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We identified S100A4 as amarker of rhomboid (R) smoothmuscle cells (SMCs) in vitro (the synthetic phenotype,
typical of intimal SMCs) in the porcine coronary artery and of intimal SMCs in vivo in both pigs and humans.
S100A4 is an intracellular Ca2+ signaling protein and can be secreted; it has extracellular functions via the
receptor for advanced glycation end products (RAGE). Our objective was to explore the role of S100A4 in SMC
phenotypic change, a phenomenon characteristic of atherosclerotic plaque formation. Transfection of a human
S100A4-containing plasmid in spindle-shaped (S) SMCs (devoid of S100A4) led to approximately 10% of
S100A4-overexpressing SMCs, S100A4 release, and a transition towards a R-phenotype of the whole SMC
population. Furthermore treatment of S-SMCs with S100A4-rich conditioned medium collected from S100A4-
transfected S-SMCs induced a transition towards a R-phenotype, which was associated with decreased SMC dif-
ferentiationmarkers and increased proliferation andmigration by activating the urokinase-type plasminogen ac-
tivator (uPA), matrix metalloproteinases (MMPs) and their inhibitors (TIMPs). It yielded NF-κB activation in a
RAGE-dependent manner. Blockade of extracellular S100A4 in R-SMCs with S100A4 neutralizing antibody in-
duced a transition from R- to S-phenotype, decreased proliferative activity and upregulation of SMC differentia-
tion markers. By contrast, silencing of S100A4 mRNA in R-SMCs did not change the level of extracellular S100A4
or SMCmorphology in spite of decreased proliferative activity. Our results show that extracellular S100A4 plays a
pivotal role in SMC phenotypic changes. It could be a new target to prevent SMC accumulation during atheroscle-
rosis and restenosis. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The phenotypic heterogeneity of arterial SMCs is now well demon-
strated, mainly by isolating in vitro distinct SMC subpopulations from
the media in several species e.g. rat, dog, pig, calf and human [1,2]. Bio-
logical features such as high proliferative and migratory activities and
poor level of differentiation are typical of the intimal SMCs. In the nor-
mal porcine coronary artery media, we isolated, in addition to the clas-
sical spindle-shaped (S) SMCs, the rhomboid (R) SMCs. R-SMCs were
also recovered in higher proportion from the experimentally stent-
induced intimal thickening and exhibited features compatible with
their accumulation in the intima (i.e. enhanced proliferative and
onditioned medium; MMP, ma-
factor-BB; PDTC, pyrrolidine di-
d products; R, rhomboid; SMC,
eavy chain; S, spindle-shaped;
ase-type plasminogen activator
opean Symposium on Calcium.
, Department of Pathology and
erland. Tel.: +41 22 379 5764;

chaton-Piallat).
migratory activities and poor level of differentiation) [3]. By means of
a proteomic approach, we identified S100A4 as a marker of R-SMCs
in vitro andof intimal SMCs in vivo, in both pig andhumanarteries [4,5].

S100A4 belongs to a large family of low molecular weight Ca2+-
binding S100 proteins characterized by the EF-hand structural motif
[6,7]. Most S100 proteins can form homo- or heterodimers as well as
higher polymers [6]. Intracellular S100A4 is well established as a medi-
ator of cancer metastasis; in humans, it is correlated with poor cancer
prognosis and is used to evaluate themetastatic potential of various car-
cinomas [8–10]. S100A4 is synthesized and secreted from tumor and
stroma cells [11,12]. It exhibits both intra- and extracellular functions
related to mechanisms that could explain the contribution of S100A4
to the proliferative and metastatic potential of cancer cells. Intracellular
S100A4 promotes cell proliferation via its binding and sequestration of
the tumor-suppressor protein p53, abrogating the progression of the
cell division cycle [8,13,14], whereas extracellular S100A4 enhances
cell proliferation by interacting with epidermal growth factor receptor
ligands [8,14,15]. Intracellular S100A4 inhibits phosphorylation of tar-
get proteins in a Ca2+ dependent manner such as non-muscle myosin
heavy chain [16]. Moreover S100A4 could also interact with other cyto-
skeletal proteins, including actin [17] and non-muscle tropomyosin
[18]. These processes could influence cell shape and motility. As an
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extracellular protein, S100A4 through the receptor for advanced
glycation end products (RAGE), a member of the superfamily of immu-
noglobulin molecules [6], induces migration and production of matrix
metalloproteinases (MMPs) in various cells including tumor cells and
endothelial cells [8,14].

Herein we investigated whether modulation of S100A4 expression
and/or release induces phenotypic and biological changes in porcine
coronary artery S- and R-SMC populations. By using S100A4 plasmid
transfection and S100A4-rich conditioned medium (CM) treatment in
S-SMCs as well as silencing S100A4mRNA and neutralizing S100A4 an-
tibody in R-SMCs we conclude that extracellular S100A4 is essential for
the transition from S- to R-phenotype.
2. Material and methods

2.1. Cell culture and treatment

Coronary arteries of 8 month-old pigs were obtained from a nearby
slaughterhouse. SMCswith different phenotypeswere isolated from the
porcine coronary artery media using enzymatic digestion (S-SMCs) or
tissue explantation (R-SMCs, n = 15 for each phenotype). Endothelial
cells were also isolated from porcine aorta (n = 4) [3]. SMCs between
the 6th and 11th passages were plated at a density of 60 cells/mm2 in
60 mm culture dishes containing Dulbecco's modified eagle medium
(DMEM, Gibco-Invitrogen, Basel, Switzerland) supplemented with 10%
fetal calf serum (FCS, Amimed, Bioconcept, Allschwil, Switzerland).
After 24 h, S- and R-SMCswere treatedwith 30 ng/mL human recombi-
nant platelet-derived growth factor-BB (PDGF-BB, Sigma, Buchs,
Switzerland) for 48 h to induce phenotypic changes and/or S100A4 up-
regulation [4]. To neutralize the activity of extracellular S100A4, R-SMCs
were plated in DMEMplus 10% FCS containing 100 μg/mL specific rabbit
polyclonal anti-human recombinant S100A4 (Thermo Scientific, Basel,
Switzerland) for 96 h. This antibody does not cross-react with other
S100 proteins and has been shown tomarkedly attenuatemigratory ac-
tivities in pulmonary artery SMCs [19]. Unspecific rabbit polyclonal IgGs
were used as control at the same concentration. RAGE antagonistic
peptide (RAP, Thermo Scientific, Basel, Switzerland) was dissolved in
dimethyl sulfoxide at 40 mM and added to S-SMCs at a final concentra-
tion of 30 μM 2 h before adding conditioned medium (CM) collected
from pcDNA3- or pcDNA3-S100A4 transfected S-SMCs. S-SMCs were
treated with 20 μM pyrrolidine dithiocarbamate (PDTC; Sigma, Buchs,
Switzerland) for 30 min to inhibit NF-κB activation before adding CM.
2.2. Small interfering RNA and plasmid transfection

