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In this paper we will set up the Hida theory of generalized Wiener functionals
using ¥*(R?), the space of tempered distributions on R and apply the theory
to multiparameter stochastic integration. With the partial ordering on R<:
(S1s e Sg) <{ty, ., 1) if 5,< 2, 1 <i<d, the Wiener process

W((tly ey td)s X)= <x’ 1[0,l|)>< x[0,14)>’ xey*(Rd)

is a generalization of a Brownian motion and there is the Wiener-Ito decomposi-
tion: LA(&*(RY) =32 ,® K,,, where K, is the space of n-tuple Wiener integrals,
As in the one-dimensional case, there are the continuous inclusions

IH* e LALS*RY = (L),

and (L?)~ is considered the space of generalized Wiener functionals. We prove that
the multidimensional Ito stochastic integral is a special case of an element of (L?)~.
For d=2 the Ito integral is not sufficient for representing elements of LX(%*(R?)).
We show that the other stochastic integral involved can also be realized in the Hida
setting. For Fe #*(R) we will define F(W(s, ¢}, x) as an element of {£L?)~ and
obtain a generalized Ito formula.  © 1991 Academic Press, Inc.

1. INTRODUCTION

Using the Hida theory of generalized Brownian functionals, Kubo and
Takenaka in [9], have shown that for a nonanticipating process ¢ such
that E % |o(r, w)|* dr < o0,

b b
j (p(t,a))dB(t,w)=J‘ o* (1) dt,

a a

where the integral on the left is the Ito stochastic integral with respect to
the Brownian motion B(f, w). In [8] Kubo defined the composition
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2 MYLAN REDFERN

F(B(t)), t >0, for the tempered distribution F and obtained an Ito formula
for these generalized Brownian functionals:

F(B(b))— F(B(a))= jb OXF'(B(t)) dt + 1 Ib F"(B(1)) dt.

The purpose of this paper is to set up the Hida theory on &*(R?) for
d>1 and exhibit an Ito formula for the generalized Wiener functional

F(W(s, 1)), (s,t)eR%, where W is a two-dimensional parameter Wiener

process and Fe & *(R). Towards this end we will show that

Here the integral on the left is the d-dimensional Ito integral. In dimension
two another stochastic integral, [{[, ;2. (0s12] €(2, 2, @) dW(z) dW(Z)),
defined by Wong and Zakai [13], 1s required for the Ito formula. This
integral exists provided

(1) ¢ is measurable with respect to the o-field generated by { W(u));
(a,a)<u<z vz}, and
2) Efspfiasp o2, 0)* dzdz’ < .

We will show that

[ f ] o(z, 7, ) dW(z) dW(Z)
[a,b]zx [a,b]2

= f[ b2 .[[ B2 af’a:‘l G(za Z,) (P(Z, zl) dz dz',

where G = {z,2 € [a, b]*; z and 2’ are unordered }.
Finally we will prove the Ito formula: For 0<a, <b, and 0 <a, < b,,

F(W(b,, b,))— F(W(b,, a,)) — (F(W(ay, b,)) — F(W(a,, a,)))

by pby
- f j ot F'(W(s, 1)) ds dt

a; Yay

by pby pby pby ay pby pag pb)
IR NN
0 Y0 Y0 YO 0 Y0 Y0 YO
ay pay) pay pa by pay pby pay
A R A
0 Y0 Y0 YO 0 Y0 Y0 YO

X a&,v)atx,t)lG((sﬁ t)9 (ua U)) F”( W((S, t) A\ (u, U)) ds dt du dv1
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o

‘j” F"(W(b,, 1)) di ~ %jb2 F'(W(ay, 1)) dt

ay az

+

N

by by pu !
+Jal [J.az Jo az’I)EF ’W(u, t)) ds dt:l du.

Section 1 develops the parts of the multidimensional Hida theory which
are pertinent to our work. We will define the space of generalized Wiener
functionals (L?)~ and the operators 8, and 8. In Section 2 we will recall
the definitions of the d-dimensional Ito stochastic integral and the
Wong-Zakai integral. We show in Section 3 that both these integrals can
be realized in the Hida setting. Section 4 includes the definition of F(W(t))
and the proof of the Ito formula.

2. THE HIDA THEORY OF GENERALIZED WIENER FUNCTIONALS

Let #(R) be the Schwartz space of rapidly decreasing smooth real
valued functions on R? The dual space #*(RY) of #(R“) consists of
the tempered distributions. Thus we have the continuous inclusions
F(R?) = L¥RY) <« £ *(R?). The cannonical bilinear form connecting & and
F* will be denoted by {x, (), xe #* and £e &. Also, & is a countably
Hilbert nuclear space [7], ie, & is topologized by a Family {|-|,;
p=1,2,..} of Hilbertian norms with the following structure: Let %, be the
completion of & with respect to the norm ||-|,. Then

S=(\%ec e ch=L(R)cSFtcF¥c - cl)Fr=9*
4 P

where the inclusions ¢,,,< ¥, are Hilbert-Schmidt, and the inclu-
sions ¥, and ¥Fc&* are continuous. For the nth Hermite
polynomial H,(x)=(—1)" exp(x?) D7 exp(—x?), let A,(x)=(2"n! ﬁ) —i2
H,(x)exp(—x?%2). Then {h,}® , is a complete orthonormal system in
LAR) and {Appy.. b o mroimgm0s WHETE Ay (11, s 82y =TT | By (1)), s
a c.o.ns. in L?(R9). Let us denote this basis by {&,}_,. For fe #(R9) and
p an integer, | f12=22_, (2n+1)* (£, £,)% the inner product on L*(R)
being denoted by (-, -). Note that &, = {fe L*(R?):| fll, < 0 }. Also, it is
true that 5 =%_ .

