
Scientia Iranica A (2012) 19 (4), 974–981

Sharif University of Technology

Scientia Iranica
Transactions A: Civil Engineering

www.sciencedirect.com

An integrated ANN-GA for reliability based inspection of concrete
bridge decks considering extent of corrosion-induced cracks and life
cycle costs

A. Firouzi a,∗, A. Rahai b
a Construction Engineering and Management Group, Science and Research Branch, Islamic Azad University, Tehran, 1477893855, Iran
bDepartment of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran, P.O. Box: 15875-4413, Iran

Received 6 April 2011; revised 15 February 2012; accepted 6 March 2012

KEYWORDS
Corrosion;
Concrete;
Random field;
Reliability;
Genetic algorithm;
Artificial neural network.

Abstract In most concrete bridge decks subject to deicing slats or constructed in chloride-laden
environments, corrosion has caused serviceability damage in the form of severe cracking and/or spalling
of the concrete cover. In this paper, whilst an analytical model is used for the simulation of corrosion
induced crack width, random fields are utilized accounting for the spatial variability of the concrete
material and environmental factors. Then, using the Monte Carlo simulation method, the extent of the
damage is simulated as a dependent random variable during the service life of the bridge deck. Finally, for
finding optimum reliability-based inspection plans, withminimum life cycle costs, an integrated Artificial
Neural Network-Genetic Algorithm (ANN-GA) approach is proposed. The applicability of this method is
investigated on a hypothetical bridge deck. It is concluded that the employed approach can well handle
the high computational complexity of the problem in finding optimum inspection plans.

©
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1. Introduction

Corrosion induced deterioration of RC structures, especially
bridges, due to frequently applied deicing salts, is a main chal-
lenge to civil asset managers worldwide. Corrosion affects the
reliability of RC structures, both in strength and serviceability
limit states. In the past decade, many researchers worldwide
have proposed various reliability based maintenance man-
agement systems. In these systems, mechanistic deterioration
models are utilized in a probabilistic framework to account for
temporal variations in material properties and loads as random
variables [1].

In spite of considerable research accomplished on the
reliability based maintenance planning of bridges, limited
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research exists in literature considering the spatial variability of
the corrosion process. The fact that, in concrete structures, due
to the spatial variability of workmanship and environmental
factors, the material and dimensional properties are not
homogeneous and, consequently, corrosion damage has a
spatial variability, has motivated some researchers, e.g. [2–
5], to study the effects of spatial variation on reliability
models. These works revealed the usefulness of considering
the spatial variability of corrosion parameters in prediction
of the extent and likelihood of corrosion induced damage in
RC structures. Most of these models assume that ‘‘failure’’
occurs when corrosion is initiated, or empirical models are
used for prediction of the crack width increase with time. In
the propagation phase, after initiation of surface cracking, their
width will increase with time to a limit at which the spalling
of concrete is prone. In recent years, several efforts have been
made tomodel, analytically, the propagation phase of corrosion
(e.g. [6–8]). In this paper, the model proposed by Li [8] is used
for simulation of crack initiation and propagation with time [8].

The extent of damage is an important factor in actual
repair and maintenance strategy selection. On the other hand,
serviceability limit states, e.g. cracking, delamination, spalling,
etc., in contrast to strength limit states, occur earlier in the
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Table 1: Statistical description of variables.

Variable θx = θx (m) µ COV Distribution Reference

Concrete cover (mm) 3.5 50 0.2 Normal [11,12]
Concrete compressive strength, fc , MPa 3.5 35 0.2 Lognormal [11,12]
Surface chloride concentration (kg/m3) 3.5 3.5 0.6 Lognormal [11,12]
Critical chloride concentration (kg/m3) – 0.9 0.19 Uniform [11,12]
Reinforcement size (mm) – 12 – – [8]
Porous media around reinforcement (d0), µm – 12.5 – – [8]
αrust – 0.57 – – [8]
ρrust (kg/m3) 3600 – – [8]
ρsteel (kg/m3) 7850 – – [8]
Poisson coefficient (ν) 0.18 – – [8]
service life of a bridge, and demand more for repair and
maintenance interventions. So, the extent of cracked, spalled or
delaminated areas (length) seems an appropriate indicator of
bridge condition and reliability.

