The total bondage number of grid graphs*

Fu-Tao Hu^{a}, You Lu ${ }^{\text {b }}$, Jun-Ming Xu ${ }^{\mathrm{c}, *}$
${ }^{\text {a }}$ School of Mathematical Sciences, Anhui University, Hefei, Anhui, 230601, China
${ }^{\mathrm{b}}$ Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an Shaanxi, 710072, China
${ }^{\text {c }}$ School of Mathematical Sciences, University of Science and Technology of China, Wentsun Wu Key Laboratory of CAS, Hefei, Anhui, 230026, China

ARTICLE INFO

Article history:

Received 21 November 2010
Received in revised form 24 May 2012
Accepted 25 June 2012
Available online 15 July 2012

Keywords:

Total dominating set
Total domination number
Total bondage number
Grid graphs

Abstract

The total domination number of a graph G without isolated vertices is the minimum number of vertices that dominate all vertices in G. The total bondage number $b_{t}(G)$ of G is the minimum number of edges whose removal enlarges the total domination number. This paper considers grid graphs. An (n, m)-grid graph $G_{n, m}$ is defined as the cartesian product of two paths P_{n} and P_{m}. This paper determines the exact values of $b_{t}\left(G_{n, 2}\right)$ and $b_{t}\left(G_{n, 3}\right)$, and establishes some upper bounds of $b_{t}\left(G_{n, 4}\right)$.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

For notation and graph-theoretical terminology not defined here we follow [28]. Specifically, let $G=(V, E)$ be an undirected graph without loops and multi-edges, where $V=V(G)$ is the vertex-set and $E=E(G)$ is the edge-set, which is a subset of $\{x y \mid x y$ is an unordered pair of $V\}$. A graph G is nonempty if $E(G) \neq \emptyset$. Two vertices x and y are adjacent if $x y \in E(G)$. For a vertex x, we call the vertices adjacent to it the neighbors of x. We use P_{n} and C_{n} to denote a path and a cycle of order n throughout this paper.

A subset $D \subseteq V(G)$ is called a dominating set of G if every vertex not in D has at least one neighbor in D. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set.

The concept of domination is so an important and classic conception that it has become one of the most widely studied topics in graph theory, and also is frequently used to study properties of interconnection networks. The early results on this subject have been, in detail, surveyed in the two excellent domination books by Haynes et al. [12,11]. In the recent decade, a large number of research papers on domination as well as related topics appear in many scientific journals because of their applications in many fields such as networks, wireless communication and so on.

A dominating set D of a graph G without isolated vertices is said to be total if every vertex in G has at least one neighbor in D. The minimum cardinality of a total dominating set is called the total domination number of G, denoted by $\gamma_{t}(G)$. It is clear that $\gamma(G) \leqslant \gamma_{t}(G) \leqslant 2 \gamma(G)$ for any graph G without isolated vertices.

The concept of total domination in graphs was introduced by Cockayne et al. [2] in 1980. The total domination in graphs has been extensively studied in the literature. In 2009, Henning [14] gave a survey of selected recent results on this topic.

In 1990, Fink et al. [4] introduced the bondage number as a parameter for measuring the vulnerability of the interconnection network under link failure. The minimum dominating set of sites plays an important role in the network for it dominates the whole network with the minimum cost. So we must consider whether its function remains good under

[^0]

Fig. 1. $A(4,3)$-grid graph $G_{4,3}=P_{4} \times P_{3}$.
attack. Suppose that someone such as a saboteur does not know which sites in the network take part in the dominating role, but does know that the set of these special sites corresponds to a minimum dominating set in the related graph. Then how many links does he have to attack so that the cost cannot remain the same in order to dominate the whole network? That minimum number of links is just the bondage number.

A subset B of $E(G)$ is called a bondage set of G if its removal from G results in a graph with larger domination number than $\gamma(G)$. The bondage number $b(G)$ of a nonempty graph G is the minimum number of edges in a bondage set of G. Since the domination number of every spanning subgraph of a nonempty graph G is at least as great as $\gamma(G)$, the bondage number of a nonempty graph is well defined. Many results on this topic are obtained in the literature. The exact values of the bondage numbers for some graphs are determined, for example, a complete graph, a path, a cycle, a complete t-partite graph [4], a tree [8,26,27,7], for the Cartesian product of two cycles $C_{4} \times C_{n}$ [20] and $C_{3} \times C_{n}[24]$, and for other graphs [16,18,19]. Some upper bounds of the bondage numbers for graphs are established; see, for example, $[3,4,9,10,17,19,23,26]$ for general graphs, [1,5,21] for planar graphs. In particular, very recently, Hu and Xu [15] have showed that the problem of determining bondage number for general graphs is NP-hard.

Following Fink et al., Kulli and Patwari [22] proposed the concept of the total bondage number for a graph. A subset B of $E(G)$ is called a total bondage set of G if its removal from G results in a graph with larger total domination number than $\gamma_{t}(G)$. The total bondage number $b_{t}(G)$ of a nonempty graph G is the minimum number of edges in a total bondage set of G. If $b_{t}(G)$ does not exist, for example a star graph $K_{1, n}$, we define $b_{t}(G)=\infty$. Kulli and Patwari [22] calculated the exact values of $b_{t}(G)$ for some standard graphs such as a cycle C_{n} and a path P_{n} for $n \geqslant 4$, a complete bipartite graph $K_{m, n}$ and a complete K_{n}. Sridharan et al. [25] showed that for any positive integer k there exists a tree T with $b_{t}(T)=k$. These authors also established the upper bounds of $b_{t}(G)$ for a graph G in terms of its order. To the knowledge of the authors, no much research work on the total bondage number were reported in the literature except for the above-mentioned. However, Hu and Xu [15] also showed that the problem of determining total bondage number for general graphs is NP-hard.

An (n, m)-grid graph $G_{n, m}$ is the Cartesian product $P_{n} \times P_{m}$ of two paths P_{n} and P_{m}. In this paper, we consider $b_{t}\left(G_{n, m}\right)$. Since $G_{1, m} \cong P_{m}$, we assume $n \geq 2$ under our discussion. In 2002, Gravier [6] determined $\gamma_{t}\left(G_{n, m}\right)$ for any $m \in\{1,2,3,4\}$. In this paper, we obtain the following results.

$$
\left.\begin{array}{l}
b_{t}\left(G_{n, 2}\right)= \begin{cases}1 & \text { if } n \equiv 0(\bmod 3), \\
2 & \text { if } n \equiv 2(\bmod 3), \\
3 & \text { if } n \equiv 1(\bmod 3) ;\end{cases} \\
b_{t}\left(G_{n, 3}\right)=1 ; \quad b_{t}\left(G_{6,4}\right)=2, \quad \text { and }
\end{array}\right\} \begin{array}{ll}
=1 & \text { if } n \equiv 1(\bmod 5) \text { and } n \neq 6 ; \\
b_{t}\left(G_{n, 4}\right) \begin{cases}=2 & \text { if } n \equiv 4(\bmod 5) ; \\
\leq 3 & \text { if } n \equiv 2(\bmod 5) ; \\
\leq 4 & \text { if } n \equiv 0,3(\bmod 5) .\end{cases}
\end{array}
$$

The proofs of these results are in Sections 3-5, respectively. In Section 2, we give three preliminary results, which are used in our proofs.

2. Preliminary results

Throughout this paper, we assume that a path P_{n} has the vertex-set $V\left(P_{n}\right)=\{1, \ldots, n\}$. An (n, m)-grid graph $G_{n, m}$ is defined as the Cartesian product $G_{n, m}=P_{n} \times P_{m}$ with vertex-set $V\left(G_{n, m}\right)=\left\{x_{i j} \mid 1 \leq i \leq n, 1 \leq j \leq m\right\}$ and two vertices $x_{i j}$ and $x_{i^{\prime} j^{\prime}}$ being linked by an edge if and only if either $i=i^{\prime} \in V\left(P_{n}\right)$ and $j j^{\prime} \in E\left(P_{m}\right)$, such an edge is called a vertical edge, or $j=j^{\prime} \in V\left(P_{m}\right)$ and $i i^{\prime} \in E\left(P_{n}\right)$, such an edge is called a horizontal edge. The graph shown in Fig. 1 is a (4, 3)-grid graph $G_{4,3}$. It is clear, as a graphic operation, that the Cartesian product satisfies commutative associative law if identify isomorphic graphs, that is, $G_{n, m} \cong G_{m, n}$.