The probability space (¥ *(R9), %, u) determined by the characteristic
functional C(&)=exp(— 1| &]|%) is called the d-dimensional white noise
space. Here, ||-|| is the L*(R¢) norm. For ¢{e &, the random variable
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(x, &> on (F*(RY), B, u) is normally distributed with mean 0 and
variance ||¢]|2. Moreover, since ¥(R“) is dense in L*(RY), if /e L3(RY),
{-,f> is Gaussian with mean 0 and variance | f]|°>. We thus have that
{{x,1,>: A is a Borel subset of R’ with finite Lebesgue measure} is a
normal random measure on (¥ *(RY), 8, u).

For a positive integer d, set RY ={a=(ay,.., a,)eR%a,>0} and
denote by R, the rectangle [1¢_, [0,a,[. For aeR%? and xe*(RY),
Wia, x)= (x, 15, > is a Wiener process with d-dimensional time. For d=1
we have the Brownian motion B(z, x) = {x, 1o -

THEOREM 1. (Wiener—Ito decomposition). L*(¥*(R%)) has the direct
orthogonal decomposition LX(S*(R%))=Y"_,® K, where K,=R and for
n>1, K, is the space of n-tuple Wiener integrals based on the normal
random measure W = (x, 1,) mentioned above; i.e., each ¢ in K, has the
form

(p(X) =In(f) = I(Rd)nf(ul’ ey un) dW(ul’ X) e dW(u,,, X),

where f e L*((R%)"): the L*((R?)") functions which are symmetric in the u,’s.
Moreover, (@, ¥)3pvray =1}, &) @iy, Where Y€K, is the multiple
Wiener integral of g.

For the proof of this theorem see Ito [6]. It is also shown there that if
{n;}*_, is an orthonormal set in L2(R?) and p, + --- + p, =n, then

J‘(Rd)n ni(ay)--- 'Il(“pl) ’12(“p1+ BE "'72(up1+p2) ..
X(Wpy 4y pe—1) - ilW, ) dW(U,) - - dW(u,,)

=2 11 ([ eawiy/2),

where H, is the Hermite polynomial of degree p,. This product is called a
Fourier-Hermite polynomial of degree n based on {#,}. Then for a
cons.{n;} of L}(R9), K, is spanned by the Fourier-Hermite polynomials
of degree n based on {#,}. Note that for a Borel set 4 with finite Lebesgue
measure [, dW(w)= (x, 1,). Thus, for fe LYR?), <x, [ = [paf(u) dW(u).

In the Hida theory, functionals in L*(#*(R“)) are studied by means of
a transformation to a space of functionals on % (R?). Once this transforma-
tion is made, the resulting functional has a very nice form which allows us
to work in 32, @./n! L*((RY)").
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DeriNITION 1. The S-transform on L2(#*(R9)) is defined by

(So)&)=| _lx+¢)dutx)

where ¢ € L}(¥*(R%)) and (e &,

The image of the S-transform is a space of functionals on & and is
topologized so as to make S a Hilbert space isomorphism, see [5]. Just as
in the one-dimensional case, when restricted to K, the S-transform has a
particularly simple form.

THEOREM 2 (Integral representation theorem). Suppose o€ K, is of the
form

o) = |, S0 0,) Wy, 5) - W, ),

with f e L*((R4)"). Then

(Sp)(&)= f(Rd)nf(ul, s ly) E(uy) -+ E(u,) duy -+ du.

Remark. The proof is essentially that of the one-dimensional case found
in [5] for the transformation 7.

Generalized Wiener functionals arise in the following way. For x e R, let
H*(R™) be the Sobolev space of order o over R™, ie, H*R")=
{feL*R™): [pu(L+ 122 [(Ff)A)*di<}, F being the Fourier
transform. This is a Hilbert space with dual H ~*(R™).

Define K to be the elements of K, which are n-tuple Wiener integrals
of functions in H®*+Y2(R"), Here H"d+V2(R")=H "+ VY(R"™)A
L*((RY)"). We then have

KLn) (=l — K, > Kf,"")

|

\/mﬁ(nd+l)/2(Rnd) - ﬁEZ((Rd)n) c ﬂﬂ—(nd+l)/2(Rnd)

and K{~™ is defined as the space of generalized n-tuple Wiener integrals of
elements in H ~4+V2(R"). More precisely, for ¢ =I,(f), fe L2((R%)"),
define {|o|| = (\/ri ) 1SN g-a+ vz gney and let K (=" be the completion of K,
with respect to || -||. We will write formally that for o K™,

)= L) = | Sl ) AWy, x) - dW ),
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where fe B~ D2(R™), K=" can be viewed as the dual of K"’ with the
pairing < -, - >: For ¢ € K" represented by fe H"**"*(R"™)and y e K"
represented by ge H ="+ V2R, (i, 0> =n!{g, .

