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0. Introduction 

The genesis of this paper lies in the proof in [20] that the nerve functor carries lax 

colimits in the category Cat of small categories to homotopy colimits in the category 

.X of simplicial sets, up to homotopy type. In trying to extend this result I found 

that the main properties of homotopy limits and coiimits in [3], where they are 

stated without proof, although very categorical in nature, did not seem to follow 

from any well-known categorical techniques. At first I thought what was lacking 

was something in the 2-categorical nature of homotopy theory, but this (apparently) 

was incorrect. Instead, what is involved is the closed category nature of both Cat 

and .X and the fact that the nerve functor is a closed functor with a left adjoint. 

However, the development of the theory of such closed functors (mainly the work 

of Day, Eilenberg and Kelly in various combinations) has not been in the 

appropriate direction to yield the required formulas. In providing this development, 

it turned out that there is a whole aspect of the study of closed categories and closed 

functors that consists in applying some simple properties of what is called here a 

“tensor-horn-cotensor” (THC)-situation in more and more complex circumstances. 

The main results about closed functors are Theorems 2.4.3 and 2.5.3 which 

specialize to the preservation properties of the nerve functor and its left adjoint, and 

Theorem 2.6.4 which, via 2.7.5 leads to the replacement schemes for calculating 

homotopy limits and colimits. 

In the brief first paragraph we describe a THC-situation and how it is affected by 

adjoint functors. Category-theoretically, this material is trivial. Its only virtue is 

that it codifies circumstances of sufficient complexity to provide a uniform 

description of the results that are needed later. In Section 2, this material is applied 

to the study of closed categories. The first three sections contain well-known results 

and serve mainly to fix the terminology. In the next two sections, mean cotensor and 

tensor products in the sense of [2] are treated and the main results mentioned above 
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are proved. In 2.6, functors of several variables are treated and in 2.7 the required 

properties of the Yoneda imbedding and of Kan extensions are proved. 
In Section 3, lax limits are discussed. After a review and reorganization of their 

main properties, a new proof of Street’s result [19] about the construction of lax 
limits is given (in 3.4.2). This result is (at least psychologically) crucial since it 
explains how the comma category functors I/- arise in this subject. Finally, Section 
4 is concerned with the application of these results to homotopy limits. The first 
three sections briefly review the closed category properties of .jY and related functor 
categories and the fourth section describes the required properties of the nerve 
functor and its left adjoint in the terminology of Section 2. In 4.5 we show how to 
define homotopy limits and colimits for .&functors F : A-B where A and B are 
both .&categories with A small and B complete and cocomplete. If A is the free .$ 
category on an ordinary small category, then these reduce to the usual notions. The 
standard properties follow directly from the THC-situations involved in the 
definitions, and the replacement schemes follow immediately from the results in 
Section 2.7. In 4.6 the relations between homotopy limits and lax limits are 
exhaustively treated. Finally, 4.7 mentions some possible and actual generalizations. 

1. An approach to closed categories 

The fundamental properties of categories enriched in a closed category are 
encoded in tensor-horn-cotensor situations. These will be described in a generality 
suitable for the uses here. 

1.1. Definition. A THC-situation consists of three categories, AI, A2, A3, three 

functors 

T: AlxA2-‘A3, H: AiQxA3-‘A~, C : A:Q~A3+Az 

and natural isomorphisms 

AJ(T(AI, .42), A~)=AI(AI, H(A2, A3))=A?(A2, C(AI, .43)). 

If Adj(X, Y) denotes the category of functors from X to Y with chosen left 
adjoints and Rt Adj(X, Y) denotes the category of contravariant functors from X 
to Y with chosen adjoints on the right, then evidently a THC-situation is equivalent 
to three functorial families of adjoint functors 

Al+Adj(A3, A2) : AI-(T(AI, -1iW1, -11, 

A2+Adj(A3, AI) : AZ-(TC-, Az)IH(AL-)~ 

A,-Rt Adj(Az, AI) : A3*(C(-, A3)li:H(-,A3)). 