The following notations continually appear in our proofs. For a given integer t with $t<n, G_{t, m}$ is a subgraph of $G_{n, m}$. We use the notation $H_{n-t, m}$ to denote $G_{n, m}-G_{t, m}$, that is, $H_{n-t, m}$ is a subgraph of $G_{n, m}$ induced by the set of vertices
$\left\{x_{i j} \mid t+1 \leq i \leq n, 1 \leq j \leq m\right\}$. Clearly, $H_{n-t, m} \cong G_{n-t, m}$. For example, the graph shown in Fig. 1 by heavy lines is a subgraph $H_{2,3}$ of $G_{4,3}$, where $n=4, t=2$ and $m=3$.

Note that both $G_{0, m}$ and $H_{n-n, m}$ are nominal graphs. For convenience of statements, we allow $G_{0, m}$ and $H_{n-n, m}$ to appear in our proofs. In this case, we always make their total dominating sets empty.

In addition, let $Y_{i}=\left\{x_{i j} \mid 1 \leq j \leq m\right\}$ for $1 \leq i \leq n$, called a set of vertical vertices in $G_{n, m}$.
We state some useful results on $\gamma_{t}\left(G_{n, m}\right)$, which are used in our proofs.
Lemma 2.1. Let n be a positive integer. Then

$$
\begin{aligned}
& \gamma_{t}\left(G_{n, 2}\right)=2\left\lfloor\frac{n+2}{3}\right\rfloor \text { for } n \geq 1 \\
& \gamma_{t}\left(G_{1,3}\right)=2 \text { and } \gamma_{t}\left(G_{n, 3}\right)=n \text { for } n \geq 2 \\
& \gamma_{t}\left(G_{n, 4}\right)=\left\{\begin{array}{ll}
\left\lfloor\frac{6 n+8}{5}\right\rfloor & \text { if } n \equiv 1,2,4(\bmod 5), \\
\left\lfloor\frac{6 n+8}{5}\right\rfloor+1 & \text { otherwise }
\end{array} \text { for } n \geq 4[6]\right. \text {. }
\end{aligned}
$$

For $n \geq 3, \gamma_{t}\left(P_{n}\right)=\gamma_{t}\left(C_{n}\right)=\left\lfloor\frac{n+2}{4}\right\rfloor+\left\lfloor\frac{n+3}{4}\right\rfloor[13]$.
Lemma 2.2. Let D be a total dominating set of $G_{n, m}$. Then $\gamma_{t}\left(G_{i, m}\right) \leq\left|D \cap V\left(G_{i+1, m}\right)\right|$ for $1 \leq i \leq n-1$ and $m \geq 2$.
Proof. Let $D^{\prime}=D \cap V\left(G_{i+1, m}\right)$. If $D^{\prime} \cap Y_{i+1}=\emptyset$, then D^{\prime} is a total dominating set of $G_{i, m}$, and hence $\gamma_{t}\left(G_{i, m}\right) \leq\left|D^{\prime}\right|$. Assume $D^{\prime} \cap Y_{i+1} \neq \emptyset$ below and let $A=\left\{j \mid x_{i+1, j} \in D^{\prime}, j=1,2, \ldots, m\right\}$.

Assume $i=1$. If $m=2$, then $\left|D \cap V\left(G_{2,2}\right)\right| \geq 2=\gamma_{t}\left(G_{1,2}\right)$ is obvious. Suppose $m \geq 3$ below. Consider the graph $G=G_{1, m}+x_{11} x_{1 m}$. Then $G \cong C_{m}$ and $D^{\prime \prime}=\left(D^{\prime} \backslash Y_{2}\right) \cup\left\{x_{1(j-1)} \mid j \in A\right\}\left(x_{10}\right.$ is replaced by $x_{1 n}$ in the case $\left.j=1\right)$ is a total dominating set of G and $\left|D^{\prime \prime}\right| \leq\left|D^{\prime}\right|$. By Lemma 2.1, $\gamma_{t}\left(G_{1, m}\right)=\gamma_{t}(G) \leq\left|D^{\prime \prime}\right| \leq\left|D^{\prime}\right|$.

Now, assume $i \geq 2$. Then $\overline{D^{\prime \prime \prime}}=\left(D^{\prime} \backslash Y_{i+1}\right) \cup\left\{x_{(i-1) j} \mid j \in A\right\}$ is a total dominating set of $G_{i, m}$ and $\left|D^{\prime \prime \prime}\right| \leq\left|D^{\prime}\right|$. Thus, we have $\gamma_{t}\left(G_{i, m}\right) \leq\left|D^{\prime \prime \prime}\right| \leq\left|D^{\prime}\right|$, and so the lemma follows.

Lemma 2.3 (Kulli and Patwari [22]). For a path P_{n} with $n \geqslant 4$,

$$
b_{t}\left(P_{n}\right)= \begin{cases}2 & \text { if } n \equiv 2(\bmod 4) \\ 1 & \text { otherwise }\end{cases}
$$

Since $G_{1, m} \cong P_{m}$ and $G_{n, 1} \cong P_{n}$, by Lemma 2.3 , we assume that if one of n and m is 1 , then the other is at least 4 when we consider the existence of $b_{t}\left(G_{n, m}\right)$.

3. The total bondage number of $\boldsymbol{G}_{\boldsymbol{n}, 2}$

In this section, we determine the exact value of $b_{t}\left(G_{n, 2}\right)$ for $n \geq 2$. Since the computation of $b_{t}\left(G_{n, 2}\right)$ strongly depends on the value of $\gamma_{t}\left(G_{n, 2}\right)$ in Lemma 2.1, our proof consists of several lemmas according to the value of n modulo 3 .

Lemma 3.1. $b_{t}\left(G_{n, 2}\right) \leq 2$ for $n \not \equiv 1(\bmod 3)$.
Proof. By Lemma 2.1, we have

$$
\begin{equation*}
\gamma_{t}\left(G_{n-1,2}\right)=\gamma_{t}\left(G_{n, 2}\right) \quad \text { if } n \neq 1(\bmod 3) \tag{3.1}
\end{equation*}
$$

Let $B=\left\{x_{(n-1) 1} x_{n 1}, x_{(n-1) 2} x_{n 2}\right\} \subset E\left(G_{n, 2}\right)$, and $H=G_{n, 2}-B$. By (3.1), we have

$$
\gamma_{t}(H)=2+\gamma_{t}\left(G_{n-1,2}\right) \geq 1+\gamma_{t}\left(G_{n, 2}\right)
$$

which implies that $b_{t}\left(G_{n, 2}\right) \leq|B|=2$.
Lemma 3.2. If $n \equiv 1(\bmod 3)$, then $\gamma_{t}\left(G_{n, 2}-x_{n j}\right)=\gamma_{t}\left(G_{n, 2}\right)-1$ for each $j=1$, 2 .
Proof. Without loss of generality, we only consider the case $j=1$. By the hypothesis, $n \geq 4$. It can be directly check that the lemma holds for $n=4$. Assume $n \geq 7$ below. Let D be a minimum total dominating set of $G_{n, 2}-x_{n 1}$. We need to show $|D|=\gamma_{t}\left(G_{n, 2}\right)-1$.

We consider a subgraph $G_{n-4,2}$ and let D^{\prime} be a minimum total dominating set of $G_{n-4,2}$. By Lemma $2.1,\left|D^{\prime}\right|=2\left\lfloor\frac{n-4+2}{3}\right\rfloor=$ $2\left\lfloor\frac{n-2}{3}\right\rfloor$. Clearly, $D^{\prime} \cup\left\{x_{(n-1) 2}, x_{(n-2) 2}, x_{(n-3) 2}\right\}$ is a total dominating set of $G_{n, 2}-x_{n 1}$. Since $n \equiv 1$ (mod 3), we have $2\left\lfloor\frac{n+4}{3}\right\rfloor=2\left\lfloor\frac{n+2}{3}\right\rfloor=\gamma_{t}\left(G_{n, 2}\right)$ by Lemma 2.1. It follows that

$$
\begin{aligned}
|D| & \leq\left|D^{\prime}\right|+3=2\left\lfloor\frac{n-2}{3}\right\rfloor+3 \\
& =2\left\lfloor\frac{n+4}{3}\right\rfloor-1=2\left\lfloor\frac{n+2}{3}\right\rfloor-1 \\
& =\gamma_{t}\left(G_{n, 2}\right)-1,
\end{aligned}
$$

Fig. 2. Two subgraphs $G_{i-1,2}$ and $H_{n-(i+1), 2}$ of $G_{n, 2}$.
that is,

$$
\begin{equation*}
|D| \leq \gamma_{t}\left(G_{n, 2}\right)-1 \tag{3.2}
\end{equation*}
$$