ExaMpLE 1. For H,(x, 6°)=(1/n!)(—0c?)"exp(x*/20%) D" exp(—x?/20?)
and 4= (e ¢, .., e)eR%, consider ¢, =n!H,[(1/e))(x, 1y, a0, 1/67],
n>2, which is in K. In fact, ¢, is the multiple Wiener integral of (1/(¢7)")
Lrperag() - 1poeq ac(u,), where [t t+4[ = {xeR;; t<x<t+4}
Since ®), (1/&* )1[““,[ ~+®,0,in H- d+ 2R as & — 0, lim, | o @ 4 IS
in K{°™ and is represented by ® é,. In particular, for n=1,
hme_,o(l/a 3x Vg apy =11(8,) is in K{~ ”

Define (L*)* =37 @K and (L?)" =32 K™, where K{ is
the real number system. Thus we have

(L) < LA(F*) = (L)

(L*)* is called the space of test functionals and (L?) is called the space
of generalized functionals. For ¢ =3Y*_ ¢, in (L*)” and y =Y > . ¢, in
(LAY, o, ¥ ) =32 o L@, ¥,>. We can see that the S-transform extends
to (L?)".

In the Hida theory {B(¢), € R} := {,; te R} is viewed as a coordinate
system in % * so as to take time into account. Derivatives are then taken
with respect to this coordinate system. This idea can be carried over to
higher dimensions.

DEFINITION 2. Let U be the S-transform of ¢ e (L?)~. Suppose the first
variation of U at ¢ is given by

(BU)e ()=, U'(& w) n(w) du; e #(RY)

If U'(,,t) is an S-transform, then 0,¢ is defined to be the generalized
Wiener functional with S-transform U’(-, t), i.e.,

S(3,0)(E)=U'(E, 0).

The adjoint 0 of 0, is defined by <y, o) =<y, 0,0), ve(L*),
@e(L?*)*. Thus 9, is a linear operator whose domain is not all of (L2)~.
The following, however, can easily be shown.

THEOREM 3. (A) For ¢ = qipf(uy, .., w,) dW(u,)---dW(u,) in K",

do=n|  fituy,..u,_,)dWu,)--dW, ,)

(Rd)n~l



WHITE NOISE APPROACH 7

(B) For ¢ ={gayf(uy, .., n,) dW(u,)---dW(u,) in K",

oro=|

(R

" (6t®f)(“1a e Uy ) AW () - dW(u, . ).

Here, ® indicates symmetric tensor product. Consequently,
(1) ;KW K" andd¥: K" > K, WY and,
(2) for(P:Z:lo(Pn in (L2)79

St e)&)= i S0 e )E) = 2 &(t) S, (&)=E(t) Sp(&).
n=0 n=0

DEFINITION 3. Suppose ¢(t)e(L?)~, 1€ [a, b]% and it is true that

(1) For every ¢ in (L*)*, t— {¢(z), ¥ ) is measurable and
integrable, and

(2) lﬂ—»f[a,b].z {p(t),y>dt is a continuous linear functional
on (L%)*.

Then |, ,3¢¢(t) dt is defined as the element of (L?)~ such that

<'[ta,b]d oo & l//> N -[[a.b]d Coln). ¥ dr.

where ¥ e (L*)*.

One can similarly define |, ,10p @(t;, ta, -y t,) dt, dt, ---dt,. These are
just integrals of the Pettis type [3]. It is easy to show that if
ftasyi @02 dt < o, then [, .10 @(t) dr exists and

2

<b-ay'[ ol d

'f[ i o(t)dt

EXAMPLE 2. Suppose that ¢(t)=[ e, f(t, 0y, .., u,) dW(u,)---dW(u,),
where f'is in L*(([a, b]¢ x (R?)"). The proof of existence of |, ,1¢ 0% @(t) dt
and the calculation of its value goes as follows:

sro®=] (0. SO, - Uy, ) AW, - AW (@, L)

(RE)"

and

[ torewizd=[ m+1!]6,@ S0 d.
[a,b)4 {a,61¢

a,b
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But,

. | F (8,8 £()(M)I°
H53®f(t)”2— :JR‘I(M“ (1 +(|l|2)(jt:((n+l)+l)/2 dh

Iexp(—zni(ils it )“d) 't) f(f(t))(/lde 13 otos /{m“.d)'z 4\
:LRJ(H) (1+|x|2)((n+1)d+1)/2

dh

_ IF SOy 15 o Aoty )
_de(n+l) (1+|)\‘lz)((n+l)d+1)/2

Iy—(f(t))(ll’ 155 ’lnd)l2
< const XJ‘(R”’)" (1 + |l'2)(nd+l)/2

=const x |g(t)||~ .

dh

Thus,
[ 18.&rwit de<oo
[a,6]?
and J‘[a’b]d Of o(t) dt exists. Furthermore, we have that
s(j am(t)dt) @)
[a51?
= SCre O d=]  &© S

=[] g, u) &) Ea,) duy - du, e
[a,b]d dyni

(R7Y

= Ligpp (O f(6uy, w,) E(0) E(uy) - S(u,) dt du,y - du,.