(Note. Fi U means F is left adjoint to U.) T is regarded as a generalized tensor 
product, H as a generalized horn functor and C as a generalized cotensor product. 
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Clearly any one of these bifunctors determines the other two up to unique 
isomorphisms. There are of course situations where only part of this structure is 
available, but we omit any consideration of such refinements here. There is also an 
interesting calculus which is derivable under mild hypotheses in special cases; e.g., if 
A2=A3, then the equation T(A’i, T(Ai, A2)) = T(Ar, T(.~‘I, A2)) has useful conse- 
quences, some of which will be needed later, but these will be developed only in the 
contexts in which they arise. 

One is frequently interested in what happens to THC-situations under the action 
of adjoint functors. In what follows G; : A,- A;, i= 1, 2, 3 are functors and 
[AI, A2, A3, T, H, C] and [A’I, A’2, Aj, T’, H’, C’J are THC-situations. 

1.2, Proposition. If Gi -ICI, 62+G2 and G3-63, then 

[A’[, Ai, A& G3T(&, 62-9, G,H(&, G3-)r G2C(G,-, 63-) 

is a THC-situafion. 

Proof. Aj(GjT(6IA’\, &A>), Aj)=A3(T(GIA’I, &4i), d4j) and this second ex- 
pression can be written either as 

Ai(GiAi, H(&Ai, G~AA~))=A’I(A’I, GiH(&i, &4’3)) 
or as 

A2(&4i, C(&l’i, G3.4’3)) = Ai(A’t, GzC(GIA~, e3AA;)). 

1.3. Proposition. Let 6 ICI. Then 

(a) [Ai, A2, A3, T(Gi -, -), GIH( -, - ), C(6 -, - )I is a THC-situation. 

(b) If G2-&2, then GIH(A~, A3)=H’(G2Az, G43) ifand only ifCf6A’1, A3)= 

c’rC’(A’,, G3A 3). 
(c) Zf G3-tG3, then GIH(A~, A~)=H’(GvIz, G~43) ifand onLv if T(G;IA’I, A2)= 

G37-‘(A’,, G2A2). 

Proof. (a) is a special case of 1.2, taking Gz and G3 as identity functors. To prove 

(b), observe that 

while 
Ai(Ai, GiH(A2, A3))=A,(&A’,, H(A2, A3))=Az(Az, @IA?, A2)) 

A’I(A’I, H’(Gt42, G~43)) =Ai(Gul2, C’(A’I, G3A3)) 

= A2(A 2, 62C’(Ai, G3.4 3)) 

from which the result follows immediately by the Yoneda lemma. The proof of(c) is 
similar as are the proofs of the following statements. 

1.4. Proposition. Let 61G2. Then 

(a) [AI, Ai, A3, T( -, &-), Zf(&-, -), G2C(-, -)] isa THC-situarion. 

(b) I~GI-I& then GzC(AI, A~)=C’(GIAI, G3A3) ifandonfyifH(&i>, A3)= 

G,HYA~, G3A3). 
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tc) [fi;3+G3, then G2C(AI, A~)=C’(GIAI, G3A3) ifdonb ifT(Al, hi)= 

637’(G,A I, Ai). 

1.5. Proposition. Let G3 163. Then 

(a) [AI, A2, Aj, G3T(-, - ), H( -, 6) - ), C( -, 63 - )] is a THC-situation. 

(b) IfGl -tGt, then G~T(AI, AZ)= T’(GIAI, G2At) ifandonb ifN.4~~ 63A?)= 

duY(G2A2, -4’3). 
(c) If G2iG2, then G~T(AI, A~)=T’(GIAI, G2A2) ifandonhifC(A~~ &4’$= 

~~C’(GIA I, A?). 

1.6. Proposition. Let A I = Ai. 

(a) If G3-163, then N’(GU12, Aj)=H(Az, G3Aj) if and only if G~T(AI, A$= 
T’(A I, Cdl). (I.e., the pair (G2, G3) “preserves tensors”.) 

