Advanced in Control Engineering and Information Science

Delayed Feedback Control on a Class of Generalized Gyroscope Systems under Parametric Excitation

Li Xin-ye a*, Zhang Li-juan a, Zhang Hua-biao b, Li Xiao-lei a

aSchool of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China
bSchool of Astronautics, Harbin Institute of Technology, Harbin 150001, China

Abstract

The nonlinear dynamics of the parametrically excited vibrations of a class of generalized gyroscope systems under delayed feedback control is investigated by the averaging method and simulations in this paper. The influence of feedback control on the stability of the trivial solution and the amplitude of the periodic vibrations is presented based on Routh-Hurwitz criterion and the Levenberg-Marquardt method respectively. It is shown that the stability of the trivial solution can be varied when feedback control and time delay are employed. The amplitudes of periodic solutions can also be modulated greatly by feedback gain and time delay. However, the influence of time delay on amplitudes is periodic. The simulations obtained by numerically integrating the original system are in good agreement with the analytical results.

© 2011 Published by Elsevier Ltd. Open access under CC BY-NC-ND license.
Selection and/or peer-review under responsibility of [CEIS 2011]

Keywords: generalized gyroscope systems; the parametrically excited vibrations; feedback control; time delay

1. Introduction

As an interesting problem in classical mechanics, the motion and the wide variety of applications of various gyroscopes have been attracting numerous researchers’ attention for decades. Using parametric stabilization near a combination resonance, Mcdonald et al. [1] examined a class of weakly damped
gyroscopic system with certain symmetries, which is subject to small periodic excitations. Feng et al. [2] studied the dynamic characteristics of a vibrating wheel micro-gyroscope and obtained a time invariant model for the micro-gyroscope which is much simpler to use in the design of micro-gyroscopes. Chen et al. [3] investigated the dynamic behaviour of a dissipative gyroscope mounted on a vibrating base qualitatively by the centre manifold theorem and the normal form theorem. Tsai et al. [4] presented a nonlinear feedback control system of the single-axis gyroscope governed by a servo motor. The closed-loop feedback is designed to account for the gimbal nutation as the gyroscope undergoing an angular velocity in the perpendicular directions. In another paper [5], they explored the dynamics of a nonlinear micro-machined gyroscope, such as spring hardening/softening, hysteresis, typical resonances and chaos theoretically and numerically. Ge et al. [6] considered the nonlinear motion of a symmetric gyro mounted on a vibrating base with particular emphasis on its long term dynamic behavior for a wide range of parameters. Tong et al. [7] discussed the motion of a symmetric gyro which is subjected to a harmonic vertical base excitation without taking into account the damping effect. McDonald [8] analyzed the local and global bifurcations for parametrically excited gyroscopic systems, using rotating shafts and pipes conveying fluid as motivating examples.

In this paper, the dynamical behavior of the system described by Eq.(1), with 1:1 internal resonance and only one oscillator parametrically excited, is presented to investigate the effects of delayed feedback control and parametric excitation on response of such a nonlinearly coupled system when principal parametric resonance exist.

\[
\dot{x} + \omega_1^2 x = \varepsilon \left(c_1 \dot{x} - \beta_1 y - \beta_2 x^3 + F_0 \cos \omega t + g_1 x(t-\tau) + g_2 \dot{x}(t-\tau) \right)
\]

\[
\dot{y} + \omega_2^2 y = \varepsilon \left(c_2 \dot{y} + \beta_3 \dot{x} - \beta_4 y^3 + g_3 y(t-\tau) + g_4 \dot{y}(t-\tau) \right).
\]

where \(\varepsilon \) is a small positive parameter, \(\tau \) is positive time delay.