Specific siRNA expression vectors homologous to the coding se-
quence of pig S100A4 (S100A4 siRNA) from nucleotide position 186 to
206 and pig RAGE (RAGE siRNA) from nucleotide position 469 to 487
were selected. Nonsilencing (scramble) siRNAs were used as a negative
control. Human S100A4 pcDNA3 vector (pcDNA3-S100A4) and empty
pcDNA3 vector (pcDNA3) as a negative control were used. Transfection
of siRNA (40 nM for S100A4 and 160 nM for RAGE) and pcDNA3
(1 μg/mL) was performed on adherent SMCs using Lipofectamine
2000 (2 μL/mL, Gibco-Invitrogen) in OptiMEM (Gibco-Invitrogen).
After 6 h, the medium was replaced with DMEM containing 10% FCS
during 48 and 96 h for pcDNA3 vector transfection or during 48 h for
siRNA transfection. The medium was not changed during the time of
the experiments. Cells were fixed and processed for immunofluores-
cence staining or harvested for Western blotting and real-time PCR.
These experiments were repeated at least 3 times for each transfection.
S100A4 transfected SMC supernatants were also collected after 48 and
96 h for immunoprecipitation and competitive ELISA. Block-it Fluores-
cent Oligo (Gibco-Invitrogen) was used as positive control of transfec-
tion efficiency.
2.3. Conditioned medium treatment

Medium of S-SMC transfected with pcDNA3 or with pcDNA3-
S100A4 for 48 h was used as source of conditioned medium (CM). S-
SMCs used as target cells were plated at a density of 60 cells/mm2 in
60 mm culture dishes for 24 h. The culture medium was replaced by
the fresh CM from S-SMCs transfected with empty (pcDNA3-CM) or
S100A4 (S100A4-CM) vector, for 48 and 96 h. CM-treated S-SMCs
were fixed and immunostained for immunofluorescence. Protein and
RNA expression was examined by Western blotting and real-time PCR,
respectively.

2.4. Immunofluorescence staining

Double immunofluorescence staining was performed on adher-
ent SMCs. Cells were fixed for 30 min in DMEM with 2% HEPES
(Gibco-Invitrogen) and 1% paraformaldehyde (PFA, Fluka, Buchs,
Switzerland), then rinsed in PBS and further incubated for 5 min in
methanol at−20 °C. After washing in PBS, cells were double stained
with mouse monoclonal IgG2a antibody recognizing α-smooth mus-
cle actin (α-SMA, clone 1A4) [20] and a homemade mouse monoclo-
nal IgM recognizing the C-terminal sequence of S100A4 which does
not cross with other S100 proteins [4] or with rabbit polyclonal IgG
specific for NF-κB (P65, Santa Cruz Biotechnology, Inc., Heidelberg,
Germany) antibodies. Alternatively, cells were fixed for 30 s in etha-
nol at room temperature and stained with rabbit polyclonal IgG rec-
ognizing smooth muscle myosin heavy chains (SMMHCs, BT-562,
Biomedical Technologies Inc., Stoughton, Mass). FITC-conjugated
goat anti-mouse IgG2a, rhodamine-conjugated goat anti-mouse
IgM, and FITC- or rhodamine-conjugated goat anti-rabbit IgG were
used as secondary antibodies (Southern Lab, Birmingham, AL). Nu-
clei were stained by DAPI (Sigma). Slides were mounted in buffered
polyvinyl alcohol. Images were taken by means of an Axioskop 2 mi-
croscope (Carl Zeiss, Jena, Germany) equipped with an oil plan-neofluar
×40/1.4 objective and a high sensitivity, high resolution digital color cam-
era (Axiocam, Carl Zeiss) using the software Metafluor 4.01 (Carl Zeiss)
and processed using Adobe Photoshop.

2.5. Cell proliferation

To identify replicating cells, cultured SMCs were synchronized in
serum-free medium overnight [21], incubated with 5-bromo-2′-
deoxyuridine (BrdU, 10−5 M, Sigma) for 18 h at 37 °C and then fixed
for 5 min in methanol at−20 °C. After washing in PBS they were incu-
bated for 20 min in 1 M HCl followed by 0.1 M Borax, pH 8.5 for 5 min.
The incorporated BrdU was detected immunohistochemically using a
mouse monoclonal BrdU antibody (Dako, Copenhagen, Denmark).
Alexa 488-conjugated goat anti-mouse IgG (Molecular Probes, Eugene,
OR) was used as secondary antibody. Nuclei were stained by DAPI.
Slides were mounted in buffered polyvinyl alcohol. The percentage of
BrdU-positive cells was calculated usingMetaMorph 6.0 image analysis
system (Universal Imaging Corporation, Biocompare, San Francisco,
CA).

For evaluation of proliferation, cells were trypsinized and counted
using a hemocytometer. The results were calculated as the ratio of
counted to seeded cells, and then normalized as the percentage of con-
trol condition. Cells were further extracted for Western blotting.

2.6. Cell migration

S-SMCs were seeded onto matrigel-coated 96-well plates (BD Bio-
sciences, Basel, Switzerland) and grown to confluence. Confluent cell
monolayers were wounded with a pipette tip and the culture medium
was replaced by the CM from S-SMCs transfected with empty
(pcDNA3-CM) or S100A4 (S100A4-CM) vector for 24 h at 37 °C. The
wounded areas were monitored using an ImageXpress automated
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microscope equippedwith a 4 objective (Molecular Devices, Sunnyvale,
CA, USA). The area of cell migration was calculated using the
MetaMorph 6.0 software (Molecular Devices). The results were calcu-
lated as the ratio of the area filled by migrated cells at 24 h to the
wounded area at 0 h. Cell migration assays for each sample were per-
formed in triplicate, and 3 independent experiments were carried out
for each experimental condition.

2.7. Protein extraction, electrophoresis, and Western blotting

SMCs were trypsinized and proteins were extracted as previously
described [4]. Protein concentration was determined according to
Bradford [22]. Proteins were separated by SDS-PAGE on 4–12% mini
gels (Bio-Rad, Basel, Switzerland) and stained with Coomassie brilliant
blue (R250, Fluka). For Western blotting 1 μg of protein for α-SMA or
12 μg of proteins for SMMHCs and phospho-NF-κBwas electrophoresed
and transferred to a nitrocellulose membrane (Protran® 0.2 μm;
Schleicher and Schuell, Dassel, Germany). Twelve micrograms of pro-
teins for S100A4 was electrophoresed and transferred to a PVDF
membrane (0.45 μm, Immobilon™-P, Millipore Corporation, Bedford,
MA) [4]. For α-SMA detection, proteins were loaded at 1 μg because of
the high level of α-SMA expression in SMCs. Membranes were
incubated with anti-α-SMA, anti-S100A4, anti-SMMHCs or rabbit poly-
clonal IgG specific for phospho-NF-κB (Ser536, Cell Signaling Technolo-
gy, Boston, MA). Mouse monoclonal IgG1 specific for vimentin and
rabbit polyclonal IgG specific for glyceraldehyde 3-phosphate dehydro-
genase (GAPDH) were used as housekeeping proteins. Horseradish
peroxidase-conjugated goat anti-mouse IgG or IgM and goat anti-
rabbit IgGwere used as secondary antibodies. Enhanced chemilumines-
cence was used for detection (Amersham, Buckinghamshire, United
Kingdom). Signals were digitized by means of Epson perfection 4990
photo scanner and analyzed using MetaMorph 6.0 image analysis sys-
tem (Universal Imaging Corporation).