(Rd)n+l

Letting h(u,, .., u,, ) be the symmetrization of 1., ,. (v,)f(uy, .., w, ),
we then have that

[ s@re®)e) d
[a,5]¢

= h(uls""un+1)€(u1)'“§(un+l)dul"'d“n-{-l

(Rd)n+l

=[] ) ) ) | 0
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Hence,

L,,,,,]d oro(t) dt=|

huy, .., u,, ) dW(u,)---dW(u,, ).
(Rd)n+1

3. STOCHASTIC INTEGRALS OF PROCESSES WITH
MULTIDIMENSIONAL TIME PARAMETER

Let < be the partial ordering on R% where (X, .., ;) <(¥1, . ya) if
and only if x,< y;; 1 <i<d. Assume {W(t, w); te R% } is a Wiener process
on a probability space {2, #, P) and denote by £, the o-ficld generated by
{W(t); t<a}.

Let T=[a, b] = R and consider the Wiener process { W(t); %, te T?}.
Cairoli [1] defined the following Ito-type stochastic integral for d=2
which extends to any d>2. Assume ¢@(t, w) satisfies the following condi-
tions:

(1) ¢(t, ) is a bimeasurable function of (t, w) with respect to
4 ® %, where ¢ denotes the o-field of Borel sets in T

(2) For each te T% ¢(t, w) is F-measurable. In this case ¢ is said to
be non-anticipating.

(3) [ E@*(t, w) dt< 0.

First suppose that ¢ is simple, ie., ¢(t, 0)=0g,(w), ted,, v=1,2, ..k,
and ¢@=0 eclsewhere, and that 4, are disjoint rectangles 4,=
[T1%, [a%, b°[ = T Then the Ito integral of ¢ is

H

| olt.0)aWt.0):=F ¢.(0) 4, W(@),

where for a rectangle 4 =[1%_, [a;, b;[, AW(@)=3, (—1)"YW(t, w), the
sum being taken over the 2¢ vertices {t; t,=a; or b;} and =(t) is the
number of b.’s in t. The definition of |« ¢(t) dW(t) is then extended to
non-simple ¢ by a standard completion argument.

Wong and Zakai [13] have defined a second type of stochastic integral
which we will now describe. Both of these are necessary to represent
elements of L*(S*(R?)).

For (s, 1), (4, v)e T? we will use (s, ) v (u,v) to denote (max{s,u},
max{v, t}). Let G={(z,2')e T*xT% z and 2z’ are unordered}. Suppose
that Y(w, z, z') is a function defined on 2 x 7% x T? satisfying

(1) ¥(w,z,2') is jointly measurable with respect to F @9 ® 4.
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(2) For each z,z'e€ T?, the function (w, z, z') is measurable with
respect to &, , ..

(3) Efp.pyi(z2)deds <.

Assume that y(w, z,z') is simple: Y(w, z,z')=a(w) for ze 4, and 7' € 4,
and zero elsewhere. For n=1, 2, .., partition T into segments of length
(b—a)/2" and let P, be the partition induced on 72, with partition points
{z;}72%, and let d;=[z;,2,,,,.[. For 4;,W=W(z, )~
Wiz, )+ Wz,)— Wiz, ;. ), define

20 —1

LW = Y ¥(zg 2m) 16(2gs Zem) 4, WA, W.
ki,’p{zill
It is shown in [13], that I3(y) converges in L*(2) as n — oo. The integral

is then defined to be this limit:
[ j 2 2] V(z, 2') dW(z) dW(z') = lim in q.m. I(Y).
T*xT n— o

Note that if 4, x4, <G, then I,(y)=ad, WA, W. The definition can now
be extended to all functions satisfying the above conditions by approxi-
mating with linear combinations of simple functions.

4. STOCHASTIC INTEGRALS USING THE HiDA THEORY

For a non-anticipating process ¢(t, x), t€ [a, b] <R, and xe #*(R),
such that E {2 |¢(1)|2 dr < oo, the Ito integral {2 o(t, x) dB(z, x) with respect
to the Brownian motion B(t, x)= (x, 1, ) is defined, and Kubo and
Takenaka [9] have shown that

b b
J <p(t,x)dB(t,x)=f d* (1) dr.

The result is also true for d-dimensional time, where B(:, x) is replaced with
the Wiener process W(t, x)=<x, 1,4, ), teR% and xeS*(R. The
integral on the right, however, may exist whether or not ¢ is non-anticipat-
ing.

THEOREM 4. Suppose ¢(t) is a stochastic process on L(F*) such that
E[tapylo®)>de<co and E [, 414§ 10710, 0(1) 8,0(T)| du dv’' < 0, then
§iap1e 0 @(t) dv exists and E I].[a'b]d 0ro(t)dt|*=E [, 1 lo(r)|> de +
E.f[a,b]z .f[a,b]z 0. ¢(t) 0.9(t") dv dv’.
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Remark. The proof of this theorem for the one-dimensional case can be
found in [11] and it requires no change for higher dimensions.