In most bridge management systems, routine inspections
are mandatory, biannually. This is not only an expensive
approach, but also in some congested traffic regions or severe
environments, more frequent inspections may be necessary
during the lifetime of the bridge. Suo and Stewart [9] showed
the usage of data gathered during inspections in the updating of
reliability models; this reveals the importance of well planned
and timely inspections [9]. In this paper, a novel risk-based
approach is presented considering the extent of damage and life
cycle costs.

In this paper, a two-dimensional spatial–temporal variable
reliability analysis is developed to predict the likelihood and
extent of cracking for a RC deck top surface exposed to
deicing slats. The spatial variability of parameters is modeled
using random fields, discretized with a midpoint method.
This model will consider the random spatial variability of
concrete material properties, the concrete cover and surface
chloride concentration. For risk-based repair and maintenance
optimization, an integrated ANN-GA is proposed, in which
acceptable levels of the extent of damage are considered. Such
an inspection plan is put into effect, which yields minimum life
cycle costs.

2. Corrosion mechanism

De-icing salts used in bridge decks cause ingress of chlorides
through the concrete cover. The free chlorides in saturated
concrete deactivate the natural protective oxide layer that is
formed around the reinforcements by the strong alkalinity of
the pore solution. Once the protective layer has dissolved, if
chloride concentration exceeds a threshold value and enough
oxygen and moisture are present, corrosion is initiated. In the
propagation phase, since the corrosion products have a volume
of three to six times greater than the original steel, tensile
stresses within the concrete increase, which in turn result in
cracking and spalling at the surface concrete. Numerous studies
have found that the penetration of chlorides through concrete
can be best represented by a diffusion process if the concrete is
assumed to be relatively moist. In this case, the penetration of
chlorides is given empirically by Fick’s second law of diffusion,
if the diffusion is considered as one-dimensional in a semi-
infinite solid. Crank’s solution to Fick’s second law of diffusion
is represented in Eq. (1) [10]:

C (x, t) = C0 + (Csa − C0)


1 − erf


x

2
√
Dat


. (1)
In general, the chloride concentration profiles obtained under
different climates are used in mathematical models for
obtaining parameters of Eq. (1). A plot of chloride concentration
vs. penetration depth can often be closely described by Crank’s
solution to Fick’s second law of diffusion. The curve-fitting
results in these parameters: apparent diffusion coefficient, Da,
apparent surface chloride concentration, Csa, and the original
chloride concentration, C0, then C (x, t) express the chloride
content at a depth of x at time t . The corrosion of reinforcements
is initiated when the chloride content, in steel bar embedment
depth, Xc , exceeds a threshold value, Ccr, which depassivates
the steel embedded in the concrete, provided that sufficient
moisture and oxygen are present, The corrosion initiation time
(Tint) can be calculated using Eq. (2) as follows:

Tint =
Xc

2

4Da


erf−1


Ccr − C0

Csa − C0

−2

. (2)

In general, the uncertainty of governing parameters can be
handled with random variables. Although accurate statistical
distributions cannot be derived without sufficient experimen-
tal data from existing structures, Dupart [11], having studied
various measurements in the literature for various environ-
mental and workmanship classifications, made some general
propositions [11]. Based on such propositions, the descriptive
parameters of random fields and random variables are as in
Table 1.

For reliability calculations, a closed form mathematical
model has a paramount advantage. In this paper, the analytical
model developed by Li et al. [8] is used for simulation of
the corrosion-induced crack width variation with time. The
merit of this model is that it is directly related to factors that
affect corrosion, such as concrete geometry and property, and
corrosion rate [8].