We now prove that $|D| \geq \gamma_{t}\left(G_{n, 2}\right)-1$. If one of $x_{(n-1) 1}$ and $x_{n 2}$ belongs to D, then D is a total dominating set of $G_{n, 2}$. By (3.2), we can deduce a contradiction as follows. $\gamma_{t}\left(G_{n, 2}\right) \leq|D| \leq \gamma_{t}\left(G_{n, 2}\right)-1$. It follows that neither of $x_{(n-1) 1}$ and $x_{n 2}$ belongs to D. Since D is a total dominating set of $G_{n, 2}-x_{n 1}$, the vertex $x_{(n-1) 2}$ must be in D to dominate $x_{n 2}$. Thus $D \cup\left\{x_{(n-1) 1}\right\}$ is a total dominating set of $G_{n, 2}$, and so

$$
|D|=\left|D \cup\left\{x_{(n-1) 1}\right\}\right|-1 \geq \gamma_{t}\left(G_{n, 2}\right)-1 .
$$

The lemma follows.
Lemma 3.3. $b_{t}\left(G_{n, 2}\right)=1$ for $n \equiv 0(\bmod 3)$.
Proof. We only need to show

$$
\begin{equation*}
\gamma_{t}\left(G_{n, 2}-x_{(n-1) 1} x_{n 1}\right) \geq \gamma_{t}\left(G_{n, 2}\right)+1 \tag{3.3}
\end{equation*}
$$

Let $H=G_{n, 2}-x_{(n-1) 1} x_{n 1}$ and D be a minimum total dominating set of H. Then the vertex $x_{n 2}$ must be in D otherwise D cannot dominate the vertex $x_{n 1}$ in H. Moreover, D is either a total dominating set of $G_{n+1,2}$ if $x_{n 1}$ is in D or a total dominating set of $G_{n+1,2}-x_{(n+1) 1}$ if $x_{n 1}$ is not in D. Since $n \equiv 0(\bmod 3)$, we have $n+1 \equiv 1(\bmod 3)$ and $\left\lfloor\frac{n}{3}\right\rfloor=\left\lfloor\frac{n+2}{3}\right\rfloor$. By Lemmas 2.1 and 3.2, we have

$$
\begin{aligned}
\gamma_{t}(H) & =|D| \geq \gamma_{t}\left(G_{n+1,2}\right)-1=2\left\lfloor\frac{n+1+2}{3}\right\rfloor-1=2\left\lfloor\frac{n}{3}\right\rfloor+1 \\
& =2\left\lfloor\frac{n+2}{3}\right\rfloor+1=\gamma_{t}\left(G_{n, 2}\right)+1
\end{aligned}
$$

The lemma follows.
Lemma 3.4. $b_{t}\left(G_{n, 2}\right)=2$ for $n \equiv 2(\bmod 3)$.
Proof. To prove the lemma, we only need to show $b_{t}\left(G_{n, 2}\right) \geq 2$ by Lemma 3.1. To this end, we only need to show $\gamma_{t}\left(G_{n, 2}-e\right)=\gamma_{t}\left(G_{n, 2}\right)$ for any edge e in $G_{n, 2}$. Let e be any edge in $G_{n, 2}$. We only need to prove that $\gamma_{t}\left(G_{n, 2}-e\right) \leq \gamma_{t}\left(G_{n, 2}\right)$ since $\gamma_{t}\left(G_{n, 2}\right) \leq \gamma_{t}\left(G_{n, 2}-e\right)$ clearly. We attain this aim by constructing a total dominating set D of $G_{n, 2}-e$ such that $|D|=2\left\lfloor\frac{n+2}{3}\right\rfloor$, which means $|D|=\gamma_{t}\left(G_{n, 2}\right)$ by Lemma 2.1.

We consider two cases according as that e is vertical or horizontal, respectively.
Suppose that e is a vertical edge $e=x_{i 1} x_{i 2}$, where $1 \leq i \leq n$. Let

$$
D= \begin{cases}\left\{x_{k j} \mid k \equiv 1(\bmod 3), j=1,2\right\} & \text { if } i \equiv 2(\bmod 3) \\ \left\{x_{k j} \mid k \equiv 2(\bmod 3), j=1,2\right\} & \text { otherwise }\end{cases}
$$

Then D is a total dominating set of $G_{n, 2}-e$ and $|D|=2\left\lfloor\frac{n+2}{3}\right\rfloor$.
Suppose now that e is a horizontal edge, maybe $e=x_{i 1} x_{(i+1) 1}$ or $e=x_{i 2} x_{(i+1) 2}$, where $1 \leq i \leq n-1$. Without loss of generality, set $e=x_{i 1} x_{(i+1) 1}$. We consider two subcases to construct D, respectively.

Assume $i \not \equiv 1(\bmod 3)$. Let

$$
D= \begin{cases}\left\{x_{k j} \mid k \equiv 2(\bmod 3), j=1,2\right\} & \text { if } i \equiv 0(\bmod 3) \\ \left\{x_{k j} \mid k \equiv 1(\bmod 3), j=1,2\right\} & \text { if } i \equiv 2(\bmod 3)\end{cases}
$$

Then D is a total dominating set of $G_{n, 2}-e$ and $|D|=2\left\lfloor\frac{n+2}{3}\right\rfloor$.
Assume now $i \equiv 1(\bmod 3)$. We consider $G_{i-1,2}$ and $H_{n-(i+1), 2}$ (see Fig. 2). Let D^{\prime} and $D^{\prime \prime}$ be minimum total dominating sets of $G_{i-1,2}$ and $H_{n-(i+1), 2}$, respectively. Then $D=D^{\prime} \cup D^{\prime \prime} \cup\left\{x_{i 2}, x_{(i+1) 2}\right\}$ is a total dominating set of $G_{n, 2}-e$. Note $D^{\prime}=\emptyset$
if $i=1$ and $D^{\prime \prime}=\emptyset$ if $i=n-1$. Thus, by Lemma 2.1,

$$
\begin{aligned}
|D| & =\left|D^{\prime}\right|+\left|D^{\prime \prime}\right|+2 \\
& =2\left\lfloor\frac{i-1+2}{3}\right\rfloor+2\left\lfloor\frac{n-i-1+2}{3}\right\rfloor+2 \\
& =2\left\lfloor\frac{n+2}{3}\right\rfloor
\end{aligned}
$$

The lemma follows.
Lemma 3.5. $b_{t}\left(G_{n, 2}\right)=3$ for $n \equiv 1(\bmod 3)$.
Proof. Since $n \equiv 1(\bmod 3), n-1 \equiv 0(\bmod 3)$. By (3.3), for the edge $e_{0}=x_{(n-2) 1} x_{(n-1) 1}$, we have

$$
\begin{equation*}
\gamma_{t}\left(G_{n-1,2}-e_{0}\right) \geq \gamma_{t}\left(G_{n-1,2}\right)+1 . \tag{3.4}
\end{equation*}
$$

Choose other two edges e_{1}, e_{2} in $G_{n, 2}$, where $e_{1}=x_{(n-1) 1} x_{n 1}$ and $e_{2}=x_{(n-1) 2} x_{n 2}$. Let $H=G_{n, 2}-\left\{e_{0}, e_{1}, e_{2}\right\}$. Then $H=\left(G_{n-1,2}-e_{0}\right)+H_{n-(n-1), 2}$ and any total dominating set of H must contain vertices $x_{n 1}$ and $x_{n 2}$. By (3.4) and Lemma 2.1, we have

$$
\begin{aligned}
\gamma_{t}(H) & =\gamma_{t}\left(G_{n-1,2}-e_{0}\right)+2 \\
& \geq \gamma_{t}\left(G_{n-1,2}\right)+1+2 \\
& =2\left\lfloor\frac{n-1+2}{3}\right\rfloor+3 \\
& =2\left\lfloor\frac{n+4}{3}\right\rfloor+1=2\left\lfloor\frac{n+2}{3}\right\rfloor+1 \\
& =\gamma_{t}\left(G_{n, 2}\right)+1
\end{aligned}
$$

which implies $b_{t}\left(G_{n, 2}\right) \leq 3$.
Now we prove $b_{t}\left(G_{n, 2}\right) \geq 3$. To the end, let e_{1} and e_{2} be any two edges in $G_{n, 2}$, and $H=G_{n, 2}-\left\{e_{1}, e_{2}\right\}$. We only need to prove $\gamma_{t}(H) \leq \gamma_{t}\left(G_{n, 2}\right)$. We consider three cases, respectively.
Case 1 Both e_{1} and e_{2} are vertical edges.
Let $e_{1}=x_{i 1} x_{i 2}, e_{2}=x_{j 1} x_{j 2}, i<j$, and let

$$
D= \begin{cases}\left\{x_{k l} \mid k \equiv 1(\bmod 3), l=1,2\right\} & \text { if } i, j \not \equiv 1(\bmod 3) ; \\ \left\{x_{k l} \mid k \equiv 2(\bmod 3), l=1,2\right\} \cup\left\{x_{(n-1) 1}, x_{(n-1) 2}\right\} & \text { if } i, j \not \equiv 2(\bmod 3) ; \\ \left\{x_{k l} \mid k \equiv 0(\bmod 3), l=1,2\right\} \cup\left\{x_{21}, x_{22}\right\} & \text { otherwise }\end{cases}
$$