THEOREM 5. If (1, x), 1eRY, xe #*(RY), d>1 is a nonanticipating
process such that E [, ,1419(t)|* dt < 0, then

Juo

pydW()=|  aro(r)dr,
a.b3! [a,5]¢
where the integral on the left is the d-dimensional Ito integral.

Note. Since ¢(t) is nonanticipating, E{p,,3{;, 452 0.0(t)0,0(7)
dr dv’ =0 and we have that |, 0¥ ¢(t) dt exists.

The proof of this theorem for 4= 1 hinges on being able to write a multi-
ple Wiener integral as an iterated stochastic integral. This, of course,
cannot be done in general for higher dimensions because < is not a linear
ordering. We do, however, have the following

Lemma 1. Let  gluy, Wy, U, ) = Ly o (g5 s 0,) (0,4,
u, .., w,), where fe L*(([a, b19)"*") and § is the symmetrization of g. Then

S sy B0 o ) AW - A )

SN N N T e

»a)un 41 ["

xdW(ul)---dW(un)] AW, ).

Proof. Because of the cumbersome notation we prove the lemma only
for d=2. By [6] we may assume that

SO0 ) =1 gt (Was 15 U s ),
where the 4,’s are disjoint rectangles in [a, 51> Let
D={(x,y);(x,y)e[a,b]*and x< y}
D,=[c;_y,cl, i=1,.,2"—1,wherec,=a+i(b—a)2",
E;=[c;b], i=1,.,2"—L
Then lim,, _, , >277" 1.5 =1p, and since
Vg 11 Y1) o (X5 ¥a))
=1p(x1,8) - 1p(x,, 8) 1p(y15 1) -+ 1p( Vs 1)y
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we have that, pointwise and in L*([a, b]17)"*", g((x,, 1), = (X, ¥,), (8, 1))

is the limit of 37, . ;. T, -, ID,pr,p(xp7s) leprj,'(yp’ D114 (xp, p1) -
1, (s, t)or

n+1

n
Z [:H l(D‘kXDik)f‘Ak(xk’yk)] 1(E’1X5]1]ﬁ '--ﬂ(Ei”XEj,,)ﬁAn+l(s’ t)

Ny Lk =1

For sets 4 and B, 4 < B indicates that for any x in 4, x < y for every y in
B. Note that (D, xD,)NA,<(E,xE;)n -+ n(E, x E )nA,,, for
k=1, .., n. Therefore, we can see that

g(“l"“9 un+1)=lim Z 141,1(“1)"'1Azi (urz) lA,iH(un+1)a

Zipp e Zig 4 |

where z, is the lower left-hand corner of 4, all the rectangles
4,4,  are disjoint, and 4, <4, fork=1,.,n Let
n+ 4 iy

zj
h(uy, o w1y =1,, ()1, (u,) Ly, ()

with the above conditions. Then

. 1
h(uy, ... “n+1)=(n—+T)!Z Ly 1) -1y, (w) 1, (w0 )

)

and the multiple weiner integral

J ﬁ(“l;-.-, un+1)dW(u1)...dW(un)
[(a,a),un41["
1 !
=m 1A1n+1(un+l) n'All WAZZW-. .Aan
1

:(’l+ 1) Az]W“.Az"WIAInH(“"*'I)

is measurable with respect to #(W(u,, )) and in L*([a, b]>*x ¥*). We
then have the iterated stochastic integral

1
(1) [a.b]? [J‘[

1
D [ab]z[(n+1)""W"'A‘"Wl"'"“(""“)]dW(""“)

=4, W4, WA, W

Zn+1

FUg, Uy ) dW(R) - dW(u,,)] AW, )

(a,a),u, 41 ["

= hug, .ow, ) dW(u,)---dW(u,, ).

([a,b]z)"+l
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We now have that the result holds for functions of the form 4 and thus
sums of such functions. By taking limits, we get the general result.

Proof of Theorem 5. By the Wiener-Ito decomposition of L2(&#*(R%)),
it suffices to assume that @(t) is 2 multiple Wiener integral. Let 7= [a, b]¢
and suppose

o(t) = Lw FT 0 o 0,) dW(,) - dW(W,), e LT x (RYY).
Since @(t) is nonanticipating,

o(0)=| S0y, ) dW(,) - dW(w,)
[(a,..,a),t["

Let g(uy, ., 0,, ©) =11, oo (U5, - 0,) f(T, 04, . 0,). Then
[ oz at
T

=j §(uy, o u,, ©) dW(u,) -+ dW(u,) dW(x)
(T)n+l

=(n+1)j j §(uy, - u,, T) dW(uy)---dW(u,) | dW(1).
T {(a,...a),t["

But for u, <1, .., u,<T7,

g(ula ey ll,,, t) n+ 1)| Z f(t un(l)’ sery un(n))

5t

1
( +1)'nf(t JUy, . W)

(where £ is the symmetrization of f in the variables u,, ..., u,,).
Therefore,

f 0Fop(t)dt= f U f(z, uy, ..., u,) dW(u,) dW(u,,)] dW(z)
T T [{a,..,a), <"
= f (1) dW(x).
[a,6)¢

We will next consider the integral defined by Wong and Zakai [13].
This integral requires measurability with respect to &, ,. for z, 2’ € [a, b]°.

zvz
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We show that it also can be expressed in the white noise setting. We first,
however, consider the existence of j“[a, sy Or 07 @(z,2') dz dz’, where
¢(z, z') may not be measurable with respect to #, ..