In this model, as shown schematically in Figure 1, concrete
with embedded reinforcing steel bars is modeled as a thick-
wall cylinder, where d0 is the thickness of the annular layer of
concrete pores (that is, a pore band) at the interface between
the steel bars and concrete, D is the diameter of the steel bar,
and Xc is the concrete cover.

The inner and outer radii of the thick-wall cylinder are a =

(D + 2d0)/2 and b = Xc + (D + 2d0)/2. When the steel bar
corrodes in concrete, its products fill the pore band completely
and a ring of corrosion products forms, the thickness of which,
ds(t) (Figure 1), can be determined from Eq. (3), as follows [6]:

ds (t) =
Wrust(t)

π(D + 2d0)


1

ρrust
−

αrsut

ρst


, (3)

where αrust is a coefficient related to the types of corrosion
product, ρrust is the density of corrosion products, ρst is the
density of steel, and Wrust(t) is the mass of corrosion products.
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Figure 1: Schematic representation of cracking process [8].
Wrust(t) increaseswith time and can be determined fromEq. (4)
[6]:

Wrust(t) =


2

 t

0
0.105 (1/αrust) πD × icorr (t) dt

1/2

, (4)

where icorr(t) is the corrosion current density (in µA/cm2). In
general, the formation of rust products on the steel surface will
reduce the diffusion of the iron ions away from the steel surface,
resulting in reduced corrosion rates with time. For example, Vu
et al. [12] suggested the following time dependent equation for
icorr (t) [12]:

icorr (t) = icorr (1) × 0.85 (t − Tint)−0.3 , (5)

where Tint is the time to corrosion initiation and icorr (1) is
the corrosion current density in the first year after corrosion
initiation, which is based on concrete quality and water to
cement ratio, and can be calculated using Eq. (6) as follows:

icorr (1) =
27(1 − w/c)−1.64

Xc
. (6)

According to Li et al. [8], the growth of the ring of corrosion
products exerts an outward pressure on the concrete at the
interface between the rust products and concrete [8]. Under
this expansive pressure, the concrete cylinder undergoes three
phases in the cracking process:

(1) Not cracked,
(2) Partially cracked, and
(3) Completely cracked.

In phase 1 (no cracking), the concrete can be considered as
elastically isotropic, so that the theory of elasticity can be
used to determine the stress and strain distribution in the
cylinder. For a partially cracked concrete cylinder, cracks are
considered to be smeared and the concrete to be a quasi-brittle
material, so that the stress and strain distribution in the cylinder
can be determined based on fracture mechanics. When the
crack penetrates through to the concrete surface, the concrete
cylinder fractures completely. Knowing the distribution of
stress and strain, the crack width at the surface of the concrete
cylinder can be determined as follows [8]:

wc =
4πds

(1 − νc) (a/b)
√

α + (1 + νc) (b/a)
√

α
−

2πbft
Eef

, (7)

where νc is Poisson’s ratio of concrete and α (<1) is the
tangential stiffness reduction factor. According to Li et al., it
is assumed that the residual tangential stiffness is constant
along the cracked surface, that is at the interval [a, r0] and
represented by Eef , where Eef is the effective elastic modulus
of concrete, which can be calculated as per Eq. (8), where ϕcr
and Ec represent the creep coefficient and elastic modulus of
the concrete [6]:

Eef =
Ec

1 + ϕcr
. (8)

In Eq. (7), the key variables are the thickness of corrosion
products, ds, which is directly related to the corrosion rate
(icorr), and the stiffness reduction factor, α, which is related
to stress conditions and the concrete property and geometry.
Eq. (7), which is used in this paper, has been verified by both
numerical and experimental results [8]. In using this equation,
one needs to calculate the time dependent variables, α and
ds. The former is determined solving simultaneous equations
derived in Ref. [8], which are not repeated here for briefness
purposes, while the latter is calculated according to Eq. (3).