Then D is a total dominating set of H and $\gamma_{t}(H) \leq|D|=2\left\lfloor\frac{n+2}{3}\right\rfloor$. By Lemma 2.1, $|D|=\gamma_{t}\left(G_{n, 2}\right)$. Thus, for two vertical edges e_{1} and e_{2}, we have

$$
\begin{equation*}
\gamma_{t}(H)=\gamma_{t}\left(G_{n, 2}-\left\{e_{1}, e_{2}\right\}\right) \leq \gamma_{t}\left(G_{n, 2}\right) \tag{3.5}
\end{equation*}
$$

Case 2 One of e_{1} and e_{2} is horizontal and the other is vertical.
Without loss of generality, suppose that e_{1} is horizontal and e_{2} is vertical, and let $e_{1}=x_{i 1} x_{(i+1) 1}$ and $e_{2}=$ $x_{j 1} x_{j 2}, 1 \leq i \leq n-1$ and $1 \leq j \leq n$. We will prove $\gamma_{t}(H) \leq \gamma_{t}\left(G_{n, 2}\right)$.
Consider $G_{i, 2}$ and $H_{n-i, 2}$. Then both $G_{i, 2}$ and $H_{n-i, 2}$ do not contain the edge e_{1}. There are several subcases.
If $i \equiv 2(\bmod 3)$, then $n-i \equiv 2(\bmod 3)$ since $n \equiv 1(\bmod 3)$. By Lemma 3.4, $b_{t}\left(G_{i, 2}\right)=2=b_{t}\left(H_{n-i, 2}\right)$, which implies $\gamma_{t}\left(G_{i, 2}\right)=\gamma_{t}\left(G_{i, 2}-e_{2}\right)$ if e_{2} is in $G_{i, 2}$, and $\gamma_{t}\left(H_{n-i, 2}\right)=\gamma_{t}\left(H_{n-i, 2}-e_{2}\right)$ if e_{2} is in $H_{n-i, 2}$. No matter which case arises, by Lemma 2.1, we have

$$
\begin{align*}
\gamma_{t}(H) & \leq \gamma_{t}\left(G_{i, 2}\right)+\gamma_{t}\left(H_{n-i, 2}\right) \\
& =2\left\lfloor\frac{i+2}{3}\right\rfloor+2\left\lfloor\frac{n-i+2}{3}\right\rfloor \\
& \leq 2\left\lfloor\frac{n+2}{3}\right\rfloor=\gamma_{t}\left(G_{n, 2}\right) . \tag{3.6}
\end{align*}
$$

If $i \equiv 1(\bmod 3)$ and $j \leq i$, then e_{2} is in $G_{i, 2}$. By (3.5), $\gamma_{t}\left(G_{i, 2}-e_{2}\right) \leq \gamma_{t}\left(G_{i, 2}\right)$. Thus, the inequalities (3.6) hold.
If $i \equiv 0(\bmod 3)$ and $j \geq i+1$, then $n-i \equiv 1(\bmod 3)$ and e_{2} is in $H_{n-i, 2}$. Since $H_{n-i, 2} \cong G_{n-i, 2}$, by (3.5), we have $\gamma_{t}\left(H_{n-i, 2}-e_{2}\right) \leq \gamma_{t}\left(H_{n-i, 2}\right)$. Thus, the inequalities (3.6) hold.

The remainder is the case either $i \equiv 1(\bmod 3)$ and $j \geq i+1$ or $i \equiv 0(\bmod 3)$ and $j \leq i$. Since $f: x_{s t} \rightarrow x_{(n-s+1) t}$ for $s=1,2, \ldots, n$ is an automorphism of $G_{n, m}$, the two edges e_{1} and e_{2} can be considered as $x_{(n-i) 1} x_{(n-i+1) 1}$ and
$x_{(n-j+1) 1} x_{(n-j+1) 2}$, respectively. Then the two cases are the same since $n-i \equiv 0(\bmod 3)$ and $n-j+1 \leq n-i$. We only consider the latter case, that is, $i \equiv 0(\bmod 3)$ and $j \leq i$.
If $j=i$, let $D=\left\{x_{k l} \mid k \equiv 2(\bmod 3), l=1,2\right\} \cup\left\{x_{n 1}, x_{n 2}\right\}$, then D is a total dominating set of H, and so,

$$
\gamma_{t}(H) \leq|D|=2\left\lfloor\frac{n+2}{3}\right\rfloor=\gamma_{t}\left(G_{n, 2}\right)
$$

We now assume $j<i$. Consider $G_{i-1,2}$ and $H_{n-(i+1), 2}$. Let D^{\prime} be a minimum total dominating set of $G_{i-1,2}-e_{2}$, and $D^{\prime \prime}$ be a minimum total dominating set of $H_{n-(i+1), 2}$. Then $D=D^{\prime} \cup D^{\prime \prime} \cup\left\{x_{i 2}, x_{(i+1) 2}\right\}$ is a total dominating set of H. Since $i-1 \equiv 2(\bmod 3), \gamma_{t}\left(G_{i-1,2}\right)=\gamma_{t}\left(G_{i-1,2}-e_{2}\right)$ by Lemma 3.4. $H_{n-(i+1), 2}$ contains neither e_{1} nor e_{2}. By Lemma 2.1, we have

$$
\begin{aligned}
\gamma_{t}(H) & \leq|D|=\left|D^{\prime}\right|+\left|D^{\prime \prime}\right|+2 \\
& \leq 2+\gamma_{t}\left(G_{i-1,2}\right)+\gamma_{t}\left(H_{n-(i+1), 2}\right) \\
& =2+2\left\lfloor\frac{i+1}{3}\right\rfloor+2\left\lfloor\frac{n-i+1}{3}\right\rfloor \\
& =2\left\lfloor\frac{n+2}{3}\right\rfloor=\gamma_{t}\left(G_{n, 2}\right) .
\end{aligned}
$$

Case 3 Both e_{1} and e_{2} are horizontal edges.
Without loss of generality, let $e_{1}=x_{i 1} x_{(i+1) 1}$ and $e_{2}=x_{k j} x_{(k+1) j}$ are two distinct horizontal edges, where $1 \leq j \leq 2$ and $i \leq k<n$, and $j=2$ if $i=k$. To prove $\gamma_{t}(H) \leq \gamma_{t}\left(G_{n, 2}\right)$, we consider three subcases, respectively.
Subcase $3.1 k=i$.
In this subcase, $e_{2}=x_{i 2} x_{(i+1) 2}, H$ is disconnected and has exactly two connected components $G_{i, 2}$ and $H_{n-i, 2}$. Since both $G_{i, 2}$ and $H_{n-i, 2}$ contain neither of e_{1} and e_{2}, we have $\gamma_{t}(H)=\gamma_{t}\left(G_{i, 2}\right)+\gamma_{t}\left(H_{n-i, 2}\right)=$ $\gamma_{t}\left(G_{n, 2}\right)$ by Lemma 2.1.
Subcase $3.2 k=i+1$.
In this subcase, $G_{i, 2}$ and $H_{n-i-1,2}$ contain neither e_{1} nor e_{2}.
If $i \equiv 0$ or $1(\bmod 3)$, let D^{\prime} be a minimum total dominating set of $G_{i-1,2}$, and $D^{\prime \prime}$ be a minimum total dominating set of $H_{n-i-1,2}$, then $D=D^{\prime} \cup D^{\prime \prime} \cup\left\{x_{i 2}, x_{(i+1) 2}\right\}$ is a total dominating set of H. Note $D^{\prime}=\emptyset$ if $i=1$. By Lemma 2.1, we have

$$
\begin{aligned}
\gamma_{t}(H) & \leq|D| \leq 2+\gamma_{t}\left(G_{i-1,2}\right)+\gamma_{t}\left(H_{n-i-1,2}\right) \\
& =2+2\left\lfloor\frac{i+1}{3}\right\rfloor+2\left\lfloor\frac{n-i+1}{3}\right\rfloor \\
& =2\left\lfloor\frac{n+2}{3}\right\rfloor=\gamma_{t}\left(G_{n, 2}\right) .
\end{aligned}
$$

