,...,a),\tau]^{n}} \hat{g}(\mathbf{u}_{1},...,\mathbf{u}_{n},\tau) dW(\mathbf{u}_{1}) \cdots dW(\mathbf{u}_{n}) \right] dW(\tau).
$$

But for $\mathbf{u}_1 < \tau$, ..., $\mathbf{u}_n < \tau$,

$$
\hat{g}(\mathbf{u}_1, ..., \mathbf{u}_n, \tau) = \frac{1}{(n+1)!} \sum_{\pi_{1, ..., n}} f(\tau, \mathbf{u}_{\pi(1)}, ..., \mathbf{u}_{\pi(n)})
$$

$$
= \frac{1}{(n+1)!} n! \hat{f}(\tau; \mathbf{u}_1, ..., \mathbf{u}_n)
$$

(where \hat{f} is the symmetrization of f in the variables \mathbf{u}_1 , ..., \mathbf{u}_n). Therefore,

$$
\int_{T} \partial_{\tau}^{*} \varphi(\tau) d\tau = \int_{T} \left[\int_{[(a,...,a),\tau]^{n}} f(\tau, \mathbf{u}_{1}, ..., \mathbf{u}_{n}) dW(\mathbf{u}_{1}) dW(\mathbf{u}_{n}) \right] dW(\tau)
$$

$$
= \int_{[a,b]^{d}} \varphi(\tau) dW(\tau).
$$

We will next consider the integral defined by Wong and Zakai [13]. We will next consider the integral defined by wong and ϵ and $[13]$ We show that it also can be expressed in the white noise setting. We first, however, consider the existence of $\int_{((a, b]^2)^2} \partial_x^* \partial_z^* \varphi(z, z') dz dz'$, where $\varphi(z, z')$ may not be measurable with respect to $\mathscr{F}_{z \vee z'}$.

THEOREM 6. Let $T = [a, b]^2$ and $\varphi(z, z')$ be a stochastic process such that $\int_{\tau_1} E |\varphi(z, z')|^2 dz dz' < \infty$, $\int_{\tau_2} E |\partial_{\tau} \varphi(z, z')| (\partial_{\tau'} \varphi(z, v) + \partial_{\tau'} \varphi(v, z) +$ $\partial_{\alpha} \rho(\mathbf{v}, \mathbf{z}') + \partial_{\alpha} \rho(\mathbf{z}', \mathbf{v})$ l dv dz dz' < co, and $\int_{\mathbb{R}^d} E |\partial \partial \rho(\mathbf{z}, \mathbf{z}') \partial \partial \rho(\mathbf{u}, \mathbf{v})|$ du dy dz dz' < ∞ . Then $\int_{\mathbb{T}^2} \partial_x^* \partial_x^* \varphi(z, z') dz dz'$ exists and

$$
E\left|\int_{T^2} \partial_{x}^* \partial_{z}^* \varphi(\mathbf{z}, \mathbf{z}') d\mathbf{z} d\mathbf{z}'\right|^2 = \int_{T^2} E(|\varphi(\mathbf{z}, \mathbf{z}')|^2 + \varphi(\mathbf{z}, \mathbf{z}') \overline{\varphi(\mathbf{z}', \mathbf{z})}) d\mathbf{z} d\mathbf{z}'
$$

+
$$
\int_{T^3} E[\partial_{\mathbf{v}} \varphi(\mathbf{z}, \mathbf{z}') (\overline{\partial_{x'} \varphi(\mathbf{z}, \mathbf{v})} + \overline{\partial_{z'} \varphi(\mathbf{v}, \mathbf{z})} + \overline{\partial_{z'} \varphi(\mathbf{v}, \mathbf{z}')} + \overline{\partial_{z'} \varphi(\mathbf{v}, \mathbf{z}')} + \overline{\partial_{z'} \varphi(\mathbf{v}, \mathbf{z}')} + \overline{\partial_{z'} \varphi(\mathbf{v}, \mathbf{z}')} \overline{\partial_{z} \partial_{z'} \varphi(\mathbf{u}, \mathbf{v})} d\mathbf{u} d\mathbf{v} d\mathbf{z} d\mathbf{z}'
$$

Remark. The idea for this proof is the same as for the one-dimensional case [111 but there are more cases to consider.

THEOREM 7. Given a jointly measurable function $\varphi(x, z, z')$ on $\mathscr{S}^*(\mathbb{R}^2) \times [a, b]^2 \times [a, b]^2$ such that

(1) For each pair **z**, **z'**, $\varphi(x, z, z')$ is measurable with respect to $\mathscr{F}_{z \times z'}$

$$
(2) \quad E\int_{[a,b]^2}\int_{[a,b]^2}\varphi^2(\mathbf{z},\mathbf{z}')\,d\mathbf{z}\,d\mathbf{z}'<\infty,
$$

it follows that

$$
\int_{[a,b]^2} \int_{[a,b]^2} \partial_{z}^* \partial_z^* 1_G(z, z') \varphi(z, z') dz dz'
$$

=
$$
\left[\int_{[a,b]^2 \times [a,b]^2} \varphi(z, z') dW(z) dW(z') \right]
$$

Here $G = \{ (\mathbf{z}, \mathbf{z}') \in [a, b]^2 \times [a, b]^2 \}$ such that **z** and **z**' are unordered and $\left[\int_{[a,b]^2 \times [a,b]^2}\right]$ denotes the Wong and Zakai integral.