The various mechanical properties of concrete are usually
correlated to its compressive strength; a parameter which can
be easilymeasured in practice. Referring to ACI 318-08 [13], the
concrete tensile strength and modulus of electricity are related
to compressive strength as [13]:

Concrete Tensile Strength: ft = 0.53

f ′
c (MPa), (9)

Concrete Modulus of Elasticity: Ec = 4600

f ′
c (MPa). (10)

The other important influencing parameter in studying corro-
sion in RC structures is the chloride diffusion coefficient. In this
paper, themodel developed by Papadakis et al. [14] is used [14],
which is represented as:

Da = DH2O0.15
1 + ρc

c
w

1 + ρc
w
c +

ρc
ρa

a
c


ρc

w
c − 0.85

1 + ρc
w
c

3

. (11)

In this model, a/c is the aggregate-to-cement ratio, ρc and ρa
are the mass densities of cement and aggregates, respectively,
and DH2O is the chloride diffusion coefficient in an infinite
solution (=1.6×10−5 cm2/s for NaCl). Thewater–cement ratio
is estimated from Bolomey’s formula for Ordinary Portland
Cement (OPC) concretes as follows:

w/c =
27

f ′
c + 13.5

, (12)

where f ′
c is the concrete compressive strength of a standard test

cylinder in MPa.

3. Neural networks

Artificial Neural Networks (ANNs) are models based on the
neural structure of the brain. During the last decade, approx-
imations based on the concept of artificial neural networks
are being introduced into reliability analysis. The primary mo-
tivation of using neural networks lies in their capability for



A. Firouzi, A. Rahai / Scientia Iranica, Transactions A: Civil Engineering 19 (2012) 974–981 977
Figure 2: Feed forward neural network architecture [18].
good approximation of the results of time consuming repeated
analyses of the Monte Carlo method. Papadrakakis et al. [15]
examined the utility of neural networks in the reliability anal-
ysis of elastic–plastic structures and found this method very
attractive [15]. Hurtado and Alvarez [16] compared the per-
formance of various types of neural network in structural
reliability analyses [16]. Hurtado [17] demonstrated the appli-
cability of Neural Networks for analyzing uncertainty in one di-
mensional stochastic finite element problems [17]. Most and
Bucher [18] used a 2-D random field for representation of fluc-
tuatingmaterial properties and then employedneural networks
for approximation of the response of a complicated model of
coupled meshless and finite element analysis [18].

There exist a variety of alternatives to design a neural
network. The focus of this study is on feed forward neural
networks, which are already applied successfully inmany fields
of engineering. In Figure 2, a general schematic structure of this
kind of neural network is illustrated. In this work, the neural
network approach is employed to obtain expected life cycle
costs with time during the service life of a hypothetical bridge
deck. A commercially available software package, MATLAB
Neural Network toolbox, is employed to facilitate the analysis.
Back-propagation has generally been the most popular method
used to train nonlinear, multi-layered neural networks to
perform function approximation and pattern classification.
Hence, three layer back-propagation neural networks are used
here. It has been shown that ANNs, with one hidden layer,
can approximate any function, given that sufficient degrees
of freedom are provided. Whilst, in the hidden layer on each
neuron, the sigmoid transfer function is used, a linear function
is employed for the output layer. The back-propagation learning
rule is used to adjust the weights and biases of the network
in order to minimize the mean squared error between the
resultant values, solving the equations of the analytical model
and those predicted from the neural network model. The
minimization of the mean squared error proceeds until it
converges to a preset tolerance for all test datasets.

A very important point for sufficient network approximation
is the design of the network architecture. Depending on the
number of available training samples, the number of neurons in
the hidden layers has to be chosen in such a way that so-called
over-fitting is avoided. This phenomenon occurs if the number
of hidden nodes is too large for the number of training samples.
Then, the network can converge more easily and fits well for
the training data, but it cannot generalize well for other data.
Hagan [19] suggested that the number of training samples, m,
should be larger than thenumber of adjustable parameters [19]:

(n + 2)M + 1 < m, (13)
where n is the number of input values and M is the number of
hidden neurons for a network with a single hidden layer.