2. The modulation equations
For the case of principal parametric resonance and internal resonance, detuning parameters σ_1 and σ_2 are introduced such that
\[
\left(\omega/2\right)^2 = \omega_0^2 + \varepsilon \sigma_1, \quad \omega_k^2 = \omega_0^2 + \varepsilon \sigma_2.
\]
By the averaging method, the approximate solutions of Eq.(1) are supposed in the following form
\[
x = A_r \cos \left(\omega t/2 + \theta_1\right), \quad y = A_s \cos \left(\omega t/2 + \theta_2\right),
\]
where the amplitudes A_i and the phases $\theta_i (i = 1, 2)$ are time-dependent and governed by
\[
-2\omega A_1 = c_1 A_r \omega + F_d A_r \sin 2\theta_1 + \beta_1 A_s \omega \cos (\theta_1 - \theta_2) + 2 g_1 A_s \sin \frac{1}{2} \omega \tau - g_2 \omega A_s \cos \frac{1}{2} \omega \tau
\]
\[
-4\omega A_2 = -3\beta_2 A_2 + 4 \sigma_1 A_2 - 2 g_3 A_s \sin \frac{1}{2} \omega \tau + 2 g_3 A_s \cos \frac{1}{2} \omega \tau + 2 F_d A_s \cos 2\theta_1 - 2 \beta_1 A_s \omega \sin (\theta_1 - \theta_2)
\]
\[
-4\omega A_2 A_2 = A_2 \omega c_2 A_s - \omega A_1, \beta_1 \cos (\theta_1 - \theta_2) + 2 g_3 A_s \sin \frac{1}{2} \omega \tau - g_4 A_s \omega \cos \frac{1}{2} \omega \tau
\]
\[
-4\omega A_2 A_2 = 2 g_3 A_s \omega \sin \frac{1}{2} \omega \tau - 2 \omega A_1, \beta_1 \sin (\theta_1 - \theta_2) + 4 g_3 A_s \cos \frac{1}{2} \omega \tau - 4 A_1, \sigma_2 - 3 \beta_2 A_2 + 4 A_1, \sigma_1
\]
where the dot indicates differentiation with respect to $T = \omega t$. Equation (4) is an autonomous dynamical system, the fixed points of which correspond to the periodic motions of the system described by Eq.(1). It is clearly seen that the addition of feedback control modifies the modulation equations.

3. Stability of the trivial solution

In the investigation of stability of the trivial solution, it is necessary to express Eq.(4) in Cartesian form. For this purpose, the first-order approximation can alternatively be expressed in the form
\[
q_i = A_i \cos \theta_i, q_2 = A_i \sin \theta_i, q_3 = A_2 \cos \theta_2, q_4 = A_2 \sin \theta_2.
\]
where $q_i (i = 1, 2, 3, 4)$ are governed by the following equations.
\[
\omega q_1 = -\frac{1}{2} q_1 c_1 \omega - \frac{1}{2} \beta_1 q_1 q_1 - q_3 g_1 \sin \frac{1}{2} \omega \tau + \frac{1}{2} q_3 g_3 \omega \cos \frac{1}{2} \omega \tau - 3 q_2 \beta_2 \left(q_1^2 + q_2^2\right)
\]
\[
\omega q_2 = -\frac{1}{2} q_2 c_o \omega - F_d q_1 \omega - \frac{1}{2} \beta_1 q_3 q_3 - q_1 g_1 \sin \frac{1}{2} \omega \tau + \frac{1}{2} q_3 g_3 \omega \cos \frac{1}{2} \omega \tau + \frac{3}{4} q_1 \left(q_1^2 + q_2^2\right) \beta_2
\]
\[
\omega q_3 = -\frac{1}{2} q_3 c_2 \omega + \frac{1}{2} \beta_3 q_3 q_3 - q_1 g_1 \sin \frac{1}{2} \omega \tau + \frac{1}{2} q_3 g_3 \omega \cos \frac{1}{2} \omega \tau - 4 q_2 \sigma_2 - 3 q_4 \left(q_3^2 + q_4^2\right) \beta_4
\]
\[
\omega q_4 = -\frac{1}{2} q_4 c_4 \omega + \frac{1}{2} \beta_4 q_4 q_4 - q_1 g_1 \sin \frac{1}{2} \omega \tau + \frac{1}{2} q_3 g_3 \omega \cos \frac{1}{2} \omega \tau + q_1 \sigma_2 + \frac{3}{4} q_3 \left(q_3^2 + q_4^2\right) \beta_4
\]
where the dot indicates differentiation with respect to $T = \omega t$. Equation (4) is an autonomous dynamical system, the fixed points of which correspond to the periodic motions of the system described by Eq.(1). It is clearly seen that the addition of feedback control modifies the modulation equations.
The stability of the fixed points is determined by the eigenvalues of the corresponding Jacobian matrix of Eq.(6). The eigenvalues for the trivial solution are the roots of

$$\lambda^4 + \delta_1 \lambda^3 + \delta_2 \lambda^2 + \delta_3 \lambda + \delta_4 = 0. \tag{7}$$