LEMMA 2. Let $T = [a, b]^2$. For $f \in L^2(T^{n+2})$, let

$$
g(\mathbf{u}_1, ..., \mathbf{u}_n, \mathbf{z}, \mathbf{z}') = 1_{[(a,a), \mathbf{z} \times \mathbf{z}']^{n}} (\mathbf{u}_1, ..., \mathbf{u}_n) 1_{G} (\mathbf{z}, \mathbf{z}') f(\mathbf{z}, \mathbf{z}', \mathbf{u}_1, ..., \mathbf{u}_n).
$$

Then,

$$
\int_{T} \cdots \int_{T} \hat{g}(\mathbf{u}_{1},...,\mathbf{u}_{n},\mathbf{z},\mathbf{z}') dW(\mathbf{u}_{1}) \cdots dW(\mathbf{u}_{n}) dW(\mathbf{z}) dW(\mathbf{z}')
$$
\n
$$
= \frac{(n+2)(n+1)}{2} \bigg[\int_{T \times T} \bigg] \bigg(\int_{[(a,a),\mathbf{z} \vee \mathbf{z}']^{n}} \hat{g}(\mathbf{u}_{1},...,\mathbf{u}_{n},\mathbf{z},\mathbf{z}') \times dW(\mathbf{u}_{1}) \cdots dW(\mathbf{u}_{n}) \bigg) dW(\mathbf{z}) dW(\mathbf{z}').
$$

Proof: As in Lemma 1 we may assume that

$$
f(\mathbf{z},\mathbf{z}',\mathbf{u}_1,...,\mathbf{u}_n)=1_{A_{n+2}\times A_{n+1}\times A_1\times\cdots\times A_n}(\mathbf{z},\mathbf{z}',\mathbf{u}_1,...,\mathbf{u}_n),
$$

where the A_i 's are disjoint rectangles in $[a, b]^2$.

Note that $G-G_{\perp}$ G_{\perp} where G_{\perp} $L(f,g,t)$, (s,t) , (s,s) and $t>0$ and $G = \frac{f((s,t), (s-1))}{s-s}$ and $t \ge t$. Let $D = \frac{f(x,s)}{s-s}$ and $D' = \{ (x, s) | x > s \}.$ Then

$$
1_{G_1}((s, t), (s_1, t_1)) = 1_D(s, s_1) 1_{D'}(t, t_1)
$$

and

$$
1_{G_2}((s, t), (s_1, t_1)) = 1_{D'}(s, s_1) 1_D(t, t_1).
$$

Let $P = \begin{pmatrix} c_i \\ c_i \end{pmatrix}$ be the position of Γ a, b] in segments of length $\begin{pmatrix} d_i & a_j \\ c_i & c_j \end{pmatrix}$ $\sum_{i=1}^{n}$ $\sum_{j=1}^{n}$ $\sum_{j=1}^{n}$

$$
1_{D}(s, s_{1}) = \lim_{q \to \infty} \sum 1_{D_{i} \times E_{i}}(s, s_{1}) \quad \text{and} \quad 1_{D'}(t, t_{1}) = \lim_{q \to \infty} \sum 1_{D_{i} \times E_{i}'}(t, t_{1}).
$$

Thus

$$
1_{\left[(a,a),(s,t) \right] \times (s_1,t_1) \left[r^{n}((x_1,y_1),..., (x_n,y_n)) 1_G((s,t),(s_1,t_1)) \right]}
$$
\n
$$
= 1_{\left[(a,a),(s,t) \right] \times (s_1,t_1) \left[r^{n}((x_1,y_1),..., (x_n,y_n)) 1_{G_1}((s,t),(s_1,t_1)) \right]}
$$
\n
$$
+ 1_{\left[(a,a),(s,t) \right] \times (s_1,t_1) \left[r^{n}((x_1,y_1),..., (x_n,y_n)) 1_{G_2}((s,t),(s_1,t_1)) \right]}
$$
\n
$$
= 1_{\left[(a,a),(s_1,t) \left[r^{n}((x_1,y_1),..., (x_n,y_n)) 1_{G_1}((s,t),(s_1,t_1)) \right] \right]}
$$
\n
$$
+ 1_{\left[(a,a),(s,t_1) \left[r^{n}((x_1,y_1),..., (x_n,y_n)) 1_{G_2}((s,t),(s_1,t_1)) \right] \right]}
$$
\n
$$
= 1_D(x_1,s_1) \cdots 1_D(x_n,s_1) 1_D(y_1,t) \cdots 1_D(y_n,t) 1_D(s,s_1) 1_D(t,t_1)
$$
\n
$$
+ 1_D(x_1,s_1) \cdots 1_D(x_n,y_n) 1_D(y_1,t) \cdots 1_D(y_n,t) 1_D(s,s_1) 1_D(t,t_1).
$$