(b) rf &-+G2, then H(&Ai, A3)=H’(A>, G3A3) if and only if GKX~I, AZ)= 
C’(A ,, G3A3). (I.e., the pair (G2, G3) “preserves cotensors”). 

2. Examples of THC-situations 

2.1. Closed categories 

Let V be a complete and cocomplete, closed (symmetric monoidal) category, as in 
[7], [S], or [ll], so that V is equipped with a tensor product @ and an internal horn 
functor V( -, -) satisfying suitable properties, as well as an “underlying” set 
functor I/ : V-Sets such that UV( - , -) = Vo( - , -), the latter denoting the Set- 

valued horn functor. Let A;= V, i= 1, 2, 3, and set T= 0, H= C= V( - , - ). Then 
the relations 

Vo(V@W, Z)zVo(V, V(W, Z))=Vvo(W, V(V, Z)) 

show that this ia a THC-situation. Here Vo( -, -) can be replaced by V( -, -). 

2.1.1. Proposition. Let @ : V-V’ be a functor between closed categories which has 
an (ordinary) left adjoint &i-Q. Then 

(a) @V(V, W)_=V’(@V, @W) ifandonfyif&V’@ Wz&V’@‘@W). 
(b) 6(V’@‘W?n~v’O~W~andonlyif~V(~V’, W)sV’(V’, @W). 

Proof. Let G;= 0, i= 1, 2. 3 and use 1.3(c) for (a) and 1.5(b) for (b). 

2.2. Categories enriched in a closed category 

The basic reference for all of this section is [l 11. Let V be a closed category as in 
the preceding section. A V-category is an ordinary category B together with a 
factorization of its horn functor through U : V+Sets, denoted hereafter by 
B( - , -), and composition operations B(B, R’)@B(B’, B”)*B(B, B”) satisfying 



suitable properties. A V-functor F : B-B’ is an ordinary functor between the 

underlying categories, hereafter denoted by Bo, together with maps 

FB,C : B(B, C)--‘(F(B), F(C)) in V which are compatible with composition and 

units. The product BOB’ of V-categories B and B’ is the V-category whose objects 

are pairs (B, B’) and whose V-valued horn functor is given by 

B@B’((B, B’), (C, C’))=B(B, C)@B’(B’, C’). 

A V-category B is called complete and cocomplete if it has limits and colimits 

preserved by the V-valued representable functors and if it is tensored and co- 

rensored. This means that there are V-functors 

T=@: V@B-+B and C= 0 : VOP@B-B 

with isomorphisms B( V&3, D)= V( Y, B(B, D)) =B(B, VmD). This would be the 

standard THC-situation with AI= V, A:=A?=B and H=B( -, -) : BOP@B+V 

except that the horn functors A;( -, -) are V-valued instead of set valued. Clearly 

all of Section 1 holds in this case, providing ordinary adjoints are replaced by V- 
adjoints (i.e., FqF means B(F(B’), D)=B’(B’, F(D)) in V.) We assume these 

results from here on. Note then that the V-valued representable functors B(B, -) 
and B( -, D) have V-adjoints as indicated 

-@)B-?B(B, -) and -mDxB(-, II). 

The situation in 2.1 is a special case of this, taking B = V, @ = 0 and I$ = V( -, -). 

If V = Sets, then V@)B =J_Lr;B and VrfiB = n,.B. 

One can view 6 and fi as describing operations of V on B. These operations do 

not commute but they have the following properties. 

2.2.1. Proposition. (i) vfi( WfiB)S (V@ W)OS. 
(ii) Y@( W@)B) z ( V@ W) @)B. 

Proof. Part (i) follows from 1.4(b) by taking GI = V@( -), 6’1 =V( b’, -); 
&= I’@-, Gz= Vm - and G3 = Id, since B( V@B, C) =V( V, B(B, C)). Part (ii) 

follows similarly from 1.5(c) taking GI as before, G2= Id, and G3 = V@ -, which 

shows that (i) is equivalent to (ii). 