According to Routh-Hurwitz criterion, the stable boundaries for the trivial solution are given in $\sigma_1 - F_\sigma$ plane as shown in Fig.1, where solid and dashed lines indicate saddle-node and Hopf bifurcation boundaries respectively. Under the boundaries are the stable domains, which are larger than that of the case without feedback control. In Fig. 2, the boundaries of the trivial solution are given in $g_1 - \tau$ and $g_3 - \tau$ planes for $\beta_2 = \beta_4 = 1$, $c_1 = c_2 = 1$, $\beta_1 = \beta_3 = 10$, $\epsilon = 0.01$, $\omega = 2$, $F_d = 10$, $\sigma_2 = 0$, $\sigma_1 = 0$. Within those shaded domains, the trivial solution is stable. Figs. 3 and 4 are simulation results by numerically integrating Eq.(1) to demonstrate the trivial solution is stable or unstable.

Fig. 1 The stable boundaries of the trivial solution in $\sigma_1 - F_\sigma$ plane, $\tau = 1$, (a): $g_1 = 5$, (b): $g_1 = 5$

Fig. 2 The stable boundaries of the trivial solution in $g_1 - \tau$ and $g_3 - \tau$ planes

Fig. 3 Time history of the response (a)corresponding to Fig. 1(a): $(\sigma_1, F_\sigma) = (0,10)$, (b)corresponding to Fig. 2(b): $(\tau, g_1) = (2,2)$
4. Effect of feedback control on Amplitudes

The following two equations can be obtained from Eq.(4) by setting right-hand sides equal to zero and eliminating \(\sin(\theta_1 - \theta_2) \) and \(\cos(\theta_1 - \theta_2) \).

\[
8c_1A^2_1\omega^2\beta\beta\beta\beta A^2_2c_2 + 32\sigma_1A^2_1\beta\beta\beta\beta A^2_2\sigma_2 - 32\sigma_1^2A^2_1\beta\beta\beta\beta A^2_2\sigma_2 + 4g^2_2A^4_1\omega^2\beta^2 - 4F^2_4A^4_1\beta_3^2 \\
-24\beta_2A^4_1\beta_2^2\sigma_1 - 24\beta_1A^4_1\beta\beta\beta\beta A^2_2\sigma_1 - 18\beta_1A^4_1\beta\beta\beta\beta A^4_1\beta_3 + 24\beta_1A^4_1\beta\beta\beta\beta A^4_1\beta_3 \\
+24\beta_1^2A^4_1A^2_1\sigma_1 - 32\beta_2A^4_1\beta\beta\beta\beta A^2_2\sigma_1 - 24\beta_1^2A^4_1\beta_3\sigma_1 + 4c_1^2A^4_1\omega^2\beta^2 + 4\beta_1^2A^4_1c^2_2\omega^2 \\
+16g^2_1A^4_1\beta_3^2 + 16\beta_2^2A^4_1g^2_1 + 16\beta_1^2A^4_1\sigma_1^2 + 9\beta_1^2A^8_1\beta_3^2 + 16\beta_1^2A^4_1\sigma_1^2 + 4\beta_1^2A^4_1g^2_1^2 \omega^2 \\
+16\sigma_1^2A^4_1\beta_3^2 + 9\beta_1^2A^4_1\beta_3^2 + 24\sigma_1A^4_1\beta\beta\beta\beta A^2_2\sigma_3 + (24\beta_1A^4_1\beta\beta\beta\beta A^2_2\sigma_3 - 32\sigma_1A^4_1\beta\beta\beta\beta A^2_2g_3 \\
+32g_1A^4_1\beta\beta\beta\beta A^2_2\sigma_1 + 24g_1A^4_1\beta\beta\beta\beta \beta_1A^2_2 - 32g_1A^4_1\beta\beta\beta\beta A^2_2\beta_1 - 32\sigma_1A^4_1\beta_3^2 \sigma_3 \\
-32\beta_2A^4_1\sigma_1g_3 - 24\beta_1A^4_1\beta\beta\beta\beta g_3 + 32\beta_1^2A^4_1\sigma_1g_3 - 8c_1^2A^4_1\omega^2\beta^2_3 g_2 - 24\beta_1A^4_1\beta_3^2 g_1 \\
-8c_1^2A^4_1\omega^2\beta\beta\beta\beta A^2_2 g_4 + 8\beta_2A^4_1\beta\beta\beta\beta A^2_2 g_4 + 24\sigma_1A^4_1\beta\beta\beta\beta A^2_2g_3 - 16\sigma_1A^4_1\beta\beta\beta\beta A^2_2g_3 \omega \\
-12\beta_1A^4_1\beta\beta\beta\beta g_4 + 16\beta_1A^4_1\beta\beta\beta\beta A^2_2g_4 + 16c_1A^4_1\omega^2\beta^2_3 g_3 + 16\beta_1A^4_1\sigma_1\omega^2_3 g_3 - 12\beta_1A^4_1\beta\beta\beta\beta g_3 \omega \\
+16c_1A^4_1\omega^2\beta\beta\beta\beta A^2_2g_3 + 12\beta_1A^4_1\beta\beta\beta\beta A^2_2g_3 + 16\beta_1A^4_1\beta\beta\beta\beta A^2_2g_3 + 16\beta_1A^4_1\beta\beta\beta\beta A^2_2g_3 - 16\sigma_1A^4_1\beta\beta\beta\beta A^2_2g_3 \omega \\
+16\sigma_1A^4_1A^4_1\sigma_1 + 12\beta_1A^4_1\beta\beta\beta\beta A^2_2A^2_2g_3 + 8g_2A^4_1\beta\beta\beta\beta A^2_2g_3 \cos(\omega\tau/2) \\
-32g_1A^4_1\beta\beta\beta\beta A^2_2g_3 \cos(\omega\tau) - 16g_2A^4_1\omega^2\beta\beta\beta\beta A^2_2g_3 \cos(\omega\tau) - 16g_1A^4_1\beta\beta\beta\beta A^2_2g_3 \sin(\omega\tau) \\
+8g_2A^4_1\omega^2\beta\beta\beta\beta A^2_2g_3 \cos(\omega\tau) = 0
\]