Substituting this formula into the definition of g , one sees that

$$
g(\mathbf{u}_1, ..., \mathbf{u}_n, \mathbf{z}, \mathbf{z}') = \lim \sum_{i_1, ..., i_{n+2}} 1_{\Lambda_{\mathbf{z}_{i_1}}}(\mathbf{u}_1) \cdots 1_{\Lambda_{\mathbf{z}_{i_n}}}(\mathbf{u}_n) 1_{\Lambda_{\mathbf{z}_{i_{n+1}}}}(\mathbf{z}) 1_{\Lambda_{\mathbf{z}_{i_{n+2}}}}(\mathbf{z}'),
$$

where $A_{\mathbf{z}_{i_1}},..., A_{\mathbf{z}_{i_{n+2}}}$ are disjoint rectangles, $A_{\mathbf{z}_{i_{n+1}}} \times A_{\mathbf{z}_{i_{n+2}}} \subset G$, and $A_{\mathbf{z}_{i_k}}$ $A_{z_{i_{n+1}} \vee z_{i_{n+2}}}$ for $k = 1, ..., n$. Consider

 $h(\mathbf{u}_1, ..., \mathbf{u}_n, \mathbf{z}, \mathbf{z}') = 1_{A_{z_1}}(\mathbf{u}_1) \cdots 1_{A_{z_n}}(\mathbf{u}_n) 1_{A_{z_{n+1}}}(\mathbf{z}) 1_{A_{z_{n+2}}}(\mathbf{z}')$

with the above conditions. We obtain that

$$
\int_{[a,a),z\vee z']^{n}} \hat{h}(\mathbf{u}_{1},...,\mathbf{u}_{n},\mathbf{z},\mathbf{z}') dW(\mathbf{u}_{1})\cdots dW(\mathbf{u}_{n})
$$
\n=
$$
\int_{T^{n}} 1_{[(a,a),z\vee z']^{n}}(\mathbf{u}_{1},... \mathbf{u}_{n}) \frac{1}{(n+2)!}
$$
\n
$$
\times \sum_{\pi} 1_{A_{\mathbf{z}_{n}(1)}}(\mathbf{u}_{1})\cdots 1_{A_{\mathbf{z}_{n}(n+1)}}(\mathbf{z}) 1_{A_{\mathbf{z}_{n}(n+2)}}(\mathbf{z}') dW(\mathbf{u}_{1})\cdots dW(\mathbf{u}_{n})
$$
\n=
$$
\int_{T^{n}} \frac{1}{(n+2)!} \left[\sum_{\tau} 1_{A_{\mathbf{z}_{\tau}(1)}}(\mathbf{u}_{1})\cdots 1_{A_{\mathbf{z}_{\tau}(n)}}(\mathbf{u}_{n}) 1_{A_{\mathbf{z}_{n+1}}}(\mathbf{z}) 1_{A_{\mathbf{z}_{n+2}}}(\mathbf{z}') \right.\\
\left. + \sum_{\tau} 1_{A_{\mathbf{z}_{\tau}(1)}}(\mathbf{u}_{1})\cdots 1_{A_{\mathbf{z}_{\tau}(n)}}(\mathbf{u}_{n}) 1_{A_{\mathbf{z}_{n+1}}}(\mathbf{z}') 1_{A_{\mathbf{z}_{n+2}}}(\mathbf{z}) \right] dW(\mathbf{u}_{1})\cdots dW(\mathbf{u}_{n})
$$
\n=
$$
\frac{1}{(n+2)!} n! \left[1_{A_{\mathbf{z}_{n+1}}}(\mathbf{z}) 1_{A_{\mathbf{z}_{n+2}}}(\mathbf{z}') + 1_{A_{\mathbf{z}_{n+1}}}(\mathbf{z}') 1_{A_{\mathbf{z}_{n+2}}}(\mathbf{z}) \right] d_{\mathbf{z}_{1}}W\cdots d_{\mathbf{z}_{n}}W,
$$

which is measurable with respect to $\mathscr{F}(W(\mathbf{z} \vee \mathbf{z}'))$ and in $L^2(T \times T \times \mathcal{S}^*)$. We can then look at the Wong and Zakai integral:

$$
\frac{(n+2)(n+1)}{2} \left[\int_{T \times T} \right] \left(\int_{[(a,a),z \times z']^n} \hat{h}(\mathbf{u}_1, ..., \mathbf{u}_n, \mathbf{z}, \mathbf{z}') dW(\mathbf{u}_1) \cdots dW(\mathbf{u}_n) \right)
$$