The selection of training datasets is an important issue in
the context of establishment of the ANN model. The main aim
in the selection of training datasets is to make the selected
training data as uniform as possible to cover the entire design
space. In this study, the time intervals between successive
inspections are the decision variables of the optimization
problem. Every inspection plan can be represented with a
binary vector, t , whose dimension equals the service life of
the bridge; 1’s represents inspection implementation during
a lifetime. Because of the complexity of the problem, the test
datasets, e.g., inspection plan vectors, are generated at random
with respect to the constraints of Eqs. (15h)–(15j).

4. The proposed methodology

The proposed method is presented on a hypothetical
bridge deck. Monte Carlo simulation of random fields requires
extensive computational effort. In this section, the proposed
algorithm is briefly described in a step by stepmanner and then
the results of the analysis are presented:

4.1. Discretization of random fields

A spatial time-dependent reliability analysis is developed for
a hypothetical RC bridge deck 12m in length and 10m in width
exposed to de-icing salts. The analysis considers corrosion
initiation and then the propagation of corrosion-induced upper
cover cracking, until a crack width of 0.3 mm is reached,
which is the prescribed crack width limit in [20] for severe
cracking [20]. A 2D random field is applied to the RC bridge
deck considering the spatial variability concrete compressive
strength. This means that related properties of concrete, e.g.
the chloride diffusion coefficient, concrete tensile strength, the
concrete effective modulus of elasticity, water–cement ratio
and corrosion density rate, are dependent random fields of
the compressive strength of concrete. Furthermore, concrete
cover depth and surface chloride concentration are represented
with random fields to account for spatial variations of these
parameters.

Using amidpoint method, the 2D random field is discretized
into square elements of size ∆, resulting in NT statistically
correlated elements. There exist various discretization meth-
ods, from which the midpoint method is simple and accurate
enough for random fields with a large scale of fluctuations.
Sudret and Der Kiureghian [21] presented a full description of
random fields [21]. For every realization of the Monte Carlo
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Figure 3: Random realization of spatial variation of crack width increase with
time.

simulation, the proportion of the deck area with crack widths
exceeding the limit crack width at the time of t is calculated as
follows:

X (t) =
nf [t > T int (j) + Tsc(j)]

NT
. (14)

In Eq. (14), the corrosion initiation time of element j is denoted
by T int (j). This element’s crack width reaches 0.3 mm in Tsc(j)
years after corrosion initiation, and nf is the total number of
elements for which the condition [t > T int (j) + Tsc(j)] is true.

According to Stewart and Mullard [22], the scale of
fluctuation of these random fields is approximately 3.5m (dx =

dy = 2.0 m) [22].
In Table 1 full statistical descriptions of random fields,

random variables and deterministic variables are illustrated.
Using the midpoint method, the 2D random field is discretized
into square elements of size ∆ = 0.5 m, resulting in NT = 480
elements.

For simulation of the discretized random fields and predic-
tion of the crack width propagation in the hypothetical bridge
deck, aMATLAB code is developed. The developed code inMAT-
LAB carries out Monte Carlo simulation in the space of inde-
pendent standardnormal variables of discretized random fields.
For example, Figure 3 illustrates a random realization of the
simulated crack width of discretized elements of the studied
deck during a lifetime. After Nsim realization of the simulation
process, X (t), as the dependent random variable can be sim-
ulated during a predetermined lifetime. The extent of damage
increases with time, and the RC deck cannot meet the designed
service life without repair.

4.2. Computational procedure

The main purpose of this paper is to present a step by step
method for finding the optimum risk-based inspection plans,
considering the extent of damage, which yields to minimum
lifetime inspection and maintenance costs. In this regard, the
capabilities of an integrated ANN-GA is investigated. Below is
the step by step computational procedure:
Step 1—Use the midpoint method for discretization of random
fields into NT correlated random variables.
Step 2—Simulate Nsim realization of correlated random vari-
ables.
Step 3—Calculate corrosion initiation time, Tint, for every
discretized element in every realization of the simulation using
Eq. (2).
Step 4—Calculate the crack initiation time and crack width of
every decartelized element during a prescribed lifetime of the
deck in every realization of the simulation, using Eq. (7), and
solving simultaneous equations.