If $i \equiv 2(\bmod 3)$, let D^{\prime} be a minimum total dominating set of $G_{i-2,2}$, and $D^{\prime \prime}$ be a minimum total dominating set of $H_{n-i-2,2}$, then $D=D^{\prime} \cup D^{\prime \prime} \cup\left\{x_{(i-1) p}, x_{i p}, x_{(i+1) p}, x_{(i+2) p}\right\}$, where $p=3-j$, is a total dominating set of H. Note that $D^{\prime}=\emptyset$ if $i=2$ and $D^{\prime \prime}=\emptyset$ if $i=n-2$. By Lemma 2.1, we have

$$
\begin{aligned}
\gamma_{t}(H) & \leq|D| \leq 4+\gamma_{t}\left(G_{i-2,2}\right)+\gamma_{t}\left(H_{n-i-2,2}\right) \\
& =4+2\left\lfloor\frac{i}{3}\right\rfloor+2\left\lfloor\frac{n-i}{3}\right\rfloor \\
& =2\left\lfloor\frac{n+2}{3}\right\rfloor=\gamma_{t}\left(G_{n, 2}\right) .
\end{aligned}
$$

Subcase $3.3 k>i+1$.
In this case, e_{2} is in $H_{n-i, 2}$.
If $i \equiv 2(\bmod 3)$, then $n-i \equiv 2(\bmod 3)$ as $n \equiv 1(\bmod 3)$. Thus, $b_{t}\left(H_{n-i, 2}\right)=2$ by Lemma 3.4, which implies $\gamma_{t}\left(H_{n-i, 2}-e_{2}\right)=\gamma_{t}\left(H_{n-i, 2}\right)$. If $i \equiv 0(\bmod 3)$, then $n-i \equiv 1(\bmod 3)$. Subcase 3.1 shows that $\gamma_{t}\left(G_{n, 2}-\left\{e_{1}^{\prime}, e_{2}^{\prime}\right\}\right)=\gamma_{t}\left(G_{n, 2}\right)$ for two horizontal edges $e_{1}^{\prime}=x_{l 1} x_{(l+1) 1}$ and $e_{2}^{\prime}=x_{l 2} x_{(l+1) 2}$ for any $l=1,2, \ldots, n-1$ in $G_{n, 2}$ when $n \equiv 1(\bmod 3)$. Since e_{2} is a horizontal edge in $H_{n-i, 2}$ and $H_{n-i, 2} \cong G_{n-i, 2}$, we immediately have $\gamma_{t}\left(H_{n-i, 2}-e_{2}\right)=\gamma_{t}\left(H_{n-i, 2}\right)$. Thus, when $i \not \equiv 1(\bmod 3)$, we have

$$
\gamma_{t}(H) \leq \gamma_{t}\left(G_{i, 2}\right)+\gamma_{t}\left(H_{n-i, 2}-e_{2}\right)
$$

$$
=\gamma_{t}\left(G_{i, 2}\right)+\gamma_{t}\left(H_{n-i, 2}\right)
$$

$$
=\gamma_{t}\left(G_{n, 2}\right)
$$

If $k \not \equiv 0(\bmod 3)$ then, by replacing $G_{k, 2}$ and $H_{n-k, 2}$ by $H_{n-i, 2}$ and $G_{i, 2}$, respectively, we still have

$$
\begin{aligned}
\gamma_{t}(H) & \leq \gamma_{t}\left(G_{k, 2}-e_{1}\right)+\gamma_{t}\left(H_{n-k, 2}\right) \\
& =\gamma_{t}\left(G_{k, 2}\right)+\gamma_{t}\left(H_{n-k, 2}\right) \\
& =\gamma_{t}\left(G_{n, 2}\right) .
\end{aligned}
$$

Now, we assume $i \equiv 1(\bmod 3)$ and $k \equiv 0(\bmod 3)$. We consider three subgraphs $G_{i-1,2}, H_{n-(k+1), 2}$ and $H_{k-1-(i+1), 2}$.

Let D^{\prime} be a minimum total dominating set of $G_{i-1,2}, D^{\prime \prime}$ be a minimum total dominating set of $H_{n-(k+1), 2}$, and $D^{\prime \prime \prime}$ be a minimum total dominating set of $H_{k-1-(i+1), 2}$. Then $D=D^{\prime} \cup D^{\prime \prime} \cup D^{\prime \prime \prime} \cup$ $\left\{x_{i 2}, x_{(i+1) 2}, x_{k p}, x_{(k+1) p}\right\}$, where $p=3-j$, is a total dominating set of H. Note $D^{\prime}=\emptyset$ if $i=1, D^{\prime \prime}=\emptyset$ if $k=n-1$ and $D^{\prime \prime \prime}=\emptyset$ if $k=i+2$. By Lemma 2.1, we have

$$
\begin{aligned}
\gamma_{t}(H) & \leq|D| \leq 4+\gamma_{t}\left(G_{i-1,2}\right)+\gamma_{t}\left(H_{n-k-1,2}\right)+\gamma_{t}\left(H_{k-i-2,2}\right) \\
& =4+2\left\lfloor\frac{i+1}{3}\right\rfloor+2\left\lfloor\frac{n-k-1+2}{3}\right\rfloor+2\left\lfloor\frac{k-i-2+2}{3}\right\rfloor \\
& =4+2\left\lfloor\frac{n-4}{3}\right\rfloor=2\left\lfloor\frac{n+2}{3}\right\rfloor \\
& =\gamma_{t}\left(G_{n, 2}\right) .
\end{aligned}
$$

Summing up all cases, we prove the lemma.
According to the above lemmas, we can state our results in this section as follows.
Theorem 3.1. For any integer $n \geq 2$,

$$
b_{t}\left(G_{n, 2}\right)= \begin{cases}1 & \text { if } n \equiv 0(\bmod 3) \\ 2 & \text { if } n \equiv 2(\bmod 3), \\ 3 & \text { if } n \equiv 1(\bmod 3)\end{cases}
$$

4. The total bondage number of $\boldsymbol{G}_{n, 3}$

In this section, we will determine $b_{t}\left(G_{n, 3}\right)=1$ for $n \geq 2$. In this case, $Y_{i}=\left\{x_{i j} \mid 1 \leq j \leq 3\right\}$ for $1 \leq i \leq n$.
Lemma 4.1. Let D be a minimum total dominating set of $G_{n, 3}$. Then $\left|D \cap Y_{1}\right| \leq 2$ and $\left|D \cap Y_{n}\right| \leq 2$.
Proof. Without loss of generality, we only show $\left|D \cap Y_{n}\right| \leq 2$. By contradiction, suppose that there exists a minimum total dominating set D of $G_{n, 3}$ such that $\left|D \cap Y_{n}\right|=3$. Then D is still a total dominating set of $G_{n+1,3}$. By Lemma 2.1, $n=\gamma_{t}\left(G_{n, 3}\right)=|D|=\gamma_{t}\left(G_{n+1,3}\right)=n+1$, a contradiction. Therefore, $\left|D \cap Y_{n}\right| \leq 2$.

Lemma 4.2. Let D be a total dominating set of $G_{n, 3}$. If at least one of $x_{n 1}$ and $x_{n 3}$ is in D, then $|D| \geq n+1$.
Proof. Let D be a total dominating set of $G_{n, 3}$.
We first consider that both $x_{n 1}$ and $x_{n 3}$ are in D. If $x_{n 2} \in D$, then $\left|D \cap Y_{n}\right|=3$. By Lemma 4.1, D is not a minimum total dominating set of $G_{n, 3}$. Thus, by Lemma 2.1, we have $|D| \geq \gamma_{t}\left(G_{n, 3}\right)+1=n+1$.