\n
$$
\times dW(\mathbf{z}) dW(\mathbf{z}')
$$

\n
$$
= \frac{1}{2} \left[\int_{T \times T} \right] \left((1_{d_{\mathbf{z}_{n+1}}}(\mathbf{z}) 1_{d_{\mathbf{z}_{n+2}}}(\mathbf{z}') + 1_{d_{\mathbf{z}_{n+1}}}(\mathbf{z}') 1_{d_{\mathbf{z}_{n+2}}}(\mathbf{z})) d_{\mathbf{z}_1} W \cdots d_{\mathbf{z}_n} W \right)
$$

\n
$$
\times dW(\mathbf{z}) dW(\mathbf{z}')
$$

\n
$$
= d_{\mathbf{z}_1} W \cdots d_{\mathbf{z}_n} W d_{\mathbf{z}_{n+1}} W d_{\mathbf{z}_{n+2}} W
$$

\n
$$
= \int_{T^{n+2}} h(\mathbf{u}_1, ..., \mathbf{u}_n, \mathbf{z}, \mathbf{z}') dW(\mathbf{u}_1) \cdots dW(\mathbf{u}_n) dW(\mathbf{z}) dW(\mathbf{z}').
$$

The Lemma now follows easily for g.

16

Proof of Theorem 7. Here again let $T = [a, b]^2$. Also, set $[(a, a), z \vee z'] = D$. Assume

$$
\varphi(x, \mathbf{z}, \mathbf{z}') = \int_D \cdots \int_D f(\mathbf{z}, \mathbf{z}', \mathbf{u}_1, ..., \mathbf{u}_n) dW(\mathbf{u}_1) \cdots dW(\mathbf{u}_n), f \in L^2(T^{n+2}).
$$

Defining $g(\mathbf{u}_1, ..., \mathbf{u}_n, \mathbf{z}, \mathbf{z}') = 1_D(\mathbf{u}_1, ..., \mathbf{u}_n)$ $1_G(\mathbf{z}, \mathbf{z}')f(\mathbf{z}, \mathbf{z}', \mathbf{u}_1, ..., \mathbf{u}_n)$, we obtain

$$
\int_{T^2} \int_{T^2} \partial_{z}^* \partial_{z}^* 1_G(z, z') \varphi(z, z') dz dz'
$$

=
$$
\int_{T^{n+2}} \hat{g}(\mathbf{u}_1, ..., \mathbf{u}_n, z, z') dW(\mathbf{u}_1) \cdots dW(\mathbf{u}_n) dW(z) dW(z')
$$

=
$$
\frac{(n+2)(n+1)}{2} \bigg[\int_{T \times T} \bigg] \bigg(\int_{D^n} \hat{g}(\mathbf{u}_1, ..., \mathbf{u}_n, z, z') \bigg)
$$

$$
\times dW(\mathbf{u}_1) \cdots dW(\mathbf{u}_n) \bigg) dW(z) dW(z').
$$

Note that for \mathbf{u}_1 , ..., $\mathbf{u}_n < \mathbf{z} \vee \mathbf{z}'$,

$$
\hat{g}(\mathbf{u}_1, ..., \mathbf{u}_n, \mathbf{z}, \mathbf{z}')
$$

=
$$
\frac{1}{(n+2)(n+1)} 1_G(\mathbf{z}, \mathbf{z}') [\hat{f}(\mathbf{z}, \mathbf{z}', \mathbf{u}_1, ..., \mathbf{u}_n) + \hat{f}(\mathbf{z}', \mathbf{z}, \mathbf{u}_1, ..., \mathbf{u}_n)],
$$

where \hat{f} is the symmetrization of f in the variables $\mathbf{u}_1, ..., \mathbf{u}_n$. Thus we have

$$
\int_{T} \int_{T} \partial_{z}^{*} \partial_{z}^{*} 1_{G}(z, z') \varphi(z, z') dz dz'
$$
\n=
\n
$$
\left[\int_{T \times T} \right] \left(\int_{D^{n}} 1_{G}(z, z') \frac{1}{2} (f(z, z', u_{1}, ..., u_{n}) + f(z', z, u_{1}, ..., u_{n})) dW(u_{1}) \cdots dW(u_{n}) \right) dW(z) dW(z')
$$
\n=
\n
$$
\left[\int_{T \times T} \right] (1_{G}(z, z') \frac{1}{2} (\varphi(z, z') + \varphi(z', z)) dW(z) dW(z')
$$
\n=
\n
$$
\left[\int_{T \times T} \right] \varphi(z, z') dW(z) dW(z').
$$

18 MYLAN REDFERN

4. A GENERALIZED ITO FORMULA FOR TWO-DIMENSIONAL TIME

In order to develop our generalized Ito formula, we will need to define the generalized Wiener functional $F(W(s, t))$, where F is a tempered distribution. This is the analogue of the one-dimensional time case given by Kubo $[8]$, Kuo $[10]$, and Russek $[12]$. We will use the Russek approach which generalizes straightforwardly to higher dimensions.