2.8. Immunoprecipitation and enzyme-linked immunosorbent assay
(ELISA)

Supernatants from SMCs treatedwithout or with PDGF-BB as well as
transfected with pcDNA3- or pcDNA3-S100A4, and scramble or S100A4
siRNAwere collected 48 and 96 h after plating for immunoprecipitation
and/or competitive ELISA. Cultured SMC supernatants were transferred
tomicrocentrifuge tubes. Protease activitywas blocked by addingprote-
ase inhibitors prior to centrifugation. For immunoprecipitation, protein
A Sepharose beads (Pharmacia) were incubated with rabbit polyclonal
anti-human S100A4 (A5114, Dako, this antibody does not cross with
other S100 proteins) or anti-actin (Rb, A5060 Sigma) for 2 h by rotation
on a wheel at room temperature. Then supernatants of each sample
were incubated with beads coupled to antibodies by rotation overnight
at 4 °C. The complex beads–antibodies–proteins was centrifuged,
washed with 50 mM TRIS pH 7.5, extracted by adding lysis buffer and
boiled for 5min at 95 °C. Twentymicroliters of each sample was loaded
on a 10% SDS-PAGE mini gel prior to transfer to nitrocellulose or PVDF
membranes and incubated with primary and secondary antibodies as
described above.

For competitive ELISA, mouse monoclonal S100A4 IgM and SMC
supernatants were mixed for 1 h at room temperature and then
incubated overnight at 4 °C in a 96 well-plate coated with the C-
terminal 16 amino acids of S100A4 bound to BSA (20 ng/mL in 50 mM
sodium bicarbonate, pH 8). Incubation with alkaline phosphatase-
conjugated goat anti-mouse IgM (Southern Biotech) diluted in DMEM
containing 10% FCS was performed 1 h at 37 °C. The substrate solution
(p-nitrophenylphosphate; S0942, Sigma)was added and the enzymatic
reaction produced a soluble yellow product measured at 405 nm. The
standard curve was performed by incubating the mouse monoclonal
anti-S100A4 with increasing concentrations of S100A4 peptide instead
of SMC supernatants.
2.9. RNA extraction, reverse-transcription and real-time quantitative PCR

Total RNA was extracted from SMCs treated without or with PDGF-
BB or CM and from endothelial cells with TRIzol reagent (Gibco-
Invitrogen) and processed for reverse transcription and real-time
SYBR Green fluorescent PCR. The cDNA was synthesized from total
RNA with random hexamers and TAKARA Reverse Transcription
(Gibco-Invitrogen). Reverse transcription was performed at 37 °C for
15 min and then at 85 °C for 5 s. The forward and reverse primers
(Sigma, Buchs, Switzerland) are listed in Table 1. Real time SYBR
Green fluorescent PCR was performed in an iCycler iQ® Real-Time PCR
Detection System (Bio-Rad) in a final volume of 10 μL comprising 5 μL
of cDNA. Each couple of primers was used at a final concentration of
0.86 μM. Denaturation was performed for 10 min at 95 °C and then
DNA was amplified for 40 cycles of 15 s at 95 °C, 45 s at 60 °C and
5 min at 72 °C followed by 70 cycles of 10 s from 60 to 95 °C
(+0.5 °C/cycle) for the dissociation curve. Amplifications were repeat-
ed in triplicate. Resultswere normalized to amplifiedGAPDH transcripts
in the same samples and were expressed as S100A4 or RAGE mRNA
quantity in arbitrary units.

2.10. Statistical analysis

Results are shown as mean ± SEM. Comparisons between treated
and control groups were analyzed by the Student t-test. Differences
were considered statistically significant at values of P b 0.05.

3. Result

3.1. S100A4 is expressed and released by R-SMCs

We confirmed that S100A4 mRNA as well as protein were predom-
inantly expressed in R-SMCs when compared with S-SMCs [4] (Fig. 1A
and B). S100A4 can be released from cells into the extracellular space.
By means of immunoprecipitation, we detected S100A4 in R-SMC but
not in S-SMC supernatants (Fig. 1C). This was quantified by a
competitive ELISA where the level of extracellular S100A4 was faint in
S-SMC (0.12 ± 0.02 × 10−3 pM/cell) and high in R-SMC (0.40 ± 0.08 ×
10−3 pM/cell, P b 0.05; Fig. 1D) supernatants. S100A4 was not released
by dead SMCs as demonstrated below.

We reported that S-SMCs shift towards a R-phenotype when cells
were treated with PDGF-BB [3]. When PDGF-BB was used at 30 ng/mL,
the transition from S- to R-phenotype was observed as early as 48 h;
this was accompanied by an upregulation of S100A4 mRNA (Fig. 1A)
and protein (Fig. 1B); but no change in the release of S100A4 (Fig. 1C
and D) was observed.

Quite in contrast, treatment of R-SMCs with PDGF-BB did increase
neither S100A4 mRNA (Fig. 1A) nor protein levels (Fig. 1B) probably
due to the high concentration of endogenous S100A4 already present
in untreated R-SMCs. However, incubation of R-SMCs with PDGF-BB
markedly elevated S100A4 release in the R-SMC supernatant when
compared to untreated cells as shown by means of immunoprecipita-
tion (Fig. 1C) and ELISA (0.77± 0.14 vs 0.40± 0.08 × 10−3 pM/cell, re-
spectively, P b 0.05; Fig. 1D). Therefore R-SMCs express and release
S100A4 into the extracellular space, which is increased by PDGF-BB.

3.2. Overexpression of S100A4 in S-SMCs induces a transition from S- to
R-phenotype

S100A4 overexpression was performed in S-SMCs, in which S100A4
was below detection level. The percentage of S100A4-overexpressing S-
SMCs after transfection with the human S100A4 vector (pcDNA3-
S100A4) represented approximately 10% (Fig. 2A, f). This percentage
was similar to the transfection efficiency evaluated by transfecting the
empty vector coupled to GFP (data not shown). S-SMCs transfected
with pcDNA3-S100A4 acquired a R-phenotype as early as 48 h after



Table 1
Oligonucleotide sequence of porcine genes for quantitative real-time-PCR.