Assume $x_{n 2} \notin D$ below. Since $x_{n 2}$ is not in D, both $x_{(n-1) 1}$ and $x_{(n-1) 3}$ must be in D. Let $D^{\prime}=\left(D \backslash\left\{x_{n 1}, x_{n 3}\right\}\right) \cup\left\{x_{(n-1) 2}\right\}$. Then D^{\prime} is still a total dominating set of $G_{n, 3}$, and $\left|D^{\prime}\right|<|D|$. By Lemma $2.1,|D| \geq\left|D^{\prime}\right|+1 \geq \gamma_{t}\left(G_{n, 3}\right)+1=n+1$.

We now consider that only one of $x_{n 1}$ and $x_{n 3}$ is in D. Without loss of generality, we can assume $x_{n 1} \in D$ and $x_{n 3} \notin D$. We prove $|D| \geq n+1$ by induction on the first subscript $n \geq 2$ of $G_{n, 3}$.

It is clear that $|D| \geq 3$ for $n=2$. Suppose $|D| \geq k+1$ for any integer $k<n$. We prove that $|D| \geq n+1$ for $n \geq 3$. We can assume that $\left|D \cap Y_{i}\right| \leq 2$ for each $i=2,3, \ldots, n-1$ since if $\left|D \cap Y_{i}\right|=3$ for some i with $2 \leq i \leq n-1$, then $\left(D \backslash\left\{x_{i 1}, x_{i 3}\right\}\right) \cup\left\{x_{(i-1) 2}, x_{(i+1) 2}\right\}$ is still a total dominating set of $G_{n, 3}$ with the cardinality at most $|D|$.

If $x_{i 2} \notin D$ for each $i=2,3, \ldots, n-1$, then each vertex u in $D \backslash\left\{x_{n 1}\right\}$ can totally dominate at most three vertices since u has at most three neighbors, and $x_{n 1}$ can totally dominate only two vertices. Thus, D can totally dominate at most $2+3(|D|-1)$ vertices. On the other hand, D can totally dominate all $3 n$ vertices. From the two facts, we can deduce $3 n \leq 2+3(|D|-1)$, which yields $|D| \geq n+1$.

Now assume $x_{i 2} \in D$ for some i with $2 \leq i \leq n-1$. Let i_{0} be the largest index such that $x_{i_{0} 2} \in D$ for $2 \leq i_{0} \leq n-1$. If $x_{n 2} \in D$ and $i_{0}=n-1$, then $D \backslash\left\{x_{n 1}\right\}$ is still a total dominating set of $G_{n, 3}$. Thus, $|D| \geq \gamma_{t}\left(G_{n, 3}\right)+1=n+1$ by Lemma 2.1. We assume $i_{0} \neq n-1$ if $x_{n 2} \in D$ in the following discussion. There are two cases.
Case $1 D \cap Y_{i_{0}}=\left\{x_{i_{0}}\right\}$.
In this case, since $x_{\left(i_{0}+1\right) 2} \notin D$ by the maximality of $i_{0}, x_{\left(i_{0}-1\right) 2} \in D$. Let $D_{1}=D \cap V\left(G_{i_{0}, 3}\right)$. Then D_{1} is a total dominating set of $G_{i_{0}, 3}$.

If $D \cap Y_{i_{0}-1}=\left\{x_{\left(i_{0}-1\right) 2}\right\}$, then $D_{2}=D \cap V\left(H_{\left.n-\left(i_{0}-2\right), 3\right)}\right.$ is a total dominating set of $H_{n-\left(i_{0}-2\right), 3}$, and $\left|D_{1} \cap D_{2}\right|=$ $\left|\left\{x_{\left(i_{0}-1\right) 2}, x_{i_{0} 2}\right\}\right|=2$ (see Fig. 3). Since $H_{n-\left(i_{0}-2\right), 3} \cong G_{n-\left(i_{0}-2\right), 3}$ and D_{2} satisfies the condition in the lemma (i.e., $x_{n 1} \in D_{2}$), by the induction hypothesis $\left|D_{2}\right| \geq\left(n-i_{0}+2\right)+1=n-i_{0}+3$. By Lemma 2.1, $\left|D_{1}\right| \geq i_{0}$. Thus,

$$
|D| \geq\left|D_{1}\right|+\left|D_{2}\right|-2 \geq i_{0}+n-i_{0}+3-2=n+1
$$

Fig. 3. Two subgraphs $G_{i_{0}, 3}$ and $H_{n-\left(i_{0}-2\right), 3}$ of $G_{n, 3}$.
If $\left|D \cap Y_{i_{0}-1}\right|=2$, then $D_{3}=D \cap V\left(H_{n-\left(i_{0}-2\right), 3}\right)$ is a total dominating set of $H_{n-\left(i_{0}-2\right), 3}$. Let $D_{4}=D \cap V\left(G_{i_{0}-1}, 3\right)$. Then $\left|D_{4} \cap D_{3}\right|=2$. Since both of D_{3} and D_{4} satisfy the condition in the lemma, by the induction hypothesis, $\left|D_{4}\right| \geq i_{0}$ and $\left|D_{3}\right| \geq n-\left(i_{0}-2\right)+1$. Thus,

$$
|D| \geq\left|D_{4}\right|+\left|D_{3}\right|-2 \geq i_{0}+n-i_{0}+3-2=n+1
$$

Case 2 If $\left|D \cap Y_{i_{0}}\right|=2$, then $D_{5}=D \cap V\left(G_{i_{0}, 3}\right)$ is a total dominating set of $G_{i_{0}, 3}, D_{6}=D \cap V\left(H_{n-\left(i_{0}-1\right), 3}\right)$ is a total dominating set of $H_{n-\left(i_{0}-1\right), 3}$ and $\left|D_{5} \cap D_{6}\right|=2$. Since both D_{4} and D_{5} satisfy the condition in the lemma, by the induction hypothesis, $\left|D_{5}\right| \geq i_{0}+1$ and $\left|D_{6}\right| \geq n-i_{0}+1+1=n-i_{0}+2$. Thus,

$$
|D| \geq\left|D_{5}\right|+\left|D_{6}\right|-2 \geq i_{0}+1+n-i_{0}+2-2=n+1
$$

The proof of the lemma is complete.
Theorem 4.1. $b_{t}\left(G_{n, 3}\right)=1$ for $n \geq 2$.
Proof. Let $H=G_{n, 3}-x_{(n-1) 2} x_{n 2}$ and D be a minimum total dominating set of H. Whether $x_{n 2}$ is in D or not, at least one of two vertices $x_{n 1}$ and $x_{n 3}$ is in D. Note that D is also a total dominating set for $G n, 3$. By Lemma $4.2,|D| \geq n+1$. Combining this fact with Lemma 2.1, we have $\gamma_{t}(H)=|D| \geq n+1=\gamma_{t}\left(G_{n, 3}\right)+1$. Therefore, $b_{t}\left(G_{n, 3}\right)=1$.

5. The total bondage number of $G_{n, 4}$

In this section, we determine the exact value of $b_{t}\left(G_{n, 4}\right)$ for $n \equiv 1,4(\bmod 5)$, and establish the upper bounds of $b_{t}\left(G_{n, 4}\right)$ for $n \equiv 0,2,3(\bmod 5)$.

Lemma 5.1. $b_{t}\left(G_{6,4}\right)=2, b_{t}\left(G_{n, 4}\right)=1$ for $n \geq 7$ and $n \equiv 1(\bmod 5)$.
Proof. It is easy to check that $B=\left\{x_{51} x_{61}, x_{52} x_{62}\right\}$ is a total bondage set of $G_{6,4}$ and $\gamma_{t}\left(G_{6,4}-e\right)=\gamma_{t}\left(G_{6,4}\right)$ for any edge e in $G_{6,4}$. Thus $b_{t}\left(G_{6,4}\right)=2$. Assume $n \geq 7$ below.

