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SUMMARY

As building blocks of diverse macromolecular com-
plexes, the AAA+ATPases Rvb1 andRvb2 are crucial
for many cellular activities including cancer-related
processes. Their oligomeric structure and function
remain unclear. We report the crystal structures of
full-length heteromeric Rvb1$Rvb2 complexes in
distinct nucleotide binding states.Chaetomium ther-
mophilum Rvb1$Rvb2 assemble into hexameric
rings of alternating molecules and into stable do-
decamers. Intriguingly, the characteristic oligonucle-
otide-binding (OB) fold domains (DIIs) of Rvb1 and
Rvb2 occupy unequal places relative to the compact
AAA+ core ring. While Rvb1’s DII forms contacts be-
tween hexamers, Rvb2’s DII is rotated 100� outward,
occupying lateral positions. ATP was retained bound
to Rvb1 but not Rvb2 throughout purification, sug-
gesting nonconcerted ATPase activities and nucleo-
tide binding. Significant conformational differences
between nucleotide-free and ATP-/ADP-bound
states in the crystal structures and in solution sug-
gest that the functional role of Rvb1$Rvb2 is medi-
ated by highly interconnected structural switches.
Our structures provide an atomic framework for do-
decameric states and Rvb1$Rvb2’s conformational
plasticity.

INTRODUCTION

Rvb1 and Rvb2 (RuvB-like, also denoted RuvBL1/RuvBL2, Pon-

tin/Reptin, and TIP48/TIP49) belong to the classical AAA clade of

the AAA+ protein superfamily (ATPases associated with diverse

cellular activities). Rvb1 and Rvb2 are crucial for a plethora

of cellular processes and part of diverse macromolecular ma-

chines. Although Rvb1 and Rvb2 orthologs are essential in a va-

riety of species, their exact molecular functions are still unclear.

Their roles vary from transcriptional regulation and DNA repair

to telomerase assembly and mitotic spindle formation and, via

interaction with oncogenic transcription factors, also concern

cancer-related processes (reviewed in Huber et al., 2008; Huen

et al., 2010; Jha and Dutta, 2009; Nano and Houry, 2013; Rose-
Structure 23,
nbaumet al., 2013). Rvb1 andRvb2 interact with oligomers of the

transcription factor Yin Yang 1 (López-Perrote et al., 2014) and

the histone acetyltransferase TIP60 complex (Ikura et al., 2000)

and are integral components of the large chromatin remodelers

INO80 and SWR1 (Krogan et al., 2003; Shen et al., 2000).

Rvb1 and Rvb2 also participate in the assembly of complexes

containing the phosphatidylinositol-3-kinase (PI3K)-like kinases

(PIKKs) ATM, ATR, mTOR, and SMG-1 (reviewed in Izumi et al.,

2012). They occur in the R2TP (Rvb1-Rvb2-Tah1-Pih1) complex

(reviewed in Kakihara and Houry, 2012) and are implicated in

snoRNP biogenesis (reviewed, e.g., in Nano and Houry, 2013).

Rvb1 and Rvb2 share the same tripartite fold composed of do-

mains DI and DIII forming the ubiquitous AAA+ ATPase core and

an Rvb1/Rvb2-specific insertion domain (DII), which harbors an

oligonucleotide-binding (OB) fold. ATP plays an important func-

tional role (Ammelburg et al., 2006; Snider andHoury, 2008;Wen-

dler et al., 2012; Afanasyeva et al., 2014). ATP hydrolysis activity

can be detected for both Rvb1 or Rvb2, albeit weak (as analyzed,

e.g., in Gorynia et al., 2011; Gribun et al., 2008; Ikura et al., 2000;

Kanemaki et al., 1999; Makino et al., 1999; Matias et al., 2006;

Papin et al., 2010; Puri et al., 2007; Rottbauer et al., 2002; and

comprehensively reviewed on www.gref-bordeaux.fr/fr/node/

303). In vivo, Rvb1’s and Rvb2’s ATPase activities are required

for telomerase assembly (Venteicher et al., 2008) and snoRNA

production (King et al., 2001), respectively.

Rvb1 has been shown to bind single-stranded (ss) and double-

stranded (ds) DNA as well as ssRNA, mediated by its DII domain

(Matias et al., 2006). Existence of additional helicase activity is

ambiguous. DNA unwinding activity has been demonstrated

in vitro (Gorynia et al., 2011; Gribun et al., 2008; Kanemaki

et al., 1999; Makino et al., 1999; Papin et al., 2010). At least in

the human proteins, DII seems to autoinhibit the DNA helicase

activity and to regulate the ATPase function (Gorynia et al.,

2011). Whether, for example, INO80’s 30/50 helicase activity

(Shen et al., 2000) is executed directly by the Rvbs is not clear.

The presence of Rvb1/Rvb2 is required for INO80’s remodeling

activity in yeast (Jonsson et al., 2004). For human INO80, the

need is still under debate (Chen et al., 2013). In contrast,

TIP60’s helicase activity is not attributable to Rvb1/Rvb2 (Ikura

et al., 2000).

AAA+ ATPases typically form oligomeric rings, with the

ATPase site formed in the interface of two adjacent protomers.

It is unclear whether Rvb1 and Rvb2 form homohexamers or

heterohexamers and, if so, whether these are composed of alter-

nating Rvb1 and Rvb2, and whether two hexamers assemble
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Table 1. Data Collection and Refinement Statistics

ctRvb1(ADP)-

ctRvb2(ADP)

ctRvb1(ATP)-

ctRvb2(apo)

Data collection

Beamline ID29, ESRF, France SLS, Switzerland

Detector PILATUS 6M-F PILATUS 6M

Wavelength (Å) 0.972386 0.91889

Space group R32 : H R32 : H

Cell dimensions

a, b, c (Å) 206.848, 206.848,

137.441

210.35, 210.35,

137.14

Resolution (Å) 75.04–2.94

(3.10–2.94)

34.50–3.64

(3.84–3.64)

Rpim
a (%) 5.2 (43.2) 3.5 (28.7)

I/s(I) 8.3 (1.7) 15.9 (3.9)

Wilson B (Å2) 70.0 104.4

Completeness (%) 97.4 (96.9) 99.9 (100.0)

Refl. total/unique 103,751/23,417 190,173/13,158

Redundancy 4.4 (3.2) 14.5 (14.3)

Software used for

data processing

MOSFLM/SCALA MOSFLM/SCALA

Refinement

Resolution (Å) 64.16–2.94

(3.07–2.94)

33.69–3.64

(3.93–3.64)