Step 5—Calculate extent of the severely cracked area of the deck
in every realization of the simulation, e.g. crack width greater
than limit crack width, using Eq. (14).

Step 6—Randomly produce m inspection plans, e.g. t vectors,
during a prescribed lifetime of the deck.

Step 7—Calculate expected life cycle maintenance and inspec-
tion cost for every random inspection plan.

Step 8—Train neural network for simulation of expected life
cycle costs for every inspection plan.

Step 9—Use trained neural network as a surrogate for the time-
consuming event based Monte Carlo simulation for calculation
of expected inspection and maintenance life cycle costs.

Step 10—Use a genetic algorithm for finding the optimum or
near optimum inspection plan that yields to the minimum
present value of the lifetime inspection and maintenance costs.

The initial steps 1–5 result in a simulated extent of damage
without any repair intervention, whilst steps 6–10 include
procedures for optimization of inspection plans.

4.3. Formulation of the optimization problem

Based on spatial time dependent reliability analysis, the
propagation of the extent of damage with time can be
simulated. As per above results, the RC deck cannot meet the
designed service life without repair. In reality, some areas of
the deck will undergo earlier deterioration and, hence, will
be repaired first. The remaining parts of the deck and even
the repaired areas will continue to deteriorate and will likely
need repair at later times. It is assumed in this paper that the
bridge will be inspected and, at every inspection, if the extent
of damage is more than an acceptable threshold, it will be
repaired. Furthermore it is assumed that repaired areas will be
brought to an undamaged new condition. Decisions about the
selection of optimum inspection and maintenance strategies
shall be based on minimum life cycle costs.

Since the repair actions depend on previously failed
elements, and the history of failure is not evident, deriving a
closed form formula for this problem is cumbersome. In this
paper, an event-based Monte Carlo simulation is conducted.
The discounted present value of repair and maintenance costs
are calculated in every simulation run and expected total costs
are considered as the criterion for decision making. It should
be noted that for simplicity, other costs, especially user costs,
during repairs is not considered in the analysis.

The minimum threshold of the repair and critical crack
width are of paramount importance in decision analysis. In this
analysis, Xmin

rep corresponds to the threshold at which repairs are
accomplished. It should be noted that the repair threshold,Xmin

rep ,
may reach a time between two succeeding inspection periods.
Apparently, it will not be detected until it is inspected and,
consequently, the difference between the repaired area after
inspection and the repair threshold will increase. One should
consider the fact that delaying inspection, despite lowering the
present value of life cycle costs, increases the risk of failure.
The maximum tolerable extent of damage, Xmax

rep , is introduced
in this analysis to prevent an unacceptable extent of damage
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during the lifetime of the bridge deck. Finally, the optimization
problem may be formulated as:

Min Z = E (LCC(t)) , (15a)
Subject to:

E(LCC) = PRC ins + E

PRC rep


, (15b)

PRC ins =

N ins
i=1

Cins(i)
(1 + r)Ti

, (15c)

E

PRC rep


=

Nsim
k=0

Nrep
j=1

Crep(k,j)
(1+r)T (k,j)

Nsim

for j = 1 to Nrep and k = 1 to Nsim, (15d)

Crep(k, j) =

5000 + 2000 ×


Xk,j × AT


e

for j = 1 to Nrep and k = 1 to Nsim, (15e)

Cins(i) = 5000 e for i = 1 to Nins, (15f)

Xmin
rep ≤ Xk,j ≤ Xmax

rep , (15g)

1 ≤ ti ≤ 5 years for i = 1 to Nins, (15h)
Ti = Ti−1 + ti for i = 1 to Nins, (15i)
TNins ≤ 50 years, (15j)

Nrep ≤ Nins, (15k)

Nins ≤ 50. (15l)

This optimization problem, because of its high complexity,
cannot be solved except with Artificial Intelligence (AI)
techniques. In the following section, the application of an
integrated ANN-GA is presented.