Let D be a minimum total dominating set of $G_{n, 4}-x_{n 2} x_{n 3}$. It is easy to see that $\left|D \cap\left(Y_{n-1} \cup Y_{n}\right)\right| \geq 4$. Thus, $|D| \geq$ $4+\left|D \cap V\left(G_{n-2,4}\right)\right|$. When $n \geq 7, n-3 \equiv 3(\bmod 5)$ and $n-3 \geq 4$. By Lemma 2.1, we have $\gamma_{t}\left(G_{n-3,4}\right)=\left\lfloor\frac{6(n-3)+8}{5}\right\rfloor+1$. Thus, by Lemma 2.2, we have

$$
\begin{aligned}
\left|D \cap V\left(G_{n-2,4}\right)\right| & \geq \gamma_{t}\left(G_{n-3,4}\right) \\
& =\left\lfloor\frac{6(n-3)+8}{5}\right\rfloor+1=\left\lfloor\frac{6 n+8}{5}\right\rfloor-2
\end{aligned}
$$

and, hence,

$$
\gamma_{t}\left(G_{n, 4}-x_{n 2} x_{n 3}\right)=|D| \geq 2+\left\lfloor\frac{6 n+8}{5}\right\rfloor>\gamma_{t}\left(G_{n, 4}\right)
$$

Therefore, $b_{t}\left(G_{n, 4}\right)=1$.
To determine $b_{t}\left(G_{n, 4}\right)$ for $n \equiv 4(\bmod 5)$, we state two simple observations; see Fig. 4 for $n=9$.
Proposition 5.1. For $n \equiv 4(\bmod 5)$, both

$$
\begin{aligned}
& D=\left\{x_{i 2}, x_{i 3}, x_{(i+2) 1}, x_{(i+3) 1}, x_{(i+2) 4}, x_{(i+3) 4}: i \equiv 1(\bmod 5), 1 \leq i \leq n-3\right\} \quad \text { and } \\
& D^{\prime}=\left\{x_{i 2}, x_{i 3}, x_{(i-3) 1}, x_{(i-2) 1}, x_{(i-3) 4}, x_{((i-2)) 4}: i \equiv 4(\bmod 5), 4 \leq i \leq n\right\}
\end{aligned}
$$

are minimum total dominating sets of $G_{n, 4}$.

Fig. 4. Two minimum total dominating sets (bold vertices) of $G_{9,4}$ defined in Propositions 5.1 and 5.2 , respectively.
Proposition 5.2. For $n \equiv 4(\bmod 5)$, both

$$
\begin{aligned}
D= & \left\{x_{i 1}, x_{i 2}, x_{(i+3) 1}, x_{(i+3) 2}, x_{(i+1) 4}, x_{(i+2) 4} \mid i \equiv 1(\bmod 10), 1 \leq i \leq n-3\right\} \\
& \cup\left\{x_{j 3}, x_{j 4}, x_{(j+3) 3}, x_{(j+3) 4}, x_{(j+1) 1}, x_{(j+2) 1} \mid j \equiv 6(\bmod 10), 1 \leq j \leq n-3\right\} \quad \text { and } \\
D^{\prime}= & \left\{x_{i 3}, x_{i 4}, x_{(i+3) 3}, x_{(i+3) 4}, x_{(i+1) 1}, x_{(i+2) 1} \mid i \equiv 1(\bmod 10), 1 \leq i \leq n-3\right\} \\
& \cup\left\{x_{j 1}, x_{j 2}, x_{(j+3) 1}, x_{(j+3) 2}, x_{(j+1) 4}, x_{(j+2) 4} \mid j \equiv 6(\bmod 10), 1 \leq j \leq n-3\right\}
\end{aligned}
$$

are minimum total dominating sets of $G_{n, 4}$.
Lemma 5.2. $b_{t}\left(G_{n, 4}\right)=2$ for $n \equiv 4(\bmod 5)$.
Proof. It is easy to check that $B=\left\{x_{12} x_{13}, x_{42} x_{43}\right\}$ is a total bondage set of $G_{4,4}$ and $\gamma_{t}\left(G_{4,4}-e\right)=\gamma_{t}\left(G_{4,4}\right)$ for any edge e in $G_{4,4}$. Thus $b_{t}\left(G_{4,4}\right)=2$. Assume $n \geq 9$ below.

For any edge $e \in E\left(G_{n, 4}\right)$, it is easy to verify that D or D^{\prime} defined in Proposition 5.1 or Proposition 5.2 is also a minimum total dominating set of $G_{n, 4}-e$. Thus, $b_{t}\left(G_{n, 4}\right) \geq 2$. We now prove that $b_{t}\left(G_{n, 4}\right) \leq 2$.

Let $H=G_{n, 4}-x_{(n-1) 1} x_{n 1}-x_{(n-1) 2} x_{n 2}$ and let S be a minimum total dominating set of H. Then the vertex $x_{n 2}$ must be in S, and at least one of $x_{n 1}$ and $x_{n 3}$ must be in S in H, that is, $\left|Y_{n} \cap S\right| \geq 2$.

If $\left|Y_{n} \cap S\right| \geq 3$ then $|S| \geq\left|S \cap V\left(G_{n-1,4}\right)\right|+3$. By Lemmas 2.2 and 2.1,, we have

$$
\begin{aligned}
\left|S \cap V\left(G_{n-1,4}\right)\right| & \geq \gamma_{t}\left(G_{n-2,4}\right) \\
& =\left\lfloor\frac{6(n-2)+8}{5}\right\rfloor=\left\lfloor\frac{6 n+8}{5}\right\rfloor-2
\end{aligned}
$$

and, hence,

$$
\gamma_{t}(H)=|S| \geq \gamma_{t}\left(G_{n-2,4}\right)+3 \geq 1+\left\lfloor\frac{6 n+8}{5}\right\rfloor>\gamma_{t}\left(G_{n, 4}\right)
$$

If $\left|Y_{n} \cap S\right|=2$, then $Y_{n} \cap S$ can totally dominate at most one vertex in $G_{n-1,4}$, that is, $x_{(n-1) 3}$ if so. Thus, $\left(S \cap V\left(G_{n-1,4}\right)\right) \cup$ $\left\{x_{(n-1) 2}\right\}$ is a total dominating set of $G_{n-1,4}$, which implies $|S| \geq\left|\left(S \cap V\left(G_{n-1,4}\right)\right) \cup\left\{x_{(n-1) 2}\right\}\right|+1 \geq \gamma_{t}\left(G_{n-1,4}\right)+1$. By Lemma 2.1, we have

$$
\gamma_{t}(H)=|S| \geq \gamma_{t}\left(G_{n-1,4}\right)+1>\gamma_{t}\left(G_{n, 4}\right)
$$

Therefore, $b_{t}\left(G_{n, 4}\right) \leq 2$.
Lemma 5.3. $b_{t}\left(G_{4,2}\right)=3, b_{t}\left(G_{n, 4}\right) \leq 3$ for $n \geq 7$ and $n \equiv 2(\bmod 5)$.
Proof. $b_{t}\left(G_{4,2}\right)=3$ by Theorem 3.1. It is easy to check that $B=\left\{x_{61} x_{71}, x_{62} x_{72}, x_{72} x_{73}\right\}$ is a total bondage set of $G_{7,4}$. Thus $b_{t}\left(G_{7,4}\right) \leq 3$. Assume $n \geq 12$ below.

Let $H=G_{n, 4}-x_{(n-1) 1} x_{n 1}-x_{(n-1) 2} x_{n 2}-x_{n 2} x_{n 3}$ and let S be a minimum total dominating set of H. Since $x_{n 1} x_{n 2}$ is an isolated edge in H, both $x_{n 1}$ and $x_{n 2}$ must be in S. To dominate the three vertices $x_{(n-1) 1}, x_{n 3}$ and $x_{n 4}$, we need at least three other vertices in S. In other words, $\left|\left(Y_{n-2} \cup Y_{n-1} \cup Y_{n}\right) \cap S\right| \geq 5$. Thus,

$$
\begin{equation*}
|S| \geq 5+\left|S \cap V\left(G_{n-3,4}\right)\right| \tag{5.1}
\end{equation*}
$$

By Lemmas 2.2 and 2.1, when $n \geq 8$ and $n \equiv 2(\bmod 5)$, we have

$$
\begin{aligned}
\left|S \cap V\left(G_{n-3,4}\right)\right| & \geq \gamma_{t}\left(G_{n-4,4}\right) \\
& =\left\lfloor\frac{6(n-4)+8}{5}\right\rfloor+1=\left\lfloor\frac{6 n+8}{5}\right\rfloor-4
\end{aligned}
$$

that is,

$$
\begin{equation*}
\left|S \cap V\left(G_{n-3,4}\right)\right| \geq\left\lfloor\frac{6 n+8}{5}\right\rfloor-4 \tag{5.2}
\end{equation*}
$$

It follows from (5.1), (5.2) and Lemma 2.1 that

$$
\gamma_{t}(H)=|S| \geq 1+\left\lfloor\frac{6 n+8}{5}\right\rfloor>\gamma_{t}\left(G_{n, 4}\right) .
$$

Therefore, $b_{t}\left(G_{n, 4}\right) \leq 3$.
Lemma 5.4. $b_{t}\left(G_{n, 4}\right) \leq 4$ for $n \equiv 0,3(\bmod 5)$.
Proof. It is easy to check that $B=\left\{x_{(n-3) 1} x_{(n-2) 1}, x_{(n-1) 1} x_{n 1}, x_{(n-1) 2} x_{n 2}, x_{n 2} x_{n 3}\right\}$ is a total bondage set of $G_{n, 4}$ for $n=5,8$. Thus $b_{t}\left(G_{n, 4}\right) \leq 4$. Assume $n \geq 10$ below.