No. of reflections 23,414 13,156

Rwork (%) 19.75 22.14

Rfree
b (%) 22.31 25.06

No. of atoms 6,617 6,456

Protein 6,535 6,425

Ligand/ion 68 31

Water 14 –

B factors (Å2) 99.8 143.7

Protein 100.0 143.7

Ligand/ion 80.1 143.8

Water 56.4 –

Solvent content (%) 53.8 55.2

Rmsd bond length (Å) 0.008 0.008

Rmsd bond angle (�) 1.06 1.00

Ramachandran plot,

favored/disallowed (%)

96/0 95/0

Coordinate error (Å)c 0.55 1.13

PDB code 4WW4 4WVY

Values in parentheses are for the highest-resolution shell.
aRpim =

Pn
j =1

��IjðhklÞ � hIðhklÞi��=P
hkl

P
j

IjðhklÞ.
bRfree factor calculated for 5% randomly chosen reflections not included

in the refinement.
cCoordinate error estimated from Luzzati plot (Å).
into a dodecamer. A variety of structural studies addressed the

oligomeric state of Rvbs by size exclusion chromatography

(SEC) and analytical ultracentrifugation (AUC) (Niewiarowski

et al., 2010) or electron microscopy (EM) experiments. The latter

have yielded 2D projections of hexameric rings (Cheung et al.,

2010b; Gribun et al., 2008) and 3D EM structures of Rvb1$Rvb2
484 Structure 23, 483–495, March 3, 2015 ª2015 Elsevier Ltd All righ
dodecamers from Saccharomyces cerevisiae (cryo, 13 Å) (Tor-

reira et al., 2008) or human (Puri et al., 2007; López-Perrote

et al., 2012). Still, the resolution of these data does not allow

positioning of Rvb1 and Rvb2 subunits. Crystal structures, on

the contrary, revealed both homo- and heterohexameric rings

of the human proteins (Matias et al., 2006; Petukhov et al.,

2012; Gorynia et al., 2011). Experimental as well as computa-

tional studies confirmed the coexistence of a number of

different assembly forms in vitro (Niewiarowski et al., 2010) and

conformational flexibility (Petukhov et al., 2012). Here we

provide the structure of a full-length complex of Rvb1 and

Rvb2 from the thermophilic fungus Chaetomium thermophilum

(ctRvb1$ctRvb2). It shows a hexameric ring of alternating Rvb1

and Rvb2 molecules and its assembly into dodecameric states.

Intriguingly, the Rvb1/2-specific insertion domains (DII) of Rvb1

and Rvb2 occupy unequal places with respect to the compact

AAA+ core ring. We determined two Rvb1/Rvb2 structures

that represent distinct nucleotide binding states: ATP/apo and

ADP/ADP.

Our analysis helps to clarify the structural flexibility of the

distinct Rvb1 and Rvb2 domains and their modulation by nucle-

otide binding and provides a complete atomic framework for

ctRvb1$ctRvb2 hexamers and dodecamers.

RESULTS

Crystal Structure of a Full-Length Rvb1$Rvb2 Complex
Structural Determination of ATP/apo and ADP

Complexes and Assignment of ctRvb1 and ctRvb2

Rvb1 and Rvb2 from C. thermophilum (ctRvb1$ctRvb2) have

striking sequence identities (68%) and similarities (86%/85%)

to their human orthologs hsRvb1/hsRvb2. CtRvb1 and ctRvb2

share a sequence identity/similarity of 42%/63% (Figure S1).

The crystal structure of the ctRvb1$ctRvb2 complex was ob-

tained without addition of any nucleotide and could be solved

by molecular replacement. Initial cycles of building and refine-

ment allowed missing domains to be placed manually and the

structure was finally refined to 3.6 Å (Protein Data Bank [PDB]

ID 4WVY) (Table 1). The asymmetric unit of the crystal comprises

one molecule each of ctRvb1 and ctRvb2 (Figure 1A), an assign-

ment validated by anomalous scattering of inherent sulfur atoms

(Figure S2A; Table S1; see Supplemental Information for details).

In addition, we derived a 2.9 Å crystal structure of an ADP

complex after cocrystallization with ADP-BeF3 (PDB ID 4WW4)

(Table 1). We found an ADP molecule in the nucleotide

binding pockets of both ctRvb1 and ctRvb2 (Figure S2B) but

no additional density for BeF3 (see Figure S2B; Supplemental

Information).

Domain Organization

Both ctRvb1 and ctRvb2 fold into three domains (DI, DII, and

DIII) (Figures 1A and 1B) as described for their human orthologs

(PDB IDs 2C9O, 2XSZ, 3UK6) (Gorynia et al., 2011; Matias et al.,

2006; Petukhov et al., 2012). Domain DII is composed of an inte-

rior region DIIint and an OB fold as exterior region DIIext. CtRvb2

has a C-terminal extension: Pro435-Ser488. A flexible linker of

two antiparallel b strands b5 and b11 with a hairpin-like struc-

ture connects DI with DIIext (Ile121-Gly134 and His230-Val239

of ctRvb1; split strands b5a, b5b: Ile127-Lys132, Ser135-

Glu141 and b11a, b11b: Gln232-Glu236, Val238-Ser242 of
ts reserved
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Figure 1. Overall Structure of ctRvb1 and ctRvb2 Monomers and Hexamers in Distinct Nucleotide Binding States

(A) ATP/apo ctRvb1$ctRvb2 structure with ATP-bound ctRvb1 and nucleotide-free ctRvb2. Domains DI to DIII are color-coded as labeled.

(B) Schematic of the domain organization with residue numbers of start and end, color-coded as in (A).

(C) CtRvb1 and ctRvb2 monomers of the ATP/apo complex structurally aligned based on DI (see also Figure S1C).

(D and E) Hexameric ring of (D) ATP/apo ctRvb1$ctRvb2 comprising ctRvb1 with bound ATP (green) and nucleotide-free ctRvb2 or (E) the ADP complex with

ADP-bound ctRvb1 and ADP-bound ctRvb2 (ADPs in pink) in alternating order, viewed perpendicular to (A) (see also Figures S2E and S2F).
ctRvb2; Figure S1). While the overall fold and conformation of

the three individual domains are almost identical for ctRvb1

and ctRvb2, we observe an extreme variance between ctRvb1

and ctRvb2 with regard to the position of their OB folds relative

to DI and DIII (Figures 1C and S2C). The b strands that connect

DI and DIIext are rather straight and continuous in ctRvb1,

whereas the equivalents of ctRvb2 are seriously bent and

split into two strands each, resulting in a sharp kink. These

strands cross each other at the bend, consistent with the

observed DII domain twist toward a lateral position instead of

the protruded and more flexible one in ctRvb1 as indicated by

elevated atomic B factors (Figure S2D). The dissimilarity be-

tween ctRvb1’s DII and ctRvb2’s swung-out DII becomes

particularly important when looking at the biological units of

the ATP/apo and ADP complexes, which are hexameric rings

(Figures 1D, 1E, S2E, and S2F) or dodecamers as described

further below.