Forward Nucleotide position Reverse Nucleotide position

S100A4 5′-GCGATGCAGGACAGGAAGAC-3′ 63–82 5′-GGCCCTCGATGTGATGGTGT-3′ 271–290
RAGE 5′-GTAGCTTCAGCCCGAGCTTT-3′ 700–719 5′-CACCAACTGGACTTCCTCCA-3′ 780–899
PDGF-BB 5′-CGTCTGTCTCGATGCCTGATT-3′ 204–223 5′-GTCAGTAGAGGAAGAGAGCGATG-3′ 353–372
SM22-α 5′-GGCTGAAGAATGGCGTGAT-3′ 164–183 5′-CTGCCATGTCTTTGCCTTCA-3′ 354–373
c-myc 5′-GCTGGATTTCCTTCGGATAG-3′ 591–610 5′-TTGGTGAAGCTGACGTTGAG-3′ 636–657
SMMHCs 5′-AGGACCAGTCCATTTTGTGC-3′ 674–693 5′-CCTGGTCCTTCTTGCTCTTG-3′ 770–789
SMA 5′-GGGAATGGGACAAAAAGACA-3′ 102–121 5′-ATGTCGTCCCAGTTGGTGAT-3′ 192–211
Smoothelin 5′-GGAGAACTGGCTGCACTCTC-3′ 404–423 5′-CAGCTCCTCCACATCACTCA-3′ 484–503
MMP-1 5′-TCTCACCCTTGACCTTCACC 622–641 5′-TTCCTCCAGGTCCATCAAAG-3′ 709–728
MMP-2 5′-CTGGTGCTGCCACACTTTAG-3′ 2328–2347 5′- GGGTGCTGTAAGCCACAGA-3′ 2369–2388
MMP-3 5′-ACCCTGGGTTTTCCTTCAAC-3′ 575–594 5′-TGGCTCCATGGATTGTCTCT-3′ 688–707
MMP-9 5′-ACGCATTGGGCTTAGATCAC-3′ 1211–1230 5′-AGGTTTAGGGCGAGAACCAT-3′ 1324–1343
MMP-14 5′-TGCAGCAGTATGGCTACCTG-3′ 110–130 5′-CTCGCAGACCGTAGAACCTC-3′ 200–220
uPA 5′-TCTTGAGAGAGCTTGGCCAA-3′ 557–576 5′-TGCAAACACACACACGCATA-3′ 684–703
TIMP-1 5′-GGTCATCAGGGCCAAGTTTG-3′ 132–151 5′-GGGGTGTAGATGAACCGGAT-3′ 253–272
TIMP-3 5′-CTTCACCAAGATGCCCCATG-3 526–545 5′-CTTGCCATCATAGACACGGC-3′ 627–646
GAPDH 5′-TCTCATGGTTCACGCCCATC-3′ 241–260 5′-TGGAGTCCACTGGTGTCTTC-3′ 350–369
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transfection. This morphological change was sustained up to 96 h
(Fig. 2A, e). By contrast, S-SMCs transfected with the pcDNA3 alone
(Fig. 2A, b) maintained their S-phenotype at both time points
(Fig. 2A, a). S100A4 overexpression resulted in a disorganization of
α-SMA-positive stress fibers (Fig. 2A, g) and a quasi-disappearance
of SMMHCs (Fig. 2A, h) compared with pcDNA3-transfected cells
(Fig. 2A, c and d).

Immunoblots confirmed that S100A4 was upregulated 48 and 96 h
after transfection (305 ± 44%, P b 0.01 and 718 ± 123%, P b 0.001,
Fig. 1. Expression and release of S100A4 by S- and R-SMCs in the presence and absence of P
ized to GAPDH mRNA expression in S- and R-SMCs treated without (open bars) or with (fi
representative immunoblot showing S100A4 expression normalized to vimentin content i
each phenotype). C, Representative immunoblot for S100A4 immunoprecipitation in S- and
Bar graph showing extracellular S100A4 content detected by competitive ELISA in S- and R
for each phenotype). ** = P b 0.01; * = P b 0.05; NS, not significant; AU, arbitrary units.
respectively Fig. 2B). S100A4 overexpression was associated with a
significant reduction of α-SMA expression (62 ± 8%, P b 0.01 at 48 h
and 42 ± 3%, P b 0.001 at 96 h), and to a greater extent, of SMMHC
expression (15 ± 5%, P b 0.001 at 48 h and 18 ± 4%, P b 0.001 at
96 h; Fig. 2B). In addition, at 96 h pcDNA3-S100A4-transfected cells
exhibited enhanced BrdU incorporation compared with pcDNA3-
transfected cells (65 ± 2% vs 53 ± 3%, P b 0.01, respectively;
Fig. 2C) indicating that S100A4 overexpression is accompanied by in-
creased SMC proliferation.
DGF-BB. A, Bar graph showing S100A4 mRNA quantification by real-time PCR normal-
lled bars) PDGF-BB (30 ng/mL for 48 h, n = 6 for each phenotype). B, Bar graph and
n S- and R-SMCs treated without (open bars) or with (filled bars) PDGF-BB (n = 5 for
R-SMC supernatants treated without or with PDGF-BB (n= 4 for each phenotype). D,
-SMC supernatants treated without (open bars) or with (filled bars) PDGF-BB (n = 6



Fig. 2. Effects of S100A4 overexpression on S-SMC phenotype. A, Phase-contrast photomicrographs (a and e) and double immunofluorescence staining showing S100A4 (b and f),α-SMA
(c and g) and SMMHC (d and h) expression in S-SMCs 96 h after transfectionwith pcDNA3 (a–d) or pcDNA3-S100A4 (e–h) vectors (n=6). Nuclei are stained in blue byDAPI. In (a and e),
bar = 75 μm; in (b, c, f and g), bar = 25 μm; in (d and h), bar = 10 μm. B, Bar graph and representative immunoblots showing S100A4, α-SMA and SMMHC expression normalized to
vimentin content in S-SMCs 48 and 96 h after transfection with pcDNA3 (open bars) or pcDNA3-S100A4 (filled bars) vectors (n = 4). C, Bar graph showing the percentage of BrdU-
positive cells in S-SMCs 96 h after transfection with pcDNA3 (open bars) and pcDNA3-S100A4 (filled bars) vectors (n = 3). *** = P b 0.001; ** = P b 0.01.
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3.3. Overexpression of S100A4 in S-SMCs induces its release in the cell
supernatant

Because 10% of S100A4-overexpressing S-SMCs led to the S- to R-
phenotypic transition of the whole SMC population, we assumed that
S100A4 was released into the cell supernatant affecting most of the
neighboring cells. We performed immunoprecipitation of the cell su-
pernatant, and demonstrated that S100A4 was released from the
pcDNA3-S100A4- but not from the pcDNA3-transfected cells (Fig. 3A).
To rule out the possibility that the presence of S100A4 in the superna-
tant did not leak out of dead SMCs after transfection, we measured in
the supernatant of transfected cells by means of immunoprecipitation
the presence of actin, a cytoskeletal protein known to be expressed ex-
clusively intracellularly. As expected, actin was absent in the cell super-
natant of pcDNA3-S100A4- and pcDNA3-transfected cells at both time
points (Fig. 3A). To verify that our assay was sensitive enough i.e. actin
can be detected in the cell supernatant, we lysed SMCs by means of
sonication to release intracellular proteins into the supernatant. In this
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condition, both actin and S100A4were detected in the cell supernatants
(Fig. 3B). Therefore, S100A4 was released by pcDNA3-S100A4-
transfected S-SMCs and did not leak out of dead SMCs. Competitive
ELISA confirmed that the extracellular S100A4 level was higher in
pcDNA3-S100A4- than in pcDNA3-transfected S-SMCs at 48 h (1.06 ±
0.14 vs 0.18 ± 0.03 × 10−3 pM/cell, respectively, P b 0.001) and 96 h
(0.97 ± 0.26 vs 0.10 ± 0.02 × 10−3 pM/cell, respectively, P b 0.001;
Fig. 3C).

3.4. Extracellular S100A4-rich conditioned medium (CM) induces a
transition from S- to R-phenotype

To further investigatewhether extracellular S100A4was responsible
for the S- to R-phenotypic change, we used pcDNA3-S100A4 transfected
S-SMC supernatant (48 h post-transfection) as source of CMand S-SMCs
as target cells. pcDNA3-transfected S-SMC supernatantwas used as con-
trol. In the presence of extracellular S100A4-rich CM, S-SMCs acquired a
R-phenotype as early as 48 h; this change was maintained up to 96 h
(Fig. 4A, a and e). However an exposure of S100A4-rich CM up to 96 h
was required to observe an upregulation of intracellular S100A4 expres-
sion (Fig. 4A, f) and a downregulation ofα-SMA (Fig. 4A, g) and SMMHC
expression (Fig. 4A, h) compared with control conditions (Fig. 4A, b–d).