THEOREM 6. Let T=[a, b]? and ¢(z,2') be a stochastic process such
that |- E|p(z,2'))* dede’ <o, [ E|[0,0(2,2') (0,0(z,v)+3,0(v,2)+
3,0(v,2)+0,0(z,v))| dvdeds <, and [ E|0,0,0(z,2') 3,0, ¢(u, V)|
dudvdzdzr <oo. Then | 20}0F ¢(z,2') dz dr’ exists and

2

E =_[T2 E(loz z)*+ o(z,2') o(z', 2)) dz d2’

j 0%0% o(z, 7') dz do’
TZ

+ [ El0,00,2)@ 0@ +3,00.2)

+ 7,00, 2) + 5,000, V)] dv da d’

+ J Ed,0,0(z,2') 0,0, ¢(u,v)dudvdzdr
T4

Remark. The idea for this proof is the same as for the one-dimensional
case [11] but there are more cases to consider.

THEOREM 7. Given a jointly measurable function ¢(x,z,2') on
F*(RY) x [a, b}* x [a, b]? such that

(1) For each pair z,7', ¢(x, 2, Z') is measurable with respect to %, , ,.
(2) Efiusyfrasy 9’z 2') dzde' < 0,

it follows that

[ ] erertamr)emy)did
(263 “[ab]
= [ f ] o(z, ') dW(z) dW(2').
2.6 x[a,b]?

Here G={(z,2')€ [a, b]*x [a, b]* such that z and 7' are unordered} and
[§ ta512x (a,072] denotes the Wong and Zakai integral.

LemMMA 2. Let T=[a, b]% For fe LX(T"*?), let

glug, s W, 2,2 ) =11, oy (W, u,) 15 (2,2) f(2, 2, 0y, s m,).
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Then,

fr...jTg(ul, Wy, 2, Z) dW(,) - - dW(u,) dW(z) dW(2')

_(n+2)(n+1) , |
- 2 '[TXT:l <J‘[(ﬂ,a),z\/z’[ng(u1’"" u,,z12)

xdW(u,) - --dW(u,,)) dW(z) dw(z’).

Proof. As in Lemma 1 we may assume that

f(Z, zl7 U, .., un) = lA,,+2xA,,+1xA1x ce A (Z, z,i U, .., un)’

where the A4,’s are disjoint rectangles in [a, b]%

Note that G=G, U G,, where G, = {((s, ), (51, t,))|s<s, and t>1¢,}
and G,={((s, 1), (55, 1,))|s>s, and t<t,}. Let D={(x,s)|x<s} and
D' = {(x,s)|x>s}. Then

L, ((s, 2), (54, )= 1,05, 8:) 152, t,)
and

Lo (G5, 2), (51, 1)) =1 (s, 51) 1 p(t, 1y).

Let P,= {c;} be the partition of [a, b] in segments of length (b— a)/29,
Di= [Ci—la ci]’ Ei= [C,-, b]s E:= [a9 ci[a SO that

1p(s,8)=1m Y 1, .(s,5,) and  1,(s,1)=lim Y 1, (1 1,)
g— © g—=x©

Thus

Va0 v 6L {(X 1 Y1)s oo (X0 ¥a) 16((s, 2), (51, 21))
=i@ansn v enm (X1 Y1) v (X0, ¥a) 16,((85 2), (51, 21))
1l ansn v eome (X1 Y1) o (X0 72) 16,((5, 1), (51, £1))
=L raayn s orl{X1s Y1) v (X5 ¥0) 16,((s, 8), (51, 11))
+ Lraay s (X1s Y1)y s (X5 Ya) Lgy((85 2), (59, t))
=1p(x1,81) -+ 1p(Xns 51) 1p(y1s 8} - 1p( ¥ ) 1p(s, 51) 1 p(2, 21)
+ 1p(xy, 81) - 1p(Xps ¥u) 115 ) - 1p(Wns 8) 1 pels, 51) 1 (2, 24).

683/37/1-2
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Substituting this formula into the definition of g, one sees that

g(ul$---’ una Z, Z/)=lim Z IA.(ul)“'ldzl (un) ldl1 I(Z) 1_41’ ’(Z/)’

= %y
Haesin 2

where A5 dy
4 n+
for k=1, .., n. Consider

are disjoint rectangles, 4 x A “CG, and Az,k<

L1 Zi,

Zippy VY Tigyy

h(ul’ ey Uy, Z, Z,) = ldll(ul) e 141"(“") 141,”1(1) 1

(z')

Aln+2

with the above conditions. We obtain that

J ﬁ(ula ey Uy Z, Z’) dW(ul) T dW(un)
[(a,a)zv z'["

1
= 1 o (U, ) ————
[y Traara e s Vt2)

x 2 Lo ()l (@1, (@)dW()---dW(u,)

_.L,, (n+2)! |:Z "mu o 1Alt(n)(un) 1A’n+l(z) 1Aln+z(zl)

#3 L 0L (00) L ()1, (0) | W) - aWw,)

1 i ’
N (n + 2)' n! I:]‘A‘n+l(z) 1A1n+2(z )+ 1A’n+l(z ) lAer-Z(Z)] Azl W a Az” W’

which is measurable with respect to #(W(z v z')) and in LT x T x &*).
We can then look at the Wong and Zakai integral:

x dW(z) dW(z')

1

x dW(z) dW(z')
=4, W---4, W4, WA, W

Zn+2

= h(ay, .., u,,z,z')dW(u,)---dW(u,) dW(z) dW(z').