2.2.2. Proposition. Let F : B-+B’ be a V-functor between complete and cocomplete 
V-categories which has an (ordinary) left adjoint FTF. Then the following are 
equivalent: 

(a) E is a V-left adjoint. 
(b) E preserves tensors, i.e., P( V@B’) = V@B’. 
(c) Fpreserves cotensors; i.e., F( VfiB) s VfiFB. 

Proof. Let Gr=Id: V-V, G2=G3=Fanduse 1.6. 
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if V and V’ are closed categories, then a closed functor from V to V’ consists of an 
ordinary functor @ : V-V’ together with a natural transformation cp c; w : cp( k’),g! 
G(W)- @( V@ W) and a map PO : I’ -*@(I) satisfying suitable coherence conditions 
(cf. [8, 111). Using adjoints, cp determines another natural transformation 
@K c(’ : @(V( V, W))-V’(@( V), Q(W)). These structures play a central role in this 
paper. 

Let V-Cat denote the category of (small) V-categories and V-functors. Then a 
closed functor @ : V-+V’ determines a functor QJ, : V-Cat&V’-Cat as follows, If 
BE V-Cat, then @*BE V-Cat has the same objects as B, with @,B(B, C) = 
@(B(B, C)), composition being defined using (0. If F : B-B’ is a V-functor, then 
QP,F : @,B-+@,B’ is given by @*F(B) =F(B) and (@.F)B.c= G(F8.c). (Note. V-Cat 
is actually a 2-category and @* is a 2-functor.) There is one additional important 
piece of data. @ determines a V’-functor 8 : Q,,V-V’ by the rule 8(V) = Q(V) and 

@v.w=@v,w: @(V(V, W))-V’(@(V), Q(W)). 

@ is called normaf if it commutes with the underlying set functors; i.e., U’@ = U, so 
that in particular (@,B)o(-,-)=Bo(-,-). 

We shall speak of @J : V+V’ having an (ordinary) left adjoint 6 if & : Vb+Vo is a 
left adjoint in the usual sense. If @ is normal, then 6 can equally well be regarded as 
a functor 6 : Vb-(@.V)O. If &in this sense has an enrichment to a V-functor which 
is V-left adjoint to 6 (i.e., @V(&v, W) = V’( I”, G(W))) then we shall say 6 is a V’- 
left adjoint to @. 

2.2.3. Proposition. Let @ have an (ordinary) left adjoint (iii@. 
(a) If B is complete and cocomplete then so is @,,B; in particular, If’@’ B = 

$V‘@Band V’~~YB=C~V’~B. 
(b) Suppose in addition that @ is normal. Then the following are equivalent and 

imply that & is a closed functor. 
(i) #J is V-left adjoint to @. 

(ii) &, : V’+ V preserves tensor products. 

Proof. (a) follows from 1.3(a) and (b) follows from 2.1.1(b). Note that the V’- 
structure of 6; i.e., the maps 

V( v: W? + @V( 4( V?, & W?) 

correspond by adjointness to the maps $v. w which in turn correspond by adjoint- 
ness to the structure isomorphisms #v, w’ : 8( if’)@ & W’)- & If’@’ W’) which make 
di a closed functor. 

2.2.4. Remarks. When necessary for clarity, we shall write @PO : Vo+Vb for the 
functor part of a closed functor @ : V+V’. If 6 is a V’-left adjoint to @, then we 
must distinguish several aspects of it: 

(i) The underlying functor 60 : Vb+Vo. 
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(ii) The closed, functor &,I : V’-+V. 

(iii) The V’-functor $2 : V’-+@,V. 

(iv) It is immediate that 4. is left adjoint to @* (see 2.3.3), SO 6~ corresponds to a 

V-functor 4T : 4j.V’-*V which coincides with 8, as described before 2.2.3. 