4.4. Analysis

The motivation behind employing neural networks is
their capability of function approximation. In this paper, for
calculation of the crack width of every discretized element at
every annual time step, a couple of simultaneous nonlinear
equations shall be solved. This process shall be repeated forNsim
times to simulate X (t) before repair interventions. In reference
to Figure 3, in every realization of Monte Carlo simulation,
one can expect a different spatial and temporal variation of
damage and, consequently, the extent of damage increaseswith
time, e.g. X (t). In Figure 4, the efficiency of an inspection
plan in lowering the extent of damage and the corresponding
incurred costs during a life cycle is schematically presented on a
randomly selected realization of aMonteCarlo simulatedbridge
deck.

It is obvious during a lifetime that very different inspection
plans, t , are possible. The following ANN-GA algorithm is
proposed for finding the optimum inspection plan, topt, which
yields to minimum expected life cycle costs.

The life cycle cost of 1000 randomly initiated inspection
plans is calculated. Then, a three layer feed forward neural
network is trained for calculation of the life cycle costs of
any inspection plan. The problem is solved for 50 years of
service life, resulting in 50 neurons in the input layer. In
every inspection plan, t , the Ones (1’s) represent the inspection
being conducted on those ages of the deck, and Zeros (0’s)
mean no inspection will be performed on the corresponding
age. Apparently, in the output layer, there is just one neuron
simulating the expected life cycle cost of every inspection plan,
a

b

Figure 4: The effect of a random inspection plan on random realization of
simulated extent of damage.

Figure 5: Correlation between ANN results and Monte Carlo simulation.

e.g. E (LCC(t)). Finally, the number of hidden layer neurons is
determined, based on trial and error, to reach the minimum
Mean Square Error (MSE) of the network, and an acceptable
R-factor of validation and test datasets after training. With
respect to Eq. (13) and the aforementioned considerations,
a 50-50-1 (Input-Hidden-Output) structure of the network is
finalized. The activation functions of hidden and output layers
are sigmoid and linear, respectively.

Figure 5 illustrates that trained NN has a very good
approximation capability, because the R factors in all three
groups of data, e.g. training, validation and testing, are above
0.98.

The trained NN can be used as a surrogate for the time-
consuming and inefficient event based Monte Carlo simulation.

At the final step, for finding the optimum inspection plans
of the optimization problem (Eq. (15)), the utility of GA as a
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Figure 6: Best fitness of genetic algorithm optimization.

Figure 7: Optimum inspection time intervals using genetic algorithm.

Figure 8: Optimum inspection plan. (a) Mean percent of failed area; (b) mean
percent of repaired area; and (c) expected PRV of LCC..

global search method is investigated. A binary code, GA, using
the MATLB GA toolbox, is examined here. Based on the final
tuned parameters of the GA, population size equals 200, the
mutation function is uniform with a 0.05 rate, the cross over
fraction is 0.8 and the elite count is 5 in every generation. For
illustration, the problem is solved for Xmin

rep and Xmax
rep equal to 5%

and 30% of the total deck area.
In Figure 6, the convergence of the algorithm is presented. In

this example, the algorithm stops after 55 generations because
the best fitness of this generation is halt for 5 consecutive
generations.