Tr+2

The Lemma now follows easily for g.
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Proof of Theorem 7. Here again let T=[a,b]> Also, set
[(a,a),z v z'[ = D. Assume

o(x, 2,7) =j j fz 7, uy, .ou,) dW(,)---dW(u,), fe LX(T"*2).

Defining g(u,, .., u,,z,z')=1,(uy, .., 0,) 15z 2')f(z, 2, uy, .., u,), we
obtain

[ eoricanreas)aa

=| 8y, .,u,z2)dW(u,)---dW(u,)dW(z)dW(z)

T+

2 1

xdW(u,)--- dW(u,,)) dW(z) dW(z').

Note that for u,, ..., u, <z v Z/,

g‘(ul, ey un’ z, Z’)
1

=i 2)[f(z 7, u, .. 0,)+ /(2 2,0, ., u,)],

where f'is the symmetrization of f in the variables u,, .., u,. Thus we have

j f 020215z, 7') 0z, ') du do’
TYT

1
=U ](f lo(z. 2)5 (f(z. 2, uy, s wy)
TxT D”*

+f(z,z,uy, .., u,)) dW(u,)--- dW(u,,)> dW(z) dW(z’')

1
= U ] (16(z.2) 5 (0(z 2) + ¢(z', 2)) dW(z) dW(2')

TxT

- [ j ] o(z, ') AW(z) AW(Z).
TxT
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4. A GENERALIZED ITO FORMULA FOR TwoO-DIMENSIONAL TIME

In order to develop our generalized Ito formula, we will need to define
the generalized Wiener functional F(W(s, t}), where F is a tempered dis-
tribution. This is the analogue of the one-dimensional time case given by
Kubo [8], Kuo [10], and Russek [12]. We will use the Russek approach
which generalizes straightforwardly to higher dimensions.

Let H,, n >0, denote the nth Hermite polynomial: H,=1 and

(= lfn exp(x%/2) D" exp(—x%/2).

Jn!
For feL*(R? with L2-norm not zero, let I(f) represent the Wiener
integral of f. The composition F(I(f)) is defined by

fee]

FUI(M)= X a,H,(I(f)o), (*)

n=0

Hn(x)=

where o= fll 2pey and a,=<{F, H,(x/0)g(x)); g,(x) denoting
(v/27 6) ™! exp(— x%/(20%)).

THEOREM 9. The series (*) is convergent in (L?)~ and
SFU(fINE) = (F = g2)({f, £).

The proof of this theorem can be found in the Russek paper for d=1,
but the proof does not depend on the value of d.

The Ito formula below is a generalization of that given by Cairoli and
Walsh [2] and Wong and Zakai [13]. For Fe #(R), one recognizes the
second integral in the formula as _[[(al,az),(bl,bz)] F"(W{z)) dJ(z) and we see
the Cairoli-Walsh formula. The conditions that Wong and Zakai place on
F to obtain their Ito formula ensure that F(W/(z)) is a martingale on every
increasing staircase. In this case only the first two integrals in the formula
would remain and we also see their formula.

THEOREM 10. For O0<a,<b,, 0<a,<b,, and Fe *(R),

F(W(b,, b)) — F(W(b,, a,)) — (F(W(ay, b,)) — F(Wl(ay, a,)))

by pby .
=["[ oty F(W(s, 1)) ds

a “ay

ALLELLT LT

X (0, )08 1 16((s, 1), (4, v)) F"(W((s, 1) v (4, v))) ds dt du dv]
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MUY F”(W(bl, ) de—2

> F”( Wia,, t)) dt

+J-b1 sz.[ ot > F”’(W(u, 1)) ds dt) du,

where G is the set of unordered pairs in 10, (b, b,)].

Remark. We will derive our formula by considering the S-trans-
formation.

LemMA 3. Suppose that Fe $*(R), 0<a,<b,, and 0<a,<b,. Then
F(W(by, by)) = F(W(by, a,)) — (F(W(ay, b)) — F(W(ay, a,))

by pby 2]
= (s,)F(W(bl,r))dsdr—jf 3% F'(Wiay, r)) ds dr
az oy

43 [ 6 F Wb, 1)~ a ' (Wlay, 1) dr

Proof.
S(E(W(by, by)) = F(W(by, a)) — (F(W(ay, by)) — F(W(ay, 6,))(¢)
= 8ouvy * FX& 110,6,,5003) — 8byan * FL&, Lio. 61,0012
- (galbz * FCE 190, 3a1,60010 — Bayay * FXE g0, ay,a10)

J (gblr*F<é’ 1]0 (51, r)]>)d"

f (galr*F<5, 10, (a1, r)]>)

The lemma now follows by a simple computation.