Structure of the ctRvb1$ctRvb2 Hexamer
Rvb1 and Rvb2 Form a Symmetric Hexameric Ring of 1:1

Stoichiometry

Application of the 3-fold crystallographic axis of the space group

R32 generates a hexameric ring of three molecules Rvb1 and
Structure 23,
Rvb2 each arranged in alternating order (Figures 1D and 1E). It

has an outer diameter of 118 Å and a diameter of the central

channel of 24–25 Å. The contact areas are mainly composed

of hydrophobic residues, but also comprise putative hydrogen-

bonding partners. Based on the domains involved, two extensive

main intra-ring intermolecular contact surfaces of about 2200 Å2

each can be characterized as ‘‘R1(DIII)-R2(DI)’’ (interface I) and

‘‘R2(DIII)-R1(DI)’’ (interface II) (Figures S3A and S3B; Table S2).

The assembly occurs mainly via the AAA+ domains DI and DIII.

But interestingly the ctRvb1$ctRvb2 structure reveals that heli-

ces and loops of the DIIs are additionally involved to a great

extent (Figures 2 and S3). While DII of ctRvb1 in its rather

extended conformation points away from the ring, ctRvb2’s DII

bends in a sharp angle of approximately 100� reaching back to

the ring with loop L7 (Ser150-Gly158), leading to a striking differ-

ence in DII’s position relative to the compact AAA+ ring (Figures

1C, S2C, S2E, S2F, S3C, and S3D). The bending DII position of

ctRvb2 is stabilized by Lys183 in a4, which touches back to

DI and DIII of the same molecule likely through hydrogen

bonds with His26 and Glu376. Importantly, the ctRvb1 or ctRvb2

structures comprise an extended range of residues when

compared with other Rvb1/Rvb2 structures, in particular within

ctRvb2’s DII. New intimate intra-ring contacts between L10 of
483–495, March 3, 2015 ª2015 Elsevier Ltd All rights reserved 485
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Figure 2. Intermolecular Interactions within DII-DII Dodecamers of ctRvb1$ctRvb2 Complexes in Schematic and Surface Representation

(A) Schematic representation of the residues involved in interactions at the intermolecular interfaces I–III (see Figures S3A and S3B) for the dodecameric ADP- and

ATP/apo ctRvb1$ctRvb2 complexes (see also Table S2). Domains DI and DIII and ctRvb2’s C-terminal part as well as domain regions DIIint and DIIext of ctRvb1

and ctRvb2 are depicted as orange and blue ovals, respectively, with the linking hinge of two b strands as thick lines. For clarity, only hydrogen-bonding amino

acids are shown for interfaces I and II. For the newly characterized inter-ring interface III instead, all interacting residues are labeled and those forming hydrogen

bonds are underlined. Residues that only participate in protein-protein interactions in one of the two crystallized complex states are highlighted in red for ctRvb1

or white for ctRvb2.

(B) Surface regions of ctRvb1 (pale yellow) and ctRvb2 (light blue) with the residues that participate in the formation of the interfaces I–III highlighted in orange

and dark blue, respectively. Areas of interaction surfaces that deviate more significantly between the ADP and ATP/apo complexes are encircled by black or

orange lines.
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Figure 3. Nucleotide Binding Sites of ctRvb1 and ctRvb2 with FoFc Omit Maps for Bound Nucleotides at 3s

(A) ATP/apo complex: overview and close-up onto ctRvb1’s active site with bound ATP and color-coded motifs: Walker A (K77), Walker B (DEAH 303–306),

sensor 1 (LAS 330–332), sensor 2 (ISLRYC 402–407), and trans-arginine finger (R352) of the adjacent ctRvb2.

(B) ADP-complex: close-ups onto the active sites of ctRvb1 (left) and ctRvb2 (right) with one ADP each. Motifs of ctRvb2: Walker A (K83), Walker B (DEVH 298–

301), sensor 1 (MAS 325–327), sensor 2 (AGLRYA 396–401), and trans-arginine finger (R358) of the neighboring ctRvb1 (see also Figure S2B).
ctRvb2’s DIIint and a8/a9 in DIIint/DIIext of ctRvb1 could be

uncovered (Figures S3C and S3D). Decisively, they will affect

oligomerization.

Intra-Ring Interfaces I and II

Interface I comprises h3 of ctRvb1 with the adjacent loop L10

(Gly262-Thr273) and a6 of ctRvb2 (Figures 2 and S3C). These

contact sites make further interactions leading to an interdepen-

dence of domain positions beyond the protomeric border. Inter-

face II comprises a newly identified interaction patch. L10 of

ctRvb2’s DIIint interrelates two helices of ctRvb1 that belong to

DIIint (a8) or DIIext (a9), respectively, stabilizing this domain

arrangement (Figure S3D). At the inner side of the central chan-

nel, a12 and a13 of ctRvb2 contact the top surface of ctRvb1’s

DI. The involved amino acids of ctRvb2 are found in orthologs

from yeast to human. Arg437 (in a13) has an extended hydrogen

bond network and is stabilized by stacking interactions with

Phe429 and Tyr433 of ctRvb2’s DIII on both sides. Thereby,

the linkage and angle between the two helices are restrained.

Arg437 is substituted in some Rvb2 isoforms, which might

modify specific functions. Helix a13 is followed by flexible resi-

dues that protrude out of the compact ring (Arg448-Val456/

Asp457). They adopt a hook-like shape with a short connecting

loop. Together with a13 they are referred to as C-terminal

a-hook (Figure 1A).

Surface Potential

CtRvb1’s DII bears positive surface patches pointing toward

the inside of the central channel. Of note, these surfaces are

conserved (Figure S4A) and belong to the most frequently dis-

cussed DNA binding regions. Yet, despite additional positively

charged areas around the channel’s rim at the top and bottom

entrance/exit sides, the electrostatic surface potential does not

clearly indicate one major nucleic acid binding surface.