Immunoblots confirmed that S100A4-rich CM treatment for 96 h re-
sulted in increased S100A4 (392 ± 61%, P b 0.001) and decreased α-
SMA and SMMHC (20 ± 4%, P b 0.001 and 11 ± 4%, P b 0.001, respec-
tively; Fig. 4B) contents compared with control conditions. S100A4
mRNA content was as well increased after S100A4-rich CM treatment
compared with control conditions as later as 96 h (600 ± 1%, P b 0.001,
n = 3).

To ascertain that S100A4-richCM treated S-SMCs exhibited a pheno-
type similar to the one of native R-SMCs, we analyzed by real-time PCR
the expression of genes typically involved in SMC differentiation
(SM22-α, α-SMA, SMMHC and smoothelin) [1,2,23] and
Fig. 3. Effects of S100A4 overexpression in S-SMCs on S100A4 release. A, Representative
immunoblots for S100A4 and actin immunoprecipitation in S-SMC supernatants 48 and
96h after transfectionwith pcDNA3or pcDNA3-S100A4vectors (n=4). B, Representative
immunoblots for S100A4 and actin immunoprecipitation in lysed SMC supernatants i.e.
dead cells. C, Bar graph showing extracellular S100A4 content detected by competitive
ELISA in S-SMC supernatants after transfection with pcDNA3 (open bars) and pcDNA3-
S100A4 (filled bars) vectors (n = 4). *** = P b 0.001.
dedifferentiation (S100A4, PDGF-BB and c-myc) [2–4]. SMC differentia-
tion markers were downregulated and SMC dedifferentiation markers
were upregulated in S100A4-rich CM treated S-SMCs and native R-
SMCs when compared with pcDNA3-CM treated S-SMCs and native S-
SMCs, respectively (Table 2). When these results were normalized to
their respective controls, the level of S100A4 and PDGF-BB mRNA was
markedly higher in native R-SMCs compared with S100A4-rich CM
treated S-SMCs (Fig. 5A). Therefore, the R-phenotype observed after
treatment with S100A4-rich CM exhibits mRNA profile close to the
one of native R-SMCs with respect to SMC differentiation/dedifferentia-
tion markers.

3.5. Extracellular S100A4-rich CM enhances SMC proliferative, migratory
and proteolytic activities

Cell proliferation was enhanced in S-SMCs treated with S100A4-
rich CM as later as 96 h after treatment (150 ± 8%, P b 0.01;
Fig. 4C) compared with control conditions. Cell migration assays
showed that S-SMCs treated with S100A4-rich CM for 24 h exhibited
enhanced migratory activity (Fig. 4D, b and d) compared with con-
trol conditions (Fig. 4D, a and c; ratio of filled area at 24 h/wounded
area at 0 h: 193 ± 56% vs 2 ± 0.29%, P b 0.001, respectively; Fig. 4D).
Over 24 h of treatment S-SMC replication was hence negligible. We
further examined mRNA expression of MMPs, tissue inhibitors of
metalloproteinases (TIMPs) and urokinase-type plasminogen activa-
tor (uPA) by real-time PCR (Table 3 and Fig. 5B). When S-SMCs were
treatedwith S100A4-rich CM,MMP-1, -2, -3, and -9 and uPAwere in-
creased and MMP-14 was decreased compared with pcDNA3-CM
treated S-SMCs. By contrast, when native R-SMCs were compared
with S-SMCs only MMP-2 and uPA were increased whereas the
other MMPs were either not modified (MMP-9 and -14) or slightly
decreased (MMP-1 and -3). In S100A4-rich CM treated S-SMCs,
TIMP-1 was increased while TIMP-3 was decreased compared with
control conditions. The opposite result was observed in native R-
SMCs versus S-SMCs. Therefore, the R-phenotype observed after
treatment with S100A4-rich CM exhibits mRNA profile distinct
from the one of native R-SMCs as far as proteolytic enzymes and
their inhibitors are concerned.

3.6. Neutralization of extracellular S100A4 induces a transition from R- to
S-phenotype

We explored the role of extracellular S100A4 activity in R-SMCs.
When treated with rabbit polyclonal neutralizing S100A4 antibody
[19] for 96h, R-SMCsmodulated towards a S-phenotype (Fig. 6A, e). Un-
specific rabbit polyclonal antibodies, used as control, had no effect
(Fig. 6A, a). Double immunofluorescence staining showed that intracel-
lular S100A4 (Fig. 6A, f) expression was strongly decreased whereas α-
SMA (Fig. 6A, g) and SMMHC (Fig. 6A, h) expressionwas increased after
treatment with neutralizing anti-S100A4 compared with control condi-
tions (Fig. 6A, b–d). Immunoblots confirmed that neutralization of
extracellular S100A4 resulted in decreased S100A4 content and in-
creased α-SMA and SMMHC contents compared with control condition
(Fig. 6B). Neutralization of extracellular S100A4 activity markedly re-
duced R-SMC proliferation compared with control conditions (68 ±
4%, P b 0.001; Fig. 6C). Therefore blockade of extracellular S100A4 activ-
ity reverses the phenotype from R- to S-phenotype, which is associated
with decreased intracellular S100A4 expression and proliferative activ-
ity and increased SMC differentiation marker expression.

3.7. Downregulation of intracellular S100A4 in R-SMCs and PDGF-BB-
treated S-SMCs reduces cell proliferation

Downregulation of endogenous S100A4 in R-SMCs, inwhich S100A4
is highly expressed, was performed by using S100A4-specific siRNA [4].
The number of S100A4-positive-SMCswas substantially decreased after



Fig. 4. Effect of extracellular S100A4-rich CM on S-SMC phenotype. A, Phase-contrast photomicrographs (a and e) and double immunofluorescence staining showing S100A4 (b and f),α-
SMA (c and g) and SMMHC (d and h) expression in S-SMCs treated for 96 h with CM collected from pcDNA3 (a–d) or pcDNA3-S100A4 (e–h) vector transfected S-SMCs (48 h post-
transfection, n = 5). In (a and e), bar = 75 μm; in (b, c, f and g), bar = 25 μm; in (d and h), bar = 10 μm. B, Bar graph and representative immunoblots showing S100A4, α-SMA and
SMMHC expression normalized to vimentin content in S-SMCs treated for 48 and 96 h with CM collected from pcDNA3 (open bars) or pcDNA3-S100A4 (filled bars) vector transfected
S-SMCs (48 h post-transfection, n = 4). C, Bar graph showing S-SMC proliferation treated for 96 h with CM collected from pcDNA3 (open bar) or pcDNA3-S100A4 (filled bar) vector
transfected S-SMCs (48 h post-transfection, n = 4). *** = P b 0.001; ** = P b 0.01. D, Cell migration assay showing migratory activity of S-SMCs treated with CM collected from
pcDNA3 (a and c) or pcDNA3-S100A4 (b and d) vector transfected S-SMCs (48 h post-transfection, n = 8) at 0 (a and b) and 24 (c and d) h. Bar graph showing the ratio of filled area
at 24 h/wounded area at 0 h in S-SMCs treated for 24 h with CM collected from pcDNA3 (open bars) or pcDNA3-S100A4 (filled bars) vector transfected S-SMCs. *** = P b 0.001.