The corresponding best individual (solution) is illustrated
in Figure 7. As predicted in the first years of the bridge deck
service, in this example, until after 20 years of service, the
expected extent of damage is low (less thanXmin

rep ) and there is no
need for repairs. Consequently, the time intervals of successive
inspections are 5 years; the maximum allowable time interval
as per Eq. (15h). But, when the damage extent and severity
propagates with time (between 20 and 29 years), as illustrated
in Figure 8(a), the bridge manager shall allocate enough budget
for more frequent inspections and repairs for lowering the
risk of serviceability failure, meaning the extent of severely
cracked areas are more than Xmax

rep . According to Figure 8(a) and
(b), during this period of life, inspection and repair should be
conducted 4 times. These interventions will remedy the bridge
condition and, subsequently, between the ages of 30 and41, less
stringent interventions will be required. The other interesting
conclusion is the need for successive repairs after being in-
service for an adequately long time. This can be explained with
due attention to the fact that the initiation phase of corrosion, in
contrast to the propagation phase, governs the service life of the
affected concrete structures. In other words, if, in a reinforced
concrete element, corrosion is initiated, the occurrence of
cracking is expected justwithin a few years. In this example, the
mean simulated corrosion initiation time is 35 years, and the
propagation to limit the 1 mm crack width occurs in 45.5 years.
It means that most unrepaired areas will undergo corrosion,
and cracking will be manifested in these areas of deck more
frequently between the ages of 42 and 50 years. In Figure 8(c),
the present value (PRV ) of the optimum expected life cycle
inspection and maintenance costs is illustrated.

5. Conclusion

The extent of damage, as an indicator of the bridge
deck condition, is an appropriate parameter in decision
making, regarding repair andmaintenance intervention. Spatial
variation of material and environmental factors affects the
corrosion process in RC structures and, consequently, the
location and extent of the damage is a spatially dependent
variable. For simulation of the spatial variation of the corrosion
process, random fields are utilized. Since the midpoint method
is computationally efficient, it is used for discretization of
random fields. In this paper, after simulation of the extent
of damage, the usefulness of artificial intelligence methods is
investigated in the risk-based inspection planning of bridge
decks. As presented, the problem of finding an inspection
plan that yields to the minimum expected life cycle cost is
computationally very complex. On the other hand, solving this
problem is very rewarding for developning practical bridge
maintenance management systems. The usefulmess of an
integrated ANN-GA approach is examined on a hypothetical
bridge deck, and an optimum inspection plan is sought with
this algorithm. A three layer feed forward ANN is used for
simulation of the expected life cycle costs of various inspection
plans. The correlation coefficients were found to be 99%,
99% and 99% for training, validation and testing datasets,
respectively, which shows the accuracy of the results obtained
with trained ANN working as a sorrugate for the inefficient
and time-consuming event based Monte Carlo simulation.
Finally, the global optimum searching capability of the genetic
algorithm makes it possible for inspection intervals during
the lifetime of the bridge deck to be planned in such a way
that the total expected life cycle costs are minimum, while
the extent of repaired damage in every intervention is within
a minimum threshold of repair initiation, and a maximum
tolerable extent of damage. The proposed algorithms handles
the high complexity of the problem and the results are in good
agreement with practical experience.
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6. Notation

The following notation is used throughout this paper:

LCC(t): Life cycle cost of inspection plan with the inspection
plan conducted at the time intervals of t = (t1, t2, . . . , ti,
. . . , tNins),
Cins(i): Inspection cost conducted on age T (i) of the bridge
deck
Crep(k, j): Cost of repair intervention conducted on age
T (k, j) of the bridge deck in the kth simulation
Xmin
rep : Threshold extent of damage to conduct repairs

Xk,j: Extent of repaired damage on age T (k, j) of the bridge
dec k in the kth realization of simulation
Xmax
rep : Maximum tolerable extent of damage before repairs

ti: Time interval between inspections
Nins: Total number of inspections
Ti: Age of bridge on the ith inspection
T (k, j): Age of bridge on the jth repair intervention on the
kth realization of simulation
Nrep: Total number of repair interventions during the
lifetime of the bridge deck
Nsim: Number of realizations of simulation
NT : Number of discretized elements
PRC ins: Present value of total inspection costs during the
lifetime of the bridge deck
PRC rep: Present value of total repair costs of every realization
of simulation
E(g): Expected value of variable; g .
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