Nucleotide Binding Pocket in Distinct States
The nucleotide binding pockets are located at the interfaces be-

tween adjacent ctRvb1 and ctRvb2 monomers (Figure 3). The

Walker A residue Lys77/83 of ctRvb1/2 in the P-loop (Gly72-
Structure 23,
Leu80/Gly77-Thr84) is located in DI, while the other conserved

motifs for ATP binding, orientation, and hydrolysis belong

to DIII: Walker B residues Asp303-Glu304/Asp298-Glu299 and

sensor loops 1 (Leu330-Ser332/Met325-Ser327) and 2 (Ile402-

Cys407/Ala396-Ala401). Sensor 2 harbors Arg405/399 as a pu-

tative cis-acting arginine finger (Figure S3E), whereas Arg358/

352 of ctRvb1/2 originates from the neighbor molecule as

trans-arginine finger. The structure obtained without addition of

any nucleotide depicts the nucleotide-free state of ctRvb2, while

an ATP (but nomagnesium ion) was caught in ctRvb1. This struc-

ture (PDB ID 4WVY) thus shows a hexameric ring with three

occupied nucleotide binding sites (Figure 1D). In sharp contrast,

the ADP-complex structure (PDB ID 4WW4) derived from nucle-

otide cocrystallization experiments shows ADP-binding states of

both ctRvb1 and ctRvb2, with all six active sites filled. Obviously,

the ctRvb1$ctRvb2 complex can occur in distinct nucleotide

binding states without mentionable changes in the characteristic

overall dimensions such as outer diameter and central channel of

the hexameric ring (Figures 1D and 1E). When comparing do-

mains individually, the two structures are also almost identical.

Exceptions concern three b strands of ctRvb1 (b6, b8, and

b10) that are entirely included in the ATP/apo structure and

two helices of ctRvb2 (a1 and h1) present only in the ADP-com-

plex structure.

Dodecameric ctRvb1$ctRvb2 Assemblies
Dodecamers Exist in Solution

SEC and complementary static light-scattering experiments

using wild-type and single and double ctRvb1/ctRvb2 Walker

A or Walker B mutants in the presence of various nucleotides

clearly demonstrate the existence of dodecameric assemblies

in solution, independently on an affinity tag (Figure S5A and

Supplemental Information).

Two Different Dodecameric Architectures Are Found in

the Crystal

When the crystallographic 2-fold axis is deployed onto

the hexameric ring, a dodecamer is generated, in which two
483–495, March 3, 2015 ª2015 Elsevier Ltd All rights reserved 487
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Figure 4. CtRvb1$ctRvb2 Dodecamers

(A and B) Dodecameric assemblies in the crystal

lattice. (A) DII-DII/insertion-insertion arrangement

in which two hexamers interact via the DIIs of

ctRvb1 and ctRvb2.

(B)Core-core assembly formed via the AAA+ cores.

(C) Experimental small-angle X-ray scattering

(SAXS) data of ctRvb2(E299Q)$ctRvb1(E304Q)

without added nucleotide (blue) in comparison with

theoretical scattering curves of ADP-complex DII-

DII (solid cyan line) or core-core (dashed cyan line)

dodecamers or a hexamer (dashed violet line) and

the corresponding chi values (c) determined for the

fit as a measure of discrepancy.

(D) SAXS curves of ctRvb2(E299Q)$ctRvb1(E304Q)

in the presence of ADP or ATP, or without addition

of any nucleotide (see also Figure S5B).
rings stack on top of each other. Two possible alternative

stacking modes can be found in the crystal lattice (Figures

4A and 4B). According to the domains that form the main

inter-ring interface, they are referred to as DII-DII for the inser-

tion domains DII (12mer-ii) or core-core for the AAA+ core

domains DI and DIII (12mer-cc). Both arrangements appear

reasonable in the first place, since similar surface areas

are buried (ca. 80,000 Å2) relative to the overall surface

(220,000 Å2). The theoretic free energy values of disassembly

(DGdiss.) estimated for the two assemblies using PISA (Krissinel

and Henrick, 2007) identified both potential assemblies as

stable forms with the highest possible computed significance

score of 1.0.

Small-Angle X-Ray Scattering Analysis of Dodecamer

Assemblies

In general, small-angle X-ray scattering (SAXS) is a suitable tool

to distinguish between models of different oligomerization

nature. Here, it was used to determine which oligomer form

matches the ctRvb1$ctRvb2 solution structure (Figure 4C). Yet

the best fit was revealed for a mixture of DII-DII and core-core

dodecamers populatedwith 63%and 37% (c = 3.1) (see Supple-

mental Information for details).

Mutational Analysis of Dodecamer Formation

Two mutant complexes which either lack ctRvb1’s DIIext or

harbor a C-terminal GFP fusion at ctRvb2 were analyzed

by SEC. Both complexes eluted as dodecamers (with an addi-

tional minor fraction of oligomers as observed for the wild-type

[WT] complex corresponding to a molecular weight of ca.

100 kDa).
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Crosslinking Studies

Interaction surfaces of ctRvb1$ctRvb2

were mapped using a recently established

approach that combines lysine-specific

crosslinking with mass spectrometric

analysis (XL-MS) (see Supplemental

Experimental Procedures). Twenty-three

ctRvb1-ctRvb2 inter-links fulfilling the

quality criteria were obtained. Of these,

19 links can be explained by contacts

within a single hexameric ring allowing

no inference on the dodecamer’s
architecture. Yet the formation of the remaining four cross-

links Lys163(ctRvb1)-Lys156(ctRvb2), Lys183(ctRvb1)-Lys156

(ctRvb2), Lys183(ctRvb1)-Lys183(ctRvb2), and Lys183(ctRvb1)-

Lys203(ctRvb2) seems only reasonable in a DII-DII assembly.

XL-MS data thus indicate the existence of the 12mer-ii form in

solution. But it is particularly important to keep in mind that we

just caught one rather stable conformation randomly in thecrystal

out of many ‘‘players’’ of a conformational ensemble, and that

most likely several assembly forms coexist in solution as also

suggested by the SAXS data.

Conserved Surfaces

Interestingly, the surface conservation of the ctRvb1$ctRvb2

hexamer is most prominent for the insertion domains and within

the central channel (Figures 5 and S4A), while the top surface of

the AAA+ domains is rather variable. One exception is a

conserved patch which strikingly is largely covered by ctRvb2’s

h2 in the ADP-complex, but widely accessible in the ATP-bound

ctRvb1/nucleotide-free ctRvb2 state.