2150 C. Chaabane et al. / Biochimica et Biophysica Acta 1853 (2015) 2144–2157
transfection of S100A4-specific siRNA compared with scramble siRNA
(Fig. 7A, b and e). Immunoblots confirmed that S100A4-specific siRNA
treatment decreased the S100A4 content (46 ± 13%, P b 0.001,
Fig. 7B). Although no phenotype reverse was observed (Fig. 7A, a and
d), S100A4 silencingwas associated with a slight increase ofα-SMA ex-
pression as shown by immunofluorescence staining (Fig. 7A, c and
f) and ofα-SMA content (111±1%, P b 0.05; Fig. 7B) as shownbyWest-
ern blotting. Nevertheless, depletion of S100A4 for 48 h did not modify
the level of extracellular S100A4 present in the supernatant compared
with control (1.06 ± 0.01 vs 0.92 ± 0.2 × 10−3 pM/cell, respectively;
Fig. 7C). However, silencing of S100A4 reduced R-SMC proliferation
compared with control condition (Fig. 7D). These data suggest that



Table 2
Expression of SMC differentiation/dedifferentiation mRNAs in S100A4-rich CM treated S-SMCs and native R-SMCs compared with their respective controls.

S-SMCs treated with Native

PcDNA3-CM S100A4-CM P S-SMC R-SMC P

Upregulated mRNA
S100A4 2.87 ± 0.01 14.63 ± 0.01 P b 0.001 5.81 ± 0.01 94.77 ± 0.03 P b 0.001
PDGF-BB 6.00 ± 0.01 20.38 ± 0.01 P b 0.001 10.82 ± 0.01 60.69 ± 0.16 P b 0.05
c-myc 45.11 ± 0.04 67.39 ± 0.02 P b 0.01 76.18 ± 0.06 97.76 ± 0.25 NS

Downregulated mRNA
SM22-α 176.21 ± 0.10 43.71 ± 0.02 P b 0.001 101.83 ± 0.20 34.69 ± 0.06 P b 0.01
α-SMA 208.51 ± 0.04 18.02 ± 0.07 P b 0.001 111.62 ± 0.07 29.32 ± 0.14 P b 0.01
SMMHC 142.84 ± 0.18 65.70 ± 0.01 P b 0.01 134.78 ± 0.22 88.89 ± 0.06 P b 0.05
Smoothelin 158.93 ± 0.29 39.58 ± 0.08 P b 0.01 102.34 ± 0.24 27.99 ± 0.10 P b 0.05

mRNA expression is normalized to GAPDH mRNA expression (%).
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intracellular S100A4 is involved in SMC proliferation and that the pres-
ence of extracellular S100A4 in the supernatant maintains the R-
phenotype.

In S-SMCs, the morphological change observed in PDGF-BB-
induced S- to R-phenotypic transition (see Section 3.1) was not re-
versed by treatment with silencing S100A4 (Fig. 8A, a and d). How-
ever, the PDGF-BB-induced S100A4 upregulation and α-SMA
downregulation (Fig. 8A, c and f) were abolished by silencing
S100A4. Immunoblots confirmed that downregulation of S100A4
content (19 ± 10%, P b 0.001; Fig. 8B) noticeably prevented the
PDGF-BB-induced α-SMA downregulation (147 ± 7%, P b 0.001;
Fig. 8B) and SMC proliferative activity (69 ± 5%, P b 0.01; Fig. 8C).
Taken together, our results indicate that downregulation of
Fig. 5. Comparison of SMC dedifferentiation/differentiation marker (A), MMP and TIMP
(B) expression in native R-SMCs and S100A4-rich CM treated S-SMCs. In A and B, bar
graphs show mRNA fold change in native R-SMCs and S100A4-rich CM treated S-SMCs
normalized to their respective controls. Data corresponds to the mean values described
in Tables 2 and 3.
intracellular S100A4 in R-SMCs or PDGF-BB-treated S-SMCs (i.e. pro-
moting S- to R-phenotypic transition) does not affect SMC morphol-
ogy even if it has a partial effect on SMC differentiation marker
expression and proliferative activity.

3.8. Extracellular S100A4-rich CM induces RAGE and NF-κB activation

S100A4 interacts with RAGE in vitro as demonstrated by surface
plasmon resonance study [24] but this interaction appears to be
more complex in vivo [8,9]. After treatment of S-SMCs with
S100A4-rich CM for 4 h, RAGE mRNA was increased compared with
control conditions (0.64 ± 0.04% vs 0.24 ± 0.03%, P b 0.01;
Fig. 9A). Porcine aortic endothelial cells were used as a positive con-
trol (1.71 ± 0.37%). Several studies demonstrate a correlation be-
tween RAGE expression and NF-κB pathway activation [11,12]. In
the presence of extracellular S100A4-rich CM for 1 h, translocation
of NF-κB from the cytosol to the nucleus (Fig. 9B) and increased
phosphorylation of NF-κB (Fig. 9D) were observed. To test whether
RAGE was involved in S- to R-phenotypic changes, RAGE was down-
regulated by using two specific siRNAs. Both RAGE siRNAs markedly
decreased RAGE mRNA expression 48 h after transfection compared
with the scramble siRNA (50.23 ± 5.78%, P b 0.01). The transfection
efficiency of S-SMCs, evaluated by transfecting cells with Block-it
Fluorescent Oligo for 48 h, represented more than 90% (data not
shown). In the presence of extracellular S100A4-rich CM for 1 h,
translocation of NF-κB from the cytosol to the nucleus was entirely
abolished after transfection of both RAGE-specific siRNAs compared
with scramble siRNA (Fig. 9C). Recently, it has been shown that inhi-
bition of RAGE by using a RAGE antagonistic peptide (RAP)
prevented the interaction between RAGE and S100A4 [25]. Pre-
treatment of S-SMCs with RAP for 30 min abolished NF-κB transloca-
tion and decreased significantly BrdU incorporation induced by ex-
tracellular S100A4-rich CM (14.5 ± 0.50% vs 17.3 ± 0.25%, P b 0.05).
Furthermore, pre-treatment of S-SMCs with PDTC (inhibitor of NF-κB)
inhibited NF-κB translocation (Fig. 9B). In these conditions (RAGE
siRNAs, RAP treatment and PDTC pre-treatment), the S- to R-
phenotypic changes induced by extracellular S100A4-rich CM were
prevented only in approximately 50% of cells (Fig. 9E, a and d). This
was accompanied by a downregulation of S100A4 (Fig. 9E, b and
e) and an upregulation of α-SMA (Fig. 9E, c and f). Our results indicate
that extracellular S100A4 acts on SMC phenotype at least partly in a
RAGE-dependent manner.

4. Discussion

In the present study we demonstrate that the extracellular form of
S100A4, marker of R-SMCs in vitro and intimal SMCs in vivo, is a key
modulator of SMC phenotypic transition. By transfecting a human
S100A4-containing plasmid in S-SMCs (nearly devoid of S100A4), we
showed that the S100A4-overexpressing SMCs released high levels of
S100A4 into the cell supernatant, inducing a S- to R-phenotypic change



Table 3
Expression of MMP and TIMP mRNAs in S100A4-rich CM treated S-SMCs and native R-SMCs compared to their respective controls.