Let H_n , $n \ge 0$, denote the *n*th Hermite polynomial: $H_0 = 1$ and

$$
H_n(x) = \frac{(-1)^n}{\sqrt{n!}} \exp(x^2/2) D^n \exp(-x^2/2).
$$

For $f \in L^2(\mathbb{R}^d)$ with L^2 -norm not zero, let $I(f)$ represent the Wiener integral of f. The composition $F(I(f))$ is defined by

$$
F(I(f)) = \sum_{n=0}^{\infty} a_n H_n(I(f)/\sigma),
$$
 (*)

where $\sigma = ||f||_{L^2(\mathbb{R}^d)}$ and $a_n = \langle F, H_n(x/\sigma) g_{\sigma^2}(x)\rangle$; $g_{\sigma^2}(x)$ denoting $(\sqrt{2\pi} \sigma)^{-1} \exp(-x^2/(2\sigma^2)).$

THEOREM 9. The series (*) is convergent in (L^2) ⁻ and

$$
SF(I(f))(\xi) = (F * g_{\sigma^2})(\langle f, \xi \rangle).
$$

The proof of this theorem can be found in the Russek paper for $d=1$, but the proof does not depend on the value of d.

The Ito formula below is a generalization of that given by Cairoli and Walsh [2] and Wong and Zakai [13]. For $F \in \mathcal{S}(\mathbb{R})$, one recognizes the second integral in the formula as $\int_C F''(W(z)) dI(z)$ and we see the Cairoli-Walsh formula. The conditions that Wong and Zakai place on F to obtain their Ito formula ensure that $F(W(z))$ is a martingale on every increasing staircase. In this case only the first two integrals in the formula would remain and we also see their formula.

THEOREM 10. For
$$
0 < a_1 < b_1
$$
, $0 < a_2 < b_2$, and $F \in \mathcal{S}^*(R)$,

$$
F(W(b_1, b_2)) - F(W(b_1, a_2)) - (F(W(a_1, b_2)) - F(W(a_1, a_2)))
$$

=
$$
\int_{a_2}^{b_2} \int_{a_1}^{b_1} \partial_{(s, t)}^* F'(W(s, t)) ds dt
$$

+
$$
\frac{1}{2} \Bigg[\int_{0}^{b_2} \int_{0}^{b_1} \int_{0}^{b_2} \int_{0}^{b_1} - \int_{0}^{b_2} \int_{0}^{a_1} \int_{0}^{b_2} \int_{0}^{a_1} + \int_{0}^{a_2} \int_{0}^{a_1} \int_{0}^{a_2} \int_{0}^{a_1} - \int_{0}^{a_2} \int_{0}^{b_1} \int_{0}^{a_2} \int_{0}^{b_1} \Bigg_{0}^{a_2} \Bigg] \times (\partial_{(u, v)}^* \partial_{(s, t)}^* 1_G((s, t), (u, v)) F''(W((s, t) \vee (u, v))) ds dt du dv \Bigg]
$$

$$
+\frac{b_1}{2}\int_{a_2}^{b_2} F''(W(b_1, t)) dt - \frac{a_1}{2}\int_{a_2}^{b_2} F''(W(a_1, t)) dt
$$

+
$$
\int_{a_1}^{b_1} \left(\int_{a_2}^{b_2} \int_0^u \partial_{(s, t)}^* \frac{t}{2} F'''(W(u, t)) ds dt\right) du,
$$

where G is the set of unordered pairs in $\left[0,(b_1,b_2)\right]$.

Remark. We will derive our formula by considering the S-transformation.

LEMMA 3. Suppose that $F \in \mathcal{S}^*(R)$, $0 < a_1 < b_1$, and $0 < a_2 < b_2$. Then

$$
F(W(b_1, b_2)) - F(W(b_1, a_2)) - (F(W(a_1, b_2) - F(W(a_1, a_2)))
$$

=
$$
\int_{a_2}^{b_2} \int_{0}^{b_1} \partial_{(s,r)}^* F'(W(b_1, r)) ds dr - \int_{a_2}^{b_2} \int_{0}^{a_1} \partial_{(s,r)}^* F'(W(a_1, r)) ds dr
$$

+
$$
\frac{1}{2} \int_{a_2}^{b_2} (b_1 F''(W(b_1, r)) - a_1 F''(W(a_1, r))) dr
$$

Proof.