Inter-Ring Interactions of the DII-DII Assembly

EM studies on human and yeast Rvb1/Rvb2 mostly argue for the

DII-DII architecture (Gribun et al., 2008; López-Perrote et al.,

2012; Torreira et al., 2008). Our SAXS and XL-MS data suggest

that such a DII-DII form also exists for ctRvb1/ctRvb2. The

respective inter-ring interface III involves hydrogen bonds and

nonbonded interactions (Table S2; Figures S3A and S3B). Via

a5/a6 and the linker b strands, ctRvb2 of one ring interacts

with ctRvb1 of the second ring at h2 and L8, which is stabilized

in contrast to its (partially) disordered equivalent in ctRvb2 (L9). It

becomes clear that this residue stretch is rather flexible. Yet it
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Figure 5. Surface Representation of the Hexamer Colored according to the Surface Conservation

The conservation is represented by different grades of red/orange or turquoise for ctRvb1 and ctRvb2, respectively, which gain more intense with increasing

levels of conservation. From left to right: view onto the AAA+ core (DI/DIII), view onto DIIs, side view onto the exterior (see also Figures S4A–S4C).
obviously can be caught in a specific conformation, and this is

likely dependent on interaction partners and is only visible in

the ADP-complex. In contrast, the ATP/apo structure visualizes

inter-ring interface IV consisting of two strictly conserved lysine

residues (Lys183) of two ctRvb1 molecules (Figure S3B; Table

S2). The 12mer-ii and 12mer-cc forms might very well coexist

and have distinct roles for specific functions. A mixture is in

accordance with our SAXS data.

Inter-Ring Contacts in a Core-Core Dodecamer

Prominently, ctRvb2’s C-terminal a-hook interacts intimately

with a highly conserved pocket of complementary shape on

the top AAA+ core surface of the second ring (Figure S4B). These

contacts are mainly hydrophobic, and ctRvb1’s C terminus

protrudes from the side. The groove is located directly above

ctRvb2’s ATP binding site (Figure S4C), and a connecting chan-

nel is blocked by the hook. According to in silico analyses with

PISA (Krissinel and Henrick, 2007), the hook significantly

contributes to the dodecamer’s stability. Accordingly truncated

ATP/apo or ADP-complexes yield 20% or even up to 60%

lower DGdiss values. Therefore, we produced ctRvb1$HisPP-

ctRvb2(D450–488) and ctRvb1$HisPP-ctRvb2(D435–488) com-

plexes and determined their oligomeric states. Interestingly,

SEC and native PAGE analyses suggest that both variants still

can form dodecamers, yet minor fractions of hexameric species

become obvious (Figure S4D).

ATPase Activity of ctRvb1$ctRvb2 WT and Mutant
Complexes
To test the activity of the two distinct ATP binding sites in the

complex, we examined the ATPase activity of ctRvb1$ctRvb2

WT and mutant complexes carrying single or double mutations

of their Walker A (WA: ctRvb1(K77L), ctRvb2(K83L)) or Walker

B (WB: ctRvb1(E304Q), ctRvb2(E299Q)) motifs. All mutants

were purified as dodecamers (Figure S4D). CtRvb1$ctRvb2

complexes have ATP hydrolysis activity at a temperature of

40�C but also 55�C, the optimal growth temperature of

C. thermophilum (Figure 6). At a protein monomer concentration

of 4 mM, the ATP hydrolysis rate has a turnover of ca. 3.0mol ATP

min�1 mol�1 protein monomer at 40�C and is increased to 8.5

ATP min�1 mol�1 at the elevated temperature. The Walker B

double mutant complex was more or less inactive at both tem-

peratures (2.6% or 1.9% of WT). The single Walker B mutants
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retained ca. 51% (R1WB-R2WT) or ca. 31% (R1WT-R2WB) ac-

tivity at 40�C and even 81% (R1WB-R2WT) or ca. 73% (R1WT-

R2WB) activity at 55�C. Under these conditions Rvb2 has a

slightly stronger but very similar ATPase activity compared

with Rvb1, although isolated Rvb1 appears to be more active

than isolated Rvb2 (Gribun et al., 2008). Of note, the ATPase

activities of both Rvb1 and Rvb2 within the complex seem to

depend on the nucleotide binding state of the neighbor mole-

cule. While slowing down ATP hydrolysis in the neighboring sub-

unit via the Walker B mutant — and therefore stabilizing ATP in

this subunit — only moderately reduces the overall activity of

the complex, interfering with ATP binding by individual Walker

A mutants more strongly reduces ATPase activity (to ca. 11%

and 26% at 40�C or 11% and 2% at 55�C). In summary, slowing

down or abolishing ATP hydrolysis in one subunit does not

strongly affect the ATPase activity of the other subunit, while pre-

venting ATP binding does. These data suggest that ATP binding

to one subunit is required for ATPase activity in the other subunit.

Comparing Crystal Structures of ctRvb1$ctRvb2 ATP/
apo and ADP-Complexes and Human Orthologs
As the available human hsRvb1$hsRvb2 structures (Figure S5C)

have negligible root mean square deviations (rmsd) among each

other, we chose the most complete, full-length hsRvb1 structure

(PDB ID 2C9O) (Matias et al., 2006) for further comparison (Fig-

ure 7A). Negligible rmsd values obtained from domain-wise

comparison indicate that no significant structural changes are

caused within the individual domains. The ctRvb1$ctRvb2 hex-

amer shares the dimensions and the flatness of the top surface

with hsRvb1 (outer diameter: 94–117 Å) (Matias et al., 2006),

but its central channel is significantly wider (diameter of 25 Å

versus 18 Å).

To assess conformational changes, the DIs of ctRvb1/ctRvb2

were superposed. The most prominent shift concerns DII (Fig-

ure 7A). In contrast, DIII’s location is rather similar in ADP-bound

ctRvb1, ctRvb2, and hsRvb1, and no mentionable changes

occur from ATP-bound to ADP-bound ctRvb1. But, most impor-

tantly, DIII is shifted significantly between the ADP-bound and

the nucleotide-free state of ctRvb2. As the ring formation in-

volves DI and DIII, this has an impact on the oligomerization ar-

chitecture. Conformational changes between nucleotide-bound

and nucleotide-free states, but minor variations in dependence
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WT        R1WT- R1WB- R1WA- R1WT- R1WB-
R2WB      R2WT      R2WT       R2WA      R2WB 

Figure 6. ATPase Activity Assays

ATPase activity of Walker A (WA) or Walker B (WB) mutant complexes of

ctRvb1 (R1) - ctRvb2 (R2) complexes relative to the activity of the wild-type

(WT) complex measured at the indicated temperatures.

Values were calculated from at least three replicates. Error bars represent

standard deviations of the average values calculated using the n�1 method

(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðx�xÞ2

ðn�1Þ

q
with sample mean x and sample size n).
on the nature of nucleotide, are corroborated by SAXS data (Fig-

ures 4D and S5B).