Lemma 4.

by by by
[ ot Fome, masa=[" " o, FWia,, 1) ds
@ o
4 by pay t Y
=Ll (Lz L 0t.n7 F"(Wlu, 1)) ds dt> du
by say by pt . . N
+L .[ L ,{0 08.0) 080y F"(W(u, t)) dv du ds dt

+J J o F'(W(by, 1)) ds dt.

az “ai
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Proof.
by by by na
[“ [ ot FOoWb 0y dsdi— [ [ o8, F(Wiay, 1)) ds di

@ 0 ay *0

=Jbz jal 0.y [F'(W(by, t))—F'(W(ay, t))] ds dt

b by
[ on PRy, 1) ds

ay Yay

Now,

S(Jb fo 8%, [F'(W(b,, 1)) — F'(Wla,, 1))] ds dt) (&)

by pay
=J. J. E(s, ) go, e * F'<E L30.6,.000 — 8aye ¥ F'CE Vg ay.y3 0 1 ds dt

a; Y0

by pay b g ’
=_LZ o é(s, t) J;l ;l;gut*F <€, 1]0,(u,t)]>du dsdt
by by pay ¢
=J‘ (J‘ 0 €(s5 t)Egm*F”/<€, I]O,(u.t)])dsdt) du

az

by pay pby ot
+J j .[ f é(s’ t) 6(”1 v)gm*F”<é’ l]oy(u,,)]>dv du ds dt.
a3 ¥0 0

aj
Proof of Theorem 10. By the lemmas,

S(LE(W(b,, b)) — F(W(b,, ;)1 - [F(W(a,, b)) — F(W(ay, a,)]

- % :2 F'(W(by, 1) i+ | "Wy, 0) d(E)

" o ! "
=Ll (J‘az jo (s, I)Egur * F"<E 110,y ds dt) du
by pay pby pt
+L2 L Ll fo Es, 1) E(1, 0) 8oy % F'<E 130, 000y7 ) dv du ds dit

by pby
+J‘ j (5, 1) 8ay % F'CE, Ly, 507 ds dt.

az ay
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Note that

by rbn
[T ] 2 0 800« F/CE g0y ds e

a vai
by by
=f j é(s9 t) [gsl*F’<£, 1]0,(S,I)]>
a val
by d
+js (8 x FXE 1]0,(u,,)]>)du} ds dt
by by
=f f E(5, 1) 8o * F' (& Lyg, 5.0 ds dt
a Yai
by pb1 b1 t
+J f 5(& t)_z.guz*Fl"<é, 1]0,(u,1)]>dud5dt
a “a *s
by sby pby pt
+ jaz '[al J‘s ‘[0 é(sy t) é(u9 U) gur * F’/<c, 1]0,(“,!)]> dv du ds dt.
Thus,

S(LE(W(by, b)) — F(W(by, a,))] — [F(Wl(ay, by)) — F(W(a,, a;)]

- % ” F'(W(b,, 1)) dt+%sz F"(W(ay, t)) dt)(&)

b by pay t
=L (J' J;) é((S, t) Eg,,, * F!rr(é, 1]0,(u,t)]> dsdt) du
by pay pby pt
+J J'O f L E(s, 1) E(ty 0) 8o # F'<E g0y dodudsde (1)
az ay

by b
+[ 7] 8 0 g FICE L dsat

a ta

b7 pbp pb1 t
[ e 05 gt F7CE o iy duds e

az Yap *s

+ rz Jbl jbl _[, E(s, 1) E(u, 0) 8o * F'<E Lyg iy y do duds dt.  (2)

ay Ya1 Vs 0

Observing that we can insert 15((s, ¢), (4, v)) in integrals (1) and (2) above,
we see that
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sz J”‘ jbl f, ¢(s, 1) &1, v) g ¥ F"<E, 10,0007 ) dv du ds dt

a; Y0 vYa

0
by pby pby pi
T et 1) 80 0) 8w FPCE Ny do ducdis di
0

SRR ISR SN
EANREIR RN
X &(s, 1) &1, v) 16((5, 1), (4, ©)) 8o * F"<E, V10,407 v du ds dt
by pby by pt 2 pal pay ot pay pay pay ot pay pby phy et
LT Cr -

X [E(s, 1) &(u, ) 16((5, 1), (4, 0)) 85,y v (o)
* F”<¢9 1 ]0,((590 v (u,v))] >] dv du dS dt,

which, because of 1 is
A A A A AT

x(&(s, 1) §(u, v) L6((5, 1), (14, 0)) 850y v ()
* Fﬂ(é: 1]0,((5_,) v (4,9))] >) dv du ds dt,

which by symmetry in the variables v and ¢ is

ISR NN
X (&(s, 1) E(u, v) 14((s, 1), (4, v)) 8(s,1) v ()

* F"(¢, 1]0,((3,,) v (o] >)dudydsdt

and the theorem follows.
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