$$
S(F(W(b_1, b_2)) - F(W(b_1, a_2)) - (F(W(a_1, b_2)) - F(W(a_1, a_2))(\xi)
$$

= $g_{b_1b_2} * F(\xi, 1_{[0,(b_1, b_2)]}) - g_{b_1a_2} * F(\xi, 1_{[0,(b_1, a_2)]})$
 $- (g_{a_1b_2} * F(\xi, 1_{[0,(a_1, b_2)]}) - g_{a_1a_2} * F(\xi, 1_{[0,(a_1, a_2)]}))$
= $\int_{a_2}^{b_2} \frac{d}{dr} (g_{b_1r} * F(\xi, 1_{[0,(b_1, r)]})) dr$
 $- \int_{a_2}^{b_2} \frac{d}{dr} (g_{a_1r} * F(\xi, 1_{[0,(a_1, r)]})) dr.$

The lemma now follows by a simple computation.

LEMMA 4.

$$
\int_{a_2}^{b_2} \int_0^{b_1} \partial_{(s,t)}^* F'(W(b_1, t)) ds dt - \int_{a_2}^{b_2} \int_0^{a_1} \partial_{(s,t)}^* F'(W(a_1, t)) ds dt
$$

=
$$
\int_{a_1}^{b_1} \left(\int_{a_2}^{b_2} \int_0^{a_1} \partial_{(s,t)}^* \frac{t}{2} F'''(W(u, t)) ds dt \right) du
$$

+
$$
\int_{a_2}^{b_2} \int_0^{a_1} \int_0^{b_1} \int_0^t \partial_{(s,t)}^* \partial_{(u,v)}^* F''(W(u, t)) dv du ds dt
$$

+
$$
\int_{a_2}^{b_2} \int_{a_1}^{b_1} \partial_{(s,t)}^* F'(W(b_1, t)) ds dt.
$$

Proof.

$$
\int_{a_2}^{b_2} \int_0^{b_1} \partial_{(s,t)}^* F'(W(b_1, t)) ds dt - \int_{a_2}^{b_2} \int_0^{a_1} \partial_{(s,t)}^* F'(W(a_1, t)) ds dt
$$

=
$$
\int_{a_2}^{b_2} \int_0^{a_1} \partial_{(s,t)}^* [F'(W(b_1, t)) - F'(W(a_1, t))] ds dt
$$

+
$$
\int_{a_2}^{b_2} \int_{a_1}^{b_1} \partial_{(s,t)}^* F'(W(b_1, t)) ds dt.
$$

Now,

$$
S\left(\int_{a_2}^{b_2} \int_{0}^{a_1} \partial_{(s,t)}^* \left[F'(W(b_1, t)) - F'(W(a_1, t))\right] ds dt\right) (\xi)
$$

\n
$$
= \int_{a_2}^{b_2} \int_{0}^{a_1} \xi(s, t) \left[g_{b_1t} * F'(\xi, 1_{]0, (b_1, t)}\right] > - g_{a_1t} * F'(\xi, 1_{]0, (a_1, t)} \rangle \Big] ds dt
$$

\n
$$
= \int_{a_2}^{b_2} \int_{0}^{a_1} \xi(s, t) \left[\int_{a_1}^{b_1} \frac{d}{du} g_{ut} * F'(\xi, 1_{]0, (u, t)} \rangle du\right] ds dt
$$

\n
$$
= \int_{a_1}^{b_1} \left(\int_{a_2}^{b_2} \int_{0}^{a_1} \xi(s, t) \frac{t}{2} g_{ut} * F''(\xi, 1_{]0, (u, t)} \rangle ds dt\right) du
$$

\n
$$
+ \int_{a_2}^{b_2} \int_{0}^{a_1} \int_{a_1}^{b_1} \int_{0}^{t} \xi(s, t) \xi(u, v) g_{ut} * F''(\xi, 1_{]0, (u, t)} \rangle dv du ds dt.
$$

Proof of Theorem 10. By the lemmas,

$$
S([F(W(b_1, b_2)) - F(W(b_1, a_2))] - [F(W(a_1, b_2)) - F(W(a_1, a_2)]
$$

\n
$$
- \frac{b_1}{2} \int_{a_2}^{b_2} F''(W(b_1, t)) dt + \frac{a_1}{2} \int_{a_2}^{b_2} F''(W(a_1, t)) dt (\xi)
$$

\n
$$
= \int_{a_1}^{b_1} \left(\int_{a_2}^{b_2} \int_{0}^{a_1} \xi(s, t) \frac{t}{2} g_{ut} * F'''(\xi, 1_{[0, (u, t)]}) ds dt \right) du
$$

\n
$$
+ \int_{a_2}^{b_2} \int_{0}^{a_1} \int_{a_1}^{b_1} \int_{0}^{t} \xi(s, t) \xi(u, v) g_{ut} * F''(\xi, 1_{[0, (u, t)]}) dv du ds dt
$$