Comparison of ctRvb1$ctRvb2 ATP/apo- and ADP-
Bound Dodecamers
Observed shifts between the ATP/apo and ADP-complexes are

not caused by the crystal packing, as these are isomorphous.

The intermolecular contacts at all interfaces differ between the

ATP/apo and ADP-complex structures, but the most significant

rearrangements concern the newly revealed inter-ring interface

III (Figures 2 and 3). There are also positional alterations of spe-

cific subunits within the ring. This can be explained by breathing

within monomers, particularly between DI and DIII and with

regard to DII’s position relative to them. For comparisons of

the dodecameric ATP/apo and ADP-complex structures, DI of

one ctRvb1 molecule (chain A, marked by a gray background

in Figure 7B) was taken as reference point for the structural align-

ment. The domain shifts between the ATP/apo and ADP-com-

plex structures are minor for the molecules located in the same

ring as the reference point, but huge in the second ring (indicated

by arrows in the bottom left panel). Obviously, the effects are

amplified here.

Comparison of ctRvb1$ctRvb2 with EM Structures of
Human or Yeast Orthologs
As the two rings of the DII-DII ctRvb1$ctRvb2 dodecamer are

related by a crystallographic symmetry element, they are iden-

tical. This is in contrast to the negative stain EM structure of

the asymmetric hsRvb1$hsRvb2 dodecamer (Puri et al., 2007),

which also deviates in the overall dimensions. Interestingly, their

extent in width and length are interchanged: 118 Å diameter and

163–166 Å double-ring height for ctRvb1$ctRvb2 versus 158 Å

diameter 3 118 Å double-ring height (Puri et al., 2007), illus-

trating the extensive conformational flexibility of dodecamers.
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In contrast, the ctRvb1$ctRvb2 complex fits well to the overall

dimensions and the AAA+ core layers of the compact conforma-

tion of the hsRvb1$hsRvb2 dodecamer (EMD-2163) (López-Per-

rote et al., 2012) (Figure 8A) or the scRvb1$scRvb2 dodecamer

(EMD-2865) (Torreira et al., 2008) (Figure 8B). CtRvb1’s and

ctRvb2’s DIIs and the human counterparts occupy unequal

places. This might be partially due to the 6-fold symmetry (D6)

applied to process the EM data, preventing the discovery of

differences between Rvb1 andRvb2. Concerning the yeast com-

plex, the locations of the DIIs also are in good agreement, though

homo- rather than heterohexameric rings are assumed.

DISCUSSION

The Rvb1$Rvb2 complex is implicated in a large variety of bio-

logical contexts ranging from chromatin remodeling to PIKKs as-

sembly and b-catenin-dependent oncogenic transformation.

Besides the unresolved biochemical function of the Rvb1$Rvb2

complex in any of these contexts, the structures and functions

of different oligomeric states, in particular the dodecamer form

of the Rvb1$Rvb2 complex, need clarification. Here we report

two full-length ctRvb1$ctRvb2 structures in different nucleotide

binding states, allowing us to analyze the precise assembly

geometry and its dynamic alteration by nucleotide binding. Inter-

estingly, in contrast to 2D EM projections of yeast orthologs

(Gribun et al., 2008), no significant differences in the overall di-

mensions are observed, although the crystal lattice interactions

might prevent larger conformational changes between the

different nucleotide states. Our crystal structures unambigu-

ously show heterohexameric rings of alternating Rvb1 and

Rvb2 and underline that two rings can build up a stable 2-fold

symmetric dodecamer form.

The ctRvb1$ctRvb2 complex forms stable dodecamers in so-

lution as demonstrated by SEC, static light scattering (SLS),

SAXS, and XL-MS experiments and native PAGE (Figures 4C,

4D, S5A, and S5B; Table S3). This is consistent with AUC data

on the human proteins (Niewiarowski et al., 2010). Two possible

dodecamer forms can be assembled from adjacent hexameric

rings in the crystal lattice. In one assembly, interactions are

mediated by the DII insertion domains (12mer-ii), and in the other

assembly by the AAA+ core domains (12mer-cc) (Figures 4A and

4B). XL-MS data indicate that the 12mer-ii form exists in solution.

SAXS analyses suggest a mixture of 12mer-cc and 12mer-ii

complexes (although they are complicated by transitions of DII

around the DI-DII interdomain hinge regions and flexible loops).

As the position of the characteristic DIIs relative to the AAA+ core

of the described ctRvb1$ctRvb2 structures differs compared

with other Rvb1$Rvb2 structures (Figures 7A and 8), they expand

our insight into the conformational ensemble of different oligo-

meric domain arrangements (reviewed in Cheung et al.,

2010a), which possibly reflect distinct functional states. Notably,

the ctRvb1$ctRvb2 structures unveil additional intimate intra-

ring contacts when compared with the mixed human complex

(Gorynia et al., 2011) (Figures S3C, S3D, S5D, and S5E). Regions

that were speculated to be involved in interactions with the

second ring of the human dodecamer based on residual

density patches form intra-ring contacts in the ctRvb1$ctRvb2

complexes instead. For ctRvb1$ctRvb2, only ctRvb2’s but not

ctRvb1’s DIIint is involved in inter-ring contacts. Of note,
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Figure 7. 3D Alignments of Structures in Distinct Nucleotide Binding States Based on DI (Gray Areas)

(A) HsRvb1, ctRvb1, and ctRvb2 monomers (see also Figure S5C).

(B) CtRvb1$ctRvb2 DII-DII dodecamers. The top view representation is split into DI-DIII and DII planes separately for the upper and the bottom ring (see also

Figure 2; Figures S3C, S3D, and S6).
homohexameric rings are also discussed with distinct inter-

pretations concerning the nucleotide dependence (Gorynia

et al., 2011; Matias et al., 2006; Niewiarowski et al., 2010;

Puri et al., 2007). Thus, we do not exclude that hexamers or

dodecamers of two homohexameric rings exist in specific

macromolecular machines and are required in distinct physio-

logical contexts.

The observed differences in DII positions among the

compared structures are not surprising because of their enor-

mous flexibility but are most probably of great functional rele-

vance. DIIs are supposed to regulate ATP hydrolysis (Gorynia

et al., 2011), and DII rearrangements drive conformational transi-

tions between coexisting conformations and regulate the acces-
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sibility of DNA binding surfaces (López-Perrote et al., 2012).