\[
4A^2_2c^2_2\omega^2 + 16A^2_2g^2_3 + 4A^2_2g^2_4\omega^2 + 16A^2_2\sigma_1^2 + 16A^2_2\sigma_2^2 - 32A^2_2\sigma_3^2 + 9A^2_2\beta^4_3 \\
-24A^4_2\beta_1\sigma_1 + 24A^4_2\sigma_2\beta_4 - 9\sigma^2_3A^2_2\omega^2 + (16A^2_2c^2_2\omega^2g_3 - 12A^4_2\beta_4g_4\omega \\
-16A^2_2\sigma_2g_4 + 16A^2_2\sigma_1g_4\omega)\sin(\omega\tau/2) + (32A^2_2\sigma_1g_3 - 8A^2_2c^2_2\omega^2g_4 \\
-32A^2_2\sigma_3g_3 - 24A^4_2\beta_4g_3) \cos(\omega\tau/2) = 0
\]

Based on Eqs.(8) and (9), the variation of amplitude of periodic motions with time delay can be presented for different feedback gains as shown in Fig.4 since 3D-plot may be inconvenient to view. It is not difficult to find that the effect of time delay is periodic with period \(4\pi / \omega \), which can be verified by Eq.(4).
5. Conclusions

The averaging method and numerical simulations are employed in this paper to study the principal parametric resonance of a class of gyroscope systems under feedback control. Time delay in feedback and 1:1 internal resonance are considered. According to Routh-Hurwitz criterion, the boundary curves between stable and unstable domains for the trivial solution are given in excitation and control parameter planes respectively. The influence of control gains and time delay on the amplitude of periodic motions are presented by the Levenberg-Marquardt method. It is shown that the stability of the trivial solution can be varied when feedback control and time delay are employed. The amplitudes of periodic solutions can also be modulated greatly by feedback gain and time delay. However, the influence of time delay on amplitudes is periodic. The simulations obtained by numerically integrating the original system are in good agreement with the analytical results.

Acknowledgements

This research is supported by the National Natural Science Foundation of China under Grant No.10872063. The authors would like to thank the reviewers for their valuable suggestions.

References