\n
$$
+ \int_{a_2}^{b_2} \int_{a_1}^{b_1} \xi(s, t) g_{b_1 t} * F'(\xi, 1_{[0, (b_1, t)]}) ds dt.
$$

20

Note that

$$
\int_{a_2}^{b_2} \int_{a_1}^{b_1} \xi(s, t) g_{b_1 t} * F' \langle \xi, 1_{[0, (b_1, t)]} \rangle ds dt
$$

\n
$$
= \int_{a_2}^{b_2} \int_{a_1}^{b_1} \xi(s, t) \left[g_{st} * F' \langle \xi, 1_{[0, (s, t)]} \rangle \right.
$$

\n
$$
+ \int_{s}^{b_1} \frac{d}{du} (g_{ut} * F' \langle \xi, 1_{[0, (u, t)]} \rangle) du \right] ds dt
$$

\n
$$
= \int_{a_2}^{b_2} \int_{a_1}^{b_1} \xi(s, t) g_{st} * F' \langle \xi, 1_{[0, (s, t)]} \rangle ds dt
$$

\n
$$
+ \int_{a_2}^{b_2} \int_{a_1}^{b_1} \int_{s}^{b_1} \xi(s, t) \frac{t}{2} g_{ut} * F''' \langle \xi, 1_{[0, (u, t)]} \rangle du ds dt
$$

\n
$$
+ \int_{a_2}^{b_2} \int_{a_1}^{b_1} \int_{s}^{b_1} \int_{0}^{t} \xi(s, t) \xi(u, v) g_{ut} * F'' \langle \xi, 1_{[0, (u, t)]} \rangle dv du ds dt.
$$

Thus,

$$
S([F(W(b_1, b_2)) - F(W(b_1, a_2))] - [F(W(a_1, b_2)) - F(W(a_1, a_2)]
$$

\n
$$
- \frac{b_1}{2} \int_{a_2}^{b_2} F''(W(b_1, t)) dt + \frac{a_1}{2} \int_{a_2}^{b_2} F''(W(a_1, t)) dt (\xi)
$$

\n
$$
= \int_{a_1}^{b_1} \left(\int_{a_2}^{b_2} \int_{0}^{a_1} \xi((s, t) \frac{t}{2} g_{ut} * F''' \langle \xi, 1_{[0, (u, t)]} \rangle ds dt \right) du
$$

\n
$$
+ \int_{a_2}^{b_2} \int_{0}^{a_1} \int_{a_1}^{b_1} \int_{0}^{t} \xi(s, t) \xi(u, v) g_{ut} * F'' \langle \xi, 1_{[0, (u, t)]} \rangle dv du ds dt \quad (1)
$$

\n
$$
+ \int_{a_2}^{b_2} \int_{a_1}^{b_1} \xi(s, t) g_{st} * F' \langle \xi, 1_{[0, (s, t)]} \rangle ds dt
$$

\n
$$
+ \int_{a_2}^{b_2} \int_{a_1}^{b_1} \int_{s}^{b_1} \xi(s, t) \frac{t}{2} g_{ut} * F''' \langle \xi, 1_{[0, (u, t)]} \rangle du ds dt
$$

\n
$$
+ \int_{a_2}^{b_2} \int_{a_1}^{b_1} \int_{s}^{b_1} \int_{0}^{s} \xi(s, t) \xi(u, v) g_{ut} * F'' \langle \xi, 1_{[0, (u, t)]} \rangle dv du ds dt \quad (2)
$$

 α insert legs that we can insert leave that insert legs in integrals (1) in integrals (1) in integrals (1) and (2) above, α Observing

22 MYLAN REDFERN

$$
\int_{a_2}^{b_2} \int_{0}^{a_1} \int_{a_1}^{b_1} \int_{0}^{t} \xi(s, t) \xi(u, v) g_{ut} * F'' \langle \xi, 1_{[0,(u, t)]} \rangle dv du ds dt + \int_{a_2}^{b_2} \int_{a_1}^{b_1} \int_{s}^{b_1} \int_{0}^{t} \xi(s, t) \xi(u, v) g_{ut} * F'' \langle \xi, 1_{[0,(u, t)]} \rangle dv du ds dt = \int_{0}^{b_2} \int_{0}^{a_1} \int_{a_1}^{b_1} \int_{0}^{t} - \int_{0}^{a_2} \int_{0}^{a_1} \int_{a_1}^{b_1} \int_{0}^{t} + \int_{0}^{b_2} \int_{0}^{b_1} \int_{s}^{t} \int_{0}^{t} - \int_{0}^{a_2} \int_{0}^{b_1} \int_{s}^{b_1} \int_{0}^{t} + \int_{0}^{a_2} \int_{0}^{a_1} \int_{s}^{b_1} \int_{0}^{t} - \int_{0}^{b_2} \int_{0}^{a_1} \int_{s}^{b_1} \int_{0}^{t} \times \xi(s, t) \xi(u, v) 1_G((s, t), (u, v)) g_{ut} * F'' \langle \xi, 1_{[0,(u, t)]} \rangle dv du ds dt = \int_{0}^{b_2} \int_{0}^{b_1} \int_{s}^{b_1} \int_{0}^{t} - \int_{0}^{b_2} \int_{0}^{a_1} \int_{s}^{a_1} \int_{0}^{t} + \int_{0}^{a_2} \int_{0}^{a_1} \int_{s}^{a_1} \int_{0}^{t} - \int_{0}^{a_2} \int_{0}^{b_1} \int_{s}^{t} \int_{0}^{t} \times [\xi(s, t) \xi(u, v) 1_G((s, t), (u, v)) g_{(s, t)} \vee (u, v) * F'' \langle \xi, 1_{[0, ((s, t) \vee (u, v)])} \rangle] dv du ds dt,
$$