Rvb1’s DII, which represents the presumable DNA binding

region, occupies an unrevealed space and is involved in so far

uncharacterized inter-ring interactions in our structures. Data

on DNA binding are still controversial. The diameter of the

central channel of the crystallized ctRvb1$ctRvb2 assemblies

of 24–25 Å is clearly suited to enclose a double-stranded DNA

substrate. And interestingly, potential nucleosome-binding

interfaces cluster in Rvb1’s DI area near DII and in Rvb2’s DII

(Figure S7B).

The purified and crystallized dodecameric ctRvb1$ctRvb2

complexes are active ATPases with a turnover of ca. 3.0–

8.5 mol ATP min�1 mol�1 protein monomer at 40�–55�C. These
483–495, March 3, 2015 ª2015 Elsevier Ltd All rights reserved 491



fit to scRvb1·scRvb2
(EMD-2865; Torreira et al., 2008)

fit to compact hsRvb1·hsRvb2 conformation
(EMD-2163; López-Perrote et al., 2012)
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Figure 8. 3D Fitting of the Dodecameric DII-DII Crystal Structure of the ctRvb1$ctRvb2 ADP Complex into Electron Microscopy Envelopes

(A) Fit to the compact conformation of the hsRvb1$hsRvb2 dodecamer (EMD-2163) (López-Perrote et al., 2012).

(B) Fit to the S. cerevisiae Rvb1$Rvb2 dodecamer (EMD-2865) (Torreira et al., 2008).
rates are comparable with those published for Escherichia coli

RuvB (kcat �4.8) (Marrione and Cox, 1996) and the yeast Rvb1-

Rvb2 complex (kcat �2.4) (Gribun et al., 2008). However, diverse

factors will play regulatory roles in vivo as, e.g., recently shown

for histone H3 amino-terminal tails that modulate the activity

and oligomerization of orthologs from rat or human (Queval

et al., 2014). Moreover, as described for other AAA+ ATPases,

most likely also ctRvb1$ctRvb2 complexes couple ATP binding

and hydrolysis to interdomain conformational rearrangements

and asymmetry. Similar to the observationsmade in the Thermo-

toga maritima WT RuvB structure (PDB ID 1IN4) (Putnam et al.,

2001), a misalignment of the Walker A and Walker B motif of

both ctRvb1 and ctRv2 is seen in the ATP/apo structure. It is

marked by the dissimilar distances from the Walker A lysine Ca

to the Ca of the Walker B residues Asp303 (8.5 Å) and Glu304

(11.0 Å) or Asp298 (8.9 Å) and Glu299 (11.2 Å), respectively.

The misalignment corresponds to a shift of a2 and a3 along

the central b sheet of DI. Similar observations were also made

in the ADP-complex, with Ca-Ca distances of 8.5 Å and 11.0 Å

at ctRvb1’s active site or 8.8 Å and 10.9 Å for ctRvb2. This

conformation might explain why the BeF3
� ion is not properly

positioned and is thus not visible in the electron density. In any

case, the ATPase mutant data suggest that ATP binding to one

Rvb1 is needed to stimulate ATPase activity in Rvb2 and vice

versa. The Walker A mutant data, showing that lack of binding

to Rvb2 inhibits ATPase activity in Rvb1, nicely corresponds to

the structural data, indicating that ATP bound to Rvb1 is not

hydrolyzed when Rvb2’s ATP binding site is empty. It remains

unclear why we observe relatively homogeneous nucleotide

occupancy with Rvb1’s active site occupied by ATP and

Rvb2’s site empty, because from the ATPase data it is in princi-

ple also possible that ATP is stably bound at Rvb2 with Rvb1’s

site being empty. A likely explanation is that both ATP binding

sites have significantly different affinities for ATP and are there-

fore functionally asymmetric.

While others found a significant influence of an N-terminal af-

finity tag at the Rvb1/Rvb2 proteins on the stabilization of the do-

decamer (Cheung et al., 2010b), we observed only a negligible

effect in SEC, SLS, and SAXS experiments (Figure S5A). Never-

theless, the N-terminal residue stretch of Rvb2 is well positioned

to impact on oligomerization because it takes a course along

interface II from the bottom of DIIext to the ATP binding site,

reaching it with h2. Although the tag itself is not visible in the
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ctRvb1$ctRvb2 structures, the conformation and anchorage of

the N-terminal amino acids are correlated with the position

of Rvb2’s DII and interface II interactions. Interestingly, they

depend on Rvb2’s nucleotide binding state or vice versa. It is

tempting to speculate that the N-terminal residues mimic the

binding of protein interaction partners and their effects on olig-

omer state and architecture.

The observed interactions between ctRvb2’s C-terminal

a-hook and the conserved groove on the AAA+ core top surface

in a 12mer-cc assembly might represent an autoinhibitory state

in vivo, as it is placed directly above ctRvb2’s ATP binding

pocket (Figures S4B and S4C). Thus, it blocks a channel to the

active site and might regulate the solvent accessibility for co-

educts or products to enter or leave and, thereby, influence tran-

sitions between distinct states of the reaction pathway. In partic-

ular, due to possibilities of Rvb1 and Rvb2 to form oligomers of

different composition and stoichiometry, such a regulated up-

take and release of nucleotides would offer an enormous range

of fine-tuning. It thus might affect cellular pathways and could

be coordinated with the nutritional status of the cell, as currently

discussed (Kakihara et al., 2014).CtRvb2’s C-terminal extension

(Arg448-Ser488) beyond a13 is not conserved in its entire length

but is exclusively found in more closely related orthologs, e.g.,

from Neurospora crassa. Yet in species with shorter orthologs

such as yeast or human, other molecules might exert such an in-

hibiting mechanism, e.g., peptide stretches of any interaction

partner such as histone tails. Small molecules such as PI3P

might be suitable candidates as well, since Rvb1/Rvb2 regulate

the functions of PIKKs such as ATM and ATR and coordinate

their activity (reviewed in Izumi et al., 2012). Notably, residues

in Rvb2’s C-terminal region are posttranslationally modified as

a prerequisite for nuclear localization and repressive function in

concert with b-catenin (Kim et al., 2006).

The experimentally determined structure of Rvb2’s DIIext, in

particular revealing its unexpected sharply bent position, might

help to further improve molecular dynamics (MD) simulations

(Petukhov et al., 2012) that already paved the way to understand

the molecular basis of the liebeskummer (lik) mutation. This Phe-

Cys-Arg insertion in DII (between equivalents of Gly189 and

Asp190 of ctRvb2) (Figure S7C) finally results in heart failure

and embryonic lethality (Rottbauer et al., 2002). In contrast to

lik, Rvb2 mutations that lead to shortened telomeres (Grandin

and Charbonneau, 2011) are located at domain interfaces
ts reserved



(Figure S7D). They will have a major impact on structural rear-

rangements, particularly those of DIIint during the ATP hydroly-

sis-ADP release cycle (Figure 7).