S-SMCs treated with Native

pcDNA3-CM S100A4-CM P S-SMC R-SMCs P

MMP-1 1.61 ± 0.001 28.64 ± 0.03 P b 0.001 8.25 ± 0.02 0.82 ± 0.01 P b 0.05
MMP-2 68.85 ± 0.09 126.37 ± 0.03 P b 0.01 78.29 ± 0.06 105.63 ± 0.11 P b 0.05
MMP-3 2.87 ± 0.01 69.56 ± 0.08 P b 0.001 5.54 ± 0.02 0.31 ± 0.00 P b 0.05
MMP-9 18.11 ± 0.06 69.14 ± 0.13 P b 0.01 38.83 ± 0.12 37.45 ± 0.13 NS
MMP-14 117.30 ± 0.11 74.42 ± 0.03 P b 0.001 106.19 ± 0.19 93.27 ± 0.14 NS
uPA 64.91 ± 0.03 92.42 ± 0.07 P b 0.05 87.92 ± 0.11 121.24 ± 0.12 P b 0.05
TIMP-1 37.75 ± 0.01 102.44 ± 0.08 P b 0.01 62.14 ± 0.15 19.74 ± 0.04 P b 0.05
TIMP-3 2.09 ± 0.001 0.74 ± 0.01 P b 0.01 5.34 ± 0.01 80.24 ± 0.22 P b 0.01

mRNA expression is normalized to GAPDH mRNA expression (%).
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of the whole SMC population; this S100A4-rich CM, when added to S-
SMCs, induced a rapid transition from the S- to R-phenotype. Converse-
ly, blockade of extracellular S100A4, released by native R-SMCs using a
specific neutralizing antibody, reversed the phenotype from R to S. Be-
sides, silencing of S100A4 in R-SMCs, which does not modify the level
Fig. 6. Effect of extracellular S100A4 neutralization on R-SMC phenotype. A, Phase-cont
S100A4 (b and f), α-SMA (c and g) and SMMHC (d and h) expression in R-SMCs treated for
(n= 4). In (a and e), bar = 75 μm; in (b, c, f and g), bar = 25 μm; in (d and h), bar= 10 μm.
expression normalized to GAPDH content in R-SMCs treated for 96 h with unspecific rabb
eration of R-SMCs treated for 96 h with unspecific rabbit polyclonal (control, open bar) o
of extracellular S100A4, had no effect on the SMC phenotype, indicating
that the extracellular S100A4 is responsible for the persistence of the R-
phenotype.

SMC phenotypic transition towards a R-phenotype, induced by
extracellular S100A4, was associated with an early increase in cell
rast photomicrographs (a and e) and double immunofluorescence staining showing
96 h with unspecific rabbit polyclonal (a–d) or S100A4 neutralizing (e–h) antibodies
B, Bar graphs and representative immunoblots showing S100A4,α-SMA, and SMMHC
it polyclonal or S100A4 neutralizing antibodies (n = 3). C, Bar graph showing prolif-
r S100A4 neutralizing (anti-S100A4, filled bar) antibodies (n = 4).



Fig. 7. Effect of endogenous S100A4 downregulation on the R-SMC phenotype. A, Phase-contrast photomicrographs (a and d) and double immunofluorescence staining showing S100A4
(b and e) andα-SMA (c and f) expression in R-SMCs 48 h after transfection with scramble (a–c) and S100A4 (e–h) siRNA (n= 6). Nuclei are stained in blue by DAPI. In (a and d), bar=
75 μm; in (b, c, e and f), bar = 25 μm. B, Bar graph and representative immunoblots showing S100A4 and α-SMA expression normalized to vimentin content in R-SMCs 48 h after trans-
fection with scramble (open bars) and S100A4 (filled bars) siRNA. C, Bar graph showing extracellular S100A4 content detected by competitive ELISA in R-SMC supernatants after trans-
fectionwith scramble (open bars) and S100A4 (filled bars) siRNA (n=4). D, Bar graph showing cell proliferation in R-SMCs 48 h after transfectionwith scramble (open bars) and S100A4
(filled bars) siRNA. *** = P b 0.001; ** = P b 0.01, * = P b 0.05; NS, not significant.
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migration and later to a marked increase in cell proliferation, upreg-
ulation of intracellular S100A4 as well as downregulation of SMC
differentiation markers (α-SMA, SMMHCs, SM22-α and smoothelin).
In addition, PDGF-BB and c-mycwere upregulated. The reverse processes
were observed when the extracellular S100A4 was neutralized with
a specific antibody. Likewise, neutralization of extracellular S100A4 ac-
tivity with rabbit polyclonal S100A4 antibody has been shown to atten-
uate pulmonary artery SMC migration [19]. Our results also suggest
that intracellular S100A4 and SMC differentiation marker expression
changes likely result from the cell morphological transition. Nonetheless
extracellular S100A4 has been shown to induce endogenous protein
translocation of intracellular S100A4 in endothelial cells [12]. However,
there is no direct evidence that extracellular S100A4 is a potent regulator
of intracellular S100A4.

S100A4 is recognized as a mediator of cancer metastasis [8]. It ex-
hibits both extracellular and intracellular functions [6,26]. S100 proteins
exhibit distinct translocation pathways within cells [12,27] but their
mechanisms of secretion are still obscure. The extracellular activity of
S100A4 is associated with the dimeric and the oligomeric conformation
of the protein. It has been detected both in vitro, in the CM of cancer cell
lines and of human pulmonary artery SMCs under sustained hypoxia
[19], and in vivo, in serum of patients with cancer and rheumatoid ar-
thritis [9]. The role of extracellular S100A4 in the metastatic process
has been demonstrated by adding recombinant S100A4 in culture



Fig. 8. Effect of intracellular S100A4 downregulation on PDGF-BB-induced S- to R-phenotype. A, Phase-contrast photomicrographs (a and d) and double immunofluorescence
staining showing S100A4 (b and e) and α-SMA (c and f) expression in S-SMCs 48 h after transfection with scramble (a–c) and S100A4 (d–f) siRNA in the presence of PDGF-
BB (30 ng/mL, n = 4). Nuclei are stained in blue by DAPI. In (a and d), bar = 75 μm; in (b, c, e and f), bar = 25 μm. B, Bar graph and representative immunoblots showing
S100A4 and α-SMA expression normalized to vimentin content in S-SMCs 48 h after transfection with scramble (open bars) and S100A4 (filled bars) siRNA in the presence
of PDGF-BB (30 ng/mL, n= 3). C, Bar graph showing cell proliferation in S-SMCs 48 h after transfection with scramble (open bars) and S100A4 (filled bars) siRNA in the presence
of PDGF-BB (30 ng/mL, n = 3). *** = P b 0.001; ** = P b 0.01.
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medium of several target cells: recombinant S100A4 stimulates the
metastatic potential of S100A4-negative mouse mammary carcinoma
cells [28], and the angiogenesis of endothelial cells [29]. Moreover ex-
tracellular S100A4 activity is correlated with extracellular matrix re-
modeling (i.e. increased production of MMP-13 by endothelial cells
[28]). In our model, we observed that treatment of S-SMCs with com-
mercially available recombinant S100A4 failed to act on SMC phenotyp-
ic changes (data not shown), suggesting that the dimeric or oligomeric
conformation of the protein may be important for its activity [6,30].
Nevertheless treatment of S-SMCs with S100A4-rich CM as a source of
extracellular S100A4 and blockade of extracellular S100A4 in R-SMCs
with a specific neutralizing antibody clearly established the role of ex-
tracellular S100A4 in SMC phenotypic transition.