which, because of 1_G is

$$
\int_0^{b_2} \int_0^{b_1} \int_0^{b_1} \int_0^t - \int_0^{b_2} \int_0^{a_1} \int_0^{a_1} \int_0^t + \int_0^{a_2} \int_0^{a_1} \int_0^t - \int_0^{a_2} \int_0^{b_1} \int_0^{b_1} \int_0^t
$$

× $(\xi(s, t) \xi(u, v) 1_G((s, t), (u, v)) g_{(s, t) \vee (u, v)}$
* $F''(\xi, 1_{]0, ((s, t) \vee (u, v))})$) dv du ds dt,

which by symmetry in the variables v and t is

$$
\frac{1}{2}\left[\int_0^{b_2}\int_0^{b_1}\int_0^{b_2}\int_0^{b_1}-\int_0^{b_2}\int_0^{a_1}\int_0^{b_2}\int_0^{a_1}+\int_0^{a_2}\int_0^{a_1}\int_0^{a_2}\int_0^{a_1}-\int_0^{a_2}\int_0^{b_1}\int_0^{a_2}\int_0^{b_1}\right]\times (\xi(s, t) \xi(u, v) 1_G((s, t), (u, v)) g_{(s, t)\vee(u, v)}\n* F''\langle \xi, 1_{]0, ((s, t)\vee(u, v)]}\rangle) du dv ds dt
$$

and the theorem follows.

ACKNOWLEDGMENT

this work was done under the direction of Floressor FL FL Kuo fir partial fullment to the Ph. D. requirements at Louisiana State University. I thank Dr. Kuo for his helpful suggestions.

REFERENCES

- [1] CAIROLI, R. (1972). Sur une equation differentielle stochastique. C. R. Acad. Sci. Paris Ser. A 274 1739-1742.
- [2] CAIRLOI, R., AND WALSH, J. B. (1975). Stochastic integrals in the plane. Acta Math. 134 111-183.
- [3] DIESTEL, J., AND UHL, J. J., JR., (1977). Vector measures. In Mathematical Surveys, No. 15, pp. 52-55, Amer. Math. Soc., Providence, RI.
- [4] HIDA, T. (1975). Analysis of Brownian Functionals. Carleton Math Lecture Notes No. 13. Carelton Univ., Ottowa.
- [5] HIDA, T. (1980). Brownian motion. In Appl. Math., Vol. 2, Springer-Verlag, New York, Berlin.
- [6] ITO, K. (1951). Multiple Wiener integrals. J. Math. Soc. Japan 3 157–169.
- [7] ITO, K. (1984). Foundations of Stochastic Differential Equations in Infinite Dimensional Spaces. Soc. Indus. App. Math., Philadelphia.
- [8] KUBO, I. (1983). Ito formula for generalized Brownian functionals. In Lecture Notes in Control and Information Sci., Vol. 49, pp. 156-166, Springer-Verlag, New York/Berlin.
- [9] KUBO, I., AND TAKENAKA, S. (1981). Calculus on Gaussian white noise, III. Proc. Japan Acad. Ser. A Math. 51 433-437.
- [10] Kuo, H. H. (1983). Donsker's delta function as a generalized Brownian functional and its application. In Lecture Notes in Control and Information Sci., Vol. 49, pp. 156-166, Springer-Verlag, New York/Berlin.
- [11] Kuo, H. H., AND RUSSEK, A. (1988). White noise approach to stochastic integration. J. Multivariate Anal. 24, No. 2, 218-236.
- [12] RUSSEK, A. (1984). Hermite expansions of generalized Brownian functionals. Lecture Notes in Math., Vol. 1080, pp. 233-244. Springer-Verlag, New York/Berlin.
- [13] WONG, E., AND ZAKAI, M. (1974). Martingales and stochastic integrals for processes with a multidimensional parameter. Z. Wahrsch. Verw. Gebiete 29 109-122.