Rvb1 and Rvb2 are components of the chromatin remodeling

complexes INO80 and SWR1 (Shen et al., 2000) and are required

for INO80’s structural and functional integrity (Jonsson et al.,

2004). Crosslinking analysis of INO80 (Tosi et al., 2013) is consis-

tent with the alternating hexamer and the dodecamer structure

reported here, although the observed ctRvb1$ctRvb2 conforma-

tion is more elongated than INO80’s head module (Tosi et al.,

2013) which has been interpreted as an Rvb1$Rvb2 dodecamer.

It is possible that contacts to other subunits of the INO80 com-

plex (Figure S7A) promote a distinct conformation in Rvb1$Rvb2.

In contrast, SWR1 appears to contain only a single hexameric

Rvb1$Rvb2 ring (Nguyen et al., 2013). Understanding the nature

of the different shapes and proposed oligomeric states of

Rvb1$Rvb2 in related but distinct chromatin remodelers requires

future studies on the basis of more highly resolved EM single-

particle reconstructions.
Conclusions
The conserved AAA+ ATPases Rvb1 and Rvb2 are components

of various macromolecular machines and are crucial for diverse

cellular activities including cancer-related processes. Their

controversially debated oligomeric structures and functions

remain unclear. In summary, we report a structural framework

for the assembly of Rvb1$Rvb2 oligomers in different nucleotide

binding states, which provides a molecular basis for the func-

tional analyses of Rvb1$Rvb2 hexamers or dodecamers in

different cellular contexts. Strikingly, Rvb1’s and Rvb2’s charac-

teristic OB folds occupy unequal positions. The conformational

and positional flexibility of DIIs and the other domains will have

a major impact on assembly and function, and the presence of

Rvb2 in the hexameric ring provides new interdependent interac-

tions between the DII and DI/DIII domains. Interestingly, the

correlated positions of the Rvb1/Rvb2-specific insertion do-

mains relative to the compact conserved AAA+ core ring are in

agreement with predictions based on MD simulations (Afana-

syeva et al., 2014; Petukhov et al., 2012). The structures uncover

inter-ring interfaces with significant rearrangements between

nucleotide-free and ATP-/ADP-bound states, highlighting

Rvb1$Rvb2’s conformational plasticity. They indicate noncon-

certed ATPase activities and communication of functional roles

by highly interconnected structural switches. Biochemical data

indicate an interdependency of the two ATPase sites and that

ATP binding, but not hydrolysis, in Rvb1 is a prerequisite for

the ATPase activity of Rvb2 and vice versa.
EXPERIMENTAL PROCEDURES

Expression and Purification

Expression vectors encoding C. thermophilum Rvb1 and N-terminally His-

tagged Rvb2 were generated using standard methods. The WT and Walker

A or Walker B mutant proteins and truncated (ctRvb1DDIIext) or fusion

(ctRvb2-eGFP) proteins were coexpressed in E. coli Rosetta2(DE3) cells.

They were purified in buffers containing 100–300 mM NaCl/5%–10% (v/v)

glycerol/8–30 mM KHEPES/0–30 mM imidazole/3–5 mM b-mercaptoethanol

pH 8.0 via Ni-NTA affinity, anion-exchange chromatography, and SEC, and

concentrated to up to 8 mg/ml. Full details can be found in the Supplemental

Experimental Procedures.
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Crystallization, Data Collection, and Structure Determination

Crystallization was performed using sitting drop vapor diffusion against 1 M

sodium malonate pH 6.0 at 20�C without addition of any nucleotide or after

preincubation with an ADP-BeF3 mix. Hexagonal crystals of space group

R32 were soaked in cryo buffer and flash-cooled. X-ray diffraction data of

single crystals were collected on beamlines PX I (X06SA; Swiss Light Source,

Villingen, Switzerland) or ID29 (ESRF, France) at 100 K. The structures were

determined using molecular replacement with domains I and III of human

RuvBL1 (PBD ID 2c9o) (Matias et al., 2006) as search model and refined to a

resolution of 3.6 Å (ATP/apo structure) or 2.9 Å (ADP-complex structure) as

outlined in detail in the Supplemental Information. Images were generated us-

ing PyMol (The PyMOL Molecular Graphics System, Version 1.2r3pre. Schrö-

dinger, LLC) and Chimera (Pettersen et al., 2004). In accordance with Matias

et al. (2006), the diameter of the central channel (Figures 1D and 1E) was

measured between Asp343 of ctRvb1 and Thr337 of the opposite ctRvb2.

Crosslinking and Mass Spectrometry

Monodisperse ctRvb1$His8PPctRvb2 was crosslinked with an equimolar

mixture of isotopically light and heavy labeled disuccinimidyl suberate. The

crosslinked complex was purified by SEC prior to preparation of crosslinked

peptides for liquid chromatography-tandem mass spectrometry analysis.

Only distances below 35 Å were considered. Details are described in Supple-

mental Experimental Procedures.

SAXS

SAXS data were collected at beamlines X33 or P12, EMBL/DESY (Hamburg,

Germany) at 10�C and analyzed using the ATSAS package (Petoukhov et al.,

2012) as outlined in Supplemental Experimental Procedures. Different concen-

trations of WT and Walker B mutant proteins with His8PP tag and without

any tag, without addition of any nucleotide or in the presence of ATP, ADP,

AMPPcP, or ATPgS, were tested in batch analyses. Representative samples

were subjected to an online fast protein liquid chromatography separation sys-

tem immediately before data collection, proving the high quality and monodis-

persity of the samples.

ATPase Activity Assay

ATPase reactions were carried out at 40�C, and the release of inorganic phos-

phate was monitored at 22�C by using the EnzChek phosphate assay Kit (Invi-

trogen) as described in the Supplemental Information. The Walker B double

mutant complex ctRvb1(E304Q)$ctRvb2(E299Q) (purified using the same pro-

tocol) served as negative control (background ATPase activity: 0.08 or 0.16mol

ATPmin�1mol�1monomer at 40�Cor 55�C, respectively). TheWalker A double

mutant complex ctRvb1(K77L)$ctRvb2(K83L) unexpectedly exhibited an

activity with a kcat of 0.94 mol ATP min�1 mol�1 monomer at 40�C. According
to SDS-PAGE analysis, this sample was contaminated with an additional

band likely representing a chaperone. Activity was negligible at 55�C, a temper-

ature at which most proteins from the expression host are rather inactive.
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