Let $H=G_{n, 4}-x_{(n-5) 1} x_{(n-4) 1}-x_{(n-5) 2} x_{(n-4) 2}-x_{(n-5) 3} x_{(n-4) 3}-x_{(n-5) 4} x_{(n-4) 4}$ and let S be a minimum total dominating set of H. Then H consists of two grid subgraphs $G_{n-5,4}$ and $H_{5,4}$, and so

$$
\begin{equation*}
|S|=\gamma_{t}\left(G_{n-5,4}\right)+\gamma_{t}\left(H_{5,4}\right) \tag{5.3}
\end{equation*}
$$

Since $n-5 \equiv 0,3(\bmod 5)$ and $5 \equiv 0(\bmod 5)$, by Lemma 2.1 , we have

$$
\begin{align*}
\gamma_{t}\left(G_{n-5,4}\right)+\gamma_{t}\left(H_{5,4}\right) & =\left\lfloor\frac{6(n-5)+8}{5}\right\rfloor+1+8 \\
& =\left\lfloor\frac{6 n+8}{5}\right\rfloor+3>\gamma_{t}\left(G_{n, 4}\right) \tag{5.4}
\end{align*}
$$

Combining (5.3) with (5.4), we have

$$
\gamma_{t}(H)=\gamma_{t}\left(G_{n-5,4}\right)+\gamma_{t}\left(H_{5,4}\right)>\gamma_{t}\left(G_{n, 4}\right) .
$$

Therefore, $b_{t}\left(G_{n, 4}\right) \leq 4$.
Summing up the above lemmas, we can state our result, in this section, as follows.
Theorem 5.1. For any integer $n \geq 1, b_{t}\left(G_{6,4}\right)=2$, and

$$
b_{t}\left(G_{n, 4}\right) \begin{cases}=1 & \text { if } n \equiv 1(\bmod 5) \text { and } n \neq 6 \\ =2 & \text { if } n \equiv 4(\bmod 5) \\ \leq 3 & \text { if } n \equiv 2(\bmod 5) \\ \leq 4 & \text { if } n \equiv 0,3(\bmod 5)\end{cases}
$$

6. Concluding remarks

In this paper, we investigate the total bondage number $b_{t}\left(G_{n, m}\right)$ of an (n, m)-grid graph $G_{n, m}$ for $2 \leq m \leq 4$, completely determine the exact values of $b_{t}\left(G_{n, 2}\right)$ and $b_{t}\left(G_{n, 3}\right)$. We also partially determine the exact values of $b_{t}\left(G_{n, 4}\right)$, and establishes the upper bounds of $b_{t}\left(G_{n, 4}\right)$ for otherwise. We have attempted to decrease the two upper bounds given in Theorem 5.1 for $n \equiv 2(\bmod 5)$ and $n \equiv 0,3(\bmod 5)$ or to prove that they are tight when n is large enough, but not succeeded. Noting the two upper bounds are tight for some small n's, we guess that the two upper bounds are tight for $n \geq 7$. To prove this conjecture, it may be necessary to find a new method since, according to our way, the removal of any three edges results in many complicated cases. We also have tried to discuss $b_{t}\left(G_{n, m}\right)$ for general n and m, but it strongly depends on the value of $\gamma_{t}\left(G_{n, m}\right)$, which has not been determined as yet. Thus, it may also be necessary to determine the value of $\gamma_{t}\left(G_{n, m}\right)$ for general n and m. These questions are our further work.

Acknowledgments

The authors would like to thank the anonymous referees for their kind comments and helpful suggestions on the original and the first revised manuscript, which resulted in this final version.

References

K. Carlson, M. Develin, On the bondage number of planar and directed graphs, Discrete Mathematics 306 (8-9) (2006) 820-826.
[2] E.J. Cockayne, R.M. Dawes, S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211-219.
[3] J.E. Dunbar, T.W. Haynes, U. Teschner, L. Volkmann, Bondage, insensitivity, and reinforcement, in: T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Eds.), Domination in Graphs: Advanced Topics, in: Monogr. Textbooks Pure Appl. Math., vol. 209, Marcel Dekker, New York, 1998, pp. 471-489.
4] J.F. Fink, M.S. Jacobson, L.F. Kinch, J. Roberts, The bondage number of a graph, Discrete Mathematics 86 (1990) 47-57.
[5] M. Fischermann, D. Rautenbach, L. Volkmann, Remarks on the bondage number of planar graphs, Discrete Mathematics 260 (2003) 57-67.
[6] S. Gravier, Total domination number of grid graphs, Discrete Applied Mathematics 121 (2002) 119-128.
[7] B.L. Hartnell, L.K. Jorgensen, P.D. Vestergaard, C. Whitehead, Edge stability of the k-domination number of trees, Bulletin of the Institute of Combinatorics and its Applications 22 (1998) 31-40.
[8] B.L. Hartnell, D.F. Rall, A characterization of trees in which no edge is essential to the domination number, Ars Combinatoria 33 (1992) 65-76.
[9] B.L. Hartnell, D.F. Rall, Bounds on the bondage number of a graph, Discrete Mathematics 128 (1994) 173-177.
[10] J.H. Hattingh, A.R. Plummer, Restrained bondage in graphs, Discrete Mathematics 308 (23) (2008) 5446-5453.
[11] T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Eds.), Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.
[12] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[13] M.A. Henning, Graphs with large total domination number, Journal of Graph Theory 35 (2000) 21-45.
[14] M.A. Henning, A survey of selected recent results on total domination in graphs, Discrete Mathematics 309 (1) (2009) 32-63.
[15] F.-T. Hu, J.-M. Xu, Complexity of bondage and reinforcement, Journal of Complexity 28 (2) (2012) 192-201.
[16] J. Huang, J.-M. Xu, The bondage numbers of extended de Bruijn and Kautz digraphs, Computer and Mathematics with Applications 51 (6-7) (2006) 1137-1147.
[17] J. Huang, J.-M. Xu, The bondage number of graphs with small crossing number, Discrete Mathematics 307 (15) (2007) $1881-1897$.
[18] J. Huang, J.-M. Xu, The total domination and bondage numbers of extended de Bruijn and Kautz digraphs, Computer and Mathematics with Applications 53 (8) (2007) 1206-1213.
[19] J. Huang, J.-M. Xu, The bondage numbers and efficient dominations of vertex-transitive graphs, Discrete Mathematics 308 (4) (2008) $571-582$
[20] L.-Y. Kang, M.Y. Sohn, H.K. Kim, Bondage number of the discrete torus $C_{n} \times C_{4}$, Discrete Mathematics 303 (2005) 80-86.
[21] L. Kang, J. Yuan, Bondage number of planar graphs, Discrete Mathematics 222 (2000) 191-198.
[22] V.R. Kulli, D.K. Patwari, The total bondage number of a graph, in: V.R. Kulli (Ed.), Advances in Graph Theory, Vishwa, Gulbarga, 1991, pp. 227-235.
[23] H. Liu, L. Sun, The bondage and connectivity of a graph, Discrete Mathematics 263 (2003) 289-293.
[24] M.Y. Sohn, X.-D. Yuan, H.S. Jeong, The bondage number of $C_{3} \times C_{n}$, Journal of the Korean Mathematical Society 44 (6) (2007) 1213-1231.
[25] N. Sridharan, M.D. Elias, V.S.A. Subramanian, Total bondage number of a graph, AKCE International Journal of Graphs and Combinatorics 4 (2) (2007) 203-209.
[26] U. Teschner, New results about the bondage number of a graph, Discrete Mathematics 171 (1997) 249-259.
[27] J. Topp, P.D. Vestergaard, α_{k} and γ_{k}-stable graphs, Discrete Mathematics 212 (2000) 149-160.
[28] J.-M. Xu, Theory and Application of Graphs, Kluwer Academic Publishers, Dordrecht, Boston, London, 2003.

[^0]: The work was supported by NNSF of China (No. 11071233).

 * Corresponding author.

 E-mail addresses: hufu@mail.ustc.edu.cn (F.-T. Hu), luyou@nwpu.edu.cn (Y. Lu), xujm@ustc.edu.cn (J.-M. Xu).