Several studies demonstrate that extracellular S100A4 activates NF-
κB in several cell types [11,28,31]. These signaling events can be
dependent or independent on RAGE resulting in increased production
of MMPs [11,12,28]. Extracellular S100A4 could also act on rat
neuritogenesis through heparin sulfate proteoglycan [32] and plasmin
formation through interaction with annexin II [29]. In atherosclerotic
plaque progression, RAGE is upregulated as a cellular response to path-
ogenic environment. In diabeticmice, RAGE is upregulated at sites of ac-
celerated vascular lesions and its inhibition reduces these lesions [33].
Likewise, RAGE blockade lowers SMC proliferation and neointimal for-
mation after balloon-injury in mice [33]. It contributes to intimal thick-
ening development by promoting inflammation, cell migration and
proliferation, and oxidative stress [33–35]. In humans, expression of
RAGE is significantly greater in the atheromatous plaque of diabetic
patients and is associated with SMC and macrophage apoptosis [36],
suggesting that RAGE promotes plaque destabilization. Rabinovitch
and collaborators have observed that extracellular S100A4 leads to



Fig. 9. Effect of extracellular S100A4-rich CMonRAGE and NF-κB activation. A, Bar graph showing RAGEmRNA quantification by real-time PCR normalized to GAPDHmRNA expression in
S-SMCs treated for 4 hwith CMcollected frompcDNA3 (open bar) or pcDNA3-S100A4 (filled bar) vector transfected S-SMCs (48 h post-transfection, n=4). Endothelial cells were used as
a positive control. B, Immunofluorescence staining showingNF-κB expression in S-SMCs treated for 1 hwith CMcollected frompcDNA3or pcDNA3-S100A4vector transfected S-SMCspre-
treatedwith PDTC or not for 30min (n=3), bar= 25 μm. C, Immunofluorescence staining showing NF-κB expression in S-SMCs 48 h after transfection of scramble or RAGE siRNA treated
for 1 hwith CM collected from pcDNA3-S100A4 vector transfected S-SMCs (n=3), bar= 10 μm. D, Representative immunoblots showing phosphorylated NF-κB (P-NF-κB) and total NF-
κB expression in S-SMCs treated for 1 h with CM collected from pcDNA3 or pcDNA3-S100A4 vector transfected S-SMCs (n = 3). E, Phase-contrast photomicrographs (a and d) and im-
munofluorescence staining showing S100A4 (b and e) andα-SMA (c and f) expression in S-SMCs 48h after transfectionwith scramble (a–c) or RAGE siRNA (d–f, n=6). Nuclei are stained
in blue by DAPI. In (a and d), bar = 75 μm; in (b, c, e and g), bar = 10 μm. *** = P b 0.001; NS, not significant; AU, arbitrary units.
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human pulmonary artery SMC proliferation and migration in a RAGE-
dependent manner [31]. They have further reported that extracellular
S100A4 and bone morphogenic protein-4 (BMP-4) can recruit multiple
cell surface receptors, i.e. RAGE and BMP receptor II, to induce cell mo-
tility [37]. S100A4 could also interact with other receptors such as
Toll-like receptors [38,39]. The situation is even more complex in that
S100 proteins exist in different forms (dimers, tetramers, higher oligo-
mers) interacting with RAGE, which itself does not float as a molecule
in the plasmamembrane but instead agglomerates into receptor assem-
blies [7,39,40]. Here we showed that RAGE downregulation using si-
lencing siRNA or a specific RAGE antagonistic peptide [25] decreased
cell proliferation and only partially prevented the S- to R-phenotypic
change induced by S100A4-rich CM even if NF-κB activation was fully
abolished. Therefore, a co-dependence between RAGE and not yet iden-
tified receptor(s) could mediate extracellular S100A4-induced porcine
arterial SMC phenotypic transition.

We demonstrated that native R-SMCs expressed and released
S100A4. Unexpectedly, silencing of S100A4 mRNA did not change the
level of extracellular S100A4 in the supernatant or SMC morphology
in spite of decreased proliferative activity and increased level of differ-
entiation (i.e. increased α-SMA expression). These results confirm that
the extracellular S100A4 is responsible for the persistence of the R-
phenotype.

We demonstrated that treatment of S-SMCs with PDGF-BB en-
hanced SMC proliferation and promoted a switch towards the R-
phenotype [3], which was associated with S100A4 upregulation [4].
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PDGF-BB is known to induce rather profound suppression of SMC differ-
entiation markers and increase SMC proliferation [23]. We further
showed that silencing of S100A4 mRNA did not prevent the S- to R-
phenotypic transition induced by PDGF-BB treatment. However, SMC
proliferationwas decreased andα-SMA expressionwas significantly in-
creased. These results indicate that intracellular S100A4 affects essen-
tially SMC proliferation. Intracellular S100A4 acts on target proteins
such as p53 [13], non-muscle MHC [16], actin [17] and non-muscle
tropomyosin [18]. Such interactions could explain the role of intracellu-
lar S100A4 in SMC proliferation and migration. Therefore extracellular
S100A4 and intracellular S100A4 play distinct roles on SMC phenotypic
changes.

To ascertain that extracellular S100A4-rich CM treatment yielded a
R-phenotype identical to the one of native R-SMCs, we assessed several
genes typically involved in SMC phenotypic transition. The profile of
gene expression typical of the synthetic phenotype (i.e. the native R-
SMCs isolated from the porcine coronary artery) such as differentia-
tion/dedifferentiationmarkers [3,4], MMP-2 and uPA [3,41], was similar
in both situations. Unexpectedly, the profile of proteolytic enzymes and
inhibitors was different in both situations. In particular, MMP-1, -3
and -9, promoting plaque instability [41] were increased in S100A4-
rich CM treated S-SMCs compared with native R-SMCs whereas
TIMP-3 related to plaque stability [42] was decreased. Our results sug-
gest that S100A4-rich CM treated S-SMCs exhibit a profile of activated
SMCs [43] i.e. a proinflammatory signature that could be involved in
the extracellular matrix remodeling leading to plaque vulnerability.

5. Conclusion

We show that extracellular S100A4 is essential for the establishment
of the synthetic phenotype in porcine coronary artery, shedding light on
the mechanisms of SMC accumulation in the intima. Interestingly, ex-
tracellular S100A4 mostly recapitulates the mRNA profile observed in
native R-SMCs butmight in addition promote a deleterious SMC pheno-
type. This finding related to our previous observation that S100A4 is an
in vivo marker of intimal SMCs in human indicates that extracellular
S100A4 could be a new target to prevent the evolution of atherosclero-
sis and restenosis. Further studies exploring receptors, signaling path-
ways and target genes activated by extracellular S100A4 will be useful
to better understand these pathological processes.
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