2.3. Ends, coends and functor categories 

Let V be a complete and cocomplete closed category. We shall make V-Cat into a 

closed category as well in such a way that if @ is a closed functor then so is @*. After 

recalling the relevant definitions, we shall see that the main properties of this 

situation follow from Section 1. 
The essential ingredient for the closed structure on V-Cat is V-functor categories. 

In order to describe them and related notions, we need ends and coends as described 

in [I 1). If F : A-B is a V-functor, where B is tensored and cotensored, then the 

structure maps FA,B : A@, B)-B(F(A), F(B)) can equally well be described in 

terms of right action maps fA.5 : A(A, B)@F(A)-F(B) or right coaction maps 

7cl.B : F(A)-A@, L?)dl FB. Similarly a contravariant V-functor is described by left 

action or coaction maps. Now, if A is a small V-category, B a complete and co- 

complete V-category and T: A”P@A-+B is a V-functor, then the end of T is the 

equalizer 

I’/, TM, A)- II T&4, A)=+ fl A(& C)h T(B, C) 
.-I B. c 

where pre,cf= ?B,cpre and pre,cg = Tecprc. Similarly, the coend of T is the co- 

equalizer 

:=A(& C)@T(C, B) ==& S y TM, A)+ T(A, A) 

where f ine.c= inc TE.C and g ins,c= ine /E,c. Being particular limits and colimits, 

these are preserved and collectively created by the V-valued representable functors, 

and there is a Fubini theorem about changing the order of “integration” when A is 

a product category. (Cf. [l I].) 

If A is a small V-category, let [A, B] be the V-category whose objects are the V- 

functors from A to B, whose morphisms are V-natural transformations and in 

which the V-valued horn functor is given by 

[A, BI(F, G)=S, WV), G(A)). 

It is shown in [6] that @ and [ - , - ] determine a closed category structure on V- 

Cat. In particular, [A@A’, B] = [A, [A’, B]]. The underlying set functor U : V- 

Sets satisfies UV( V, W) = Vo( V, W) so, by [8; I, 3.111, we can regard I/ as a normal 

closed functor. Hence it induces the forgetful functor U, : V-Cat-Cat, which will 

concern us later. Clearly U,B - Bo for any V-category B, and if @ : V+V’ is a 

normal closed functor, then U’* Qp, = U.. 

2.3.1. Proposition. If A is a small V-category and B is a complete and cocompiete 
V-category, then [A, B] is a complete and cocomplete V-category. 
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Proof. Limits and colimits are computed objectwise as usual and tensors and co- 
tensors are given by ( V@)(A) = V@F(A) and (vh F)(A) = VfhF(A). 

2.3.2. Proposition. I__ @ : V-V’ is a closed functor, then @, : V-Cat-V-Cat is a 
normal closed functor. 

Proof. The natural transformation 4. with components 

(P.)(A,B) : @,A@ @,B-@,(AOB) 

takes an object (A, B) to (A, B) and on the horn object from (A, B) to (A’, B’) it is 
the map pA(,4,,4?,B(&B7. The induced dual natural transformation is of more interest 
to us; namely f+7j a : @,[A, B]-[@,A, @,B]’ takes a V-functor F: A-+B to 
@,F: @*A*@,B. If also G : A-B, then @,[A, B](F, G)=@(j, B(F(A), G(A)) 
while [@,A, @,B]‘(@,F, @.G)=IA @B(F(A), G(A)). (Note that the integrals over 
A have different meanings.) The map from the first to the second is induced by the 
canonical map 

@ 
( 

f! W’(A), G(A )) 
> 

--* y @W(A ), G(A)) 

(which follows by properties of cp) and hence commutes with the “evaluation” 
projections onto each B(F(A), G(A)). For details, see [6] and [8]. 

2.3.3. Proposition. Let @ : V-V’ be a normal closed functor with a V’-left adjoint 

6. Then 

(i) 6. ir a (V’-Cat)-left adjoint to @,, 
(ii) $,, preserves tensor products. 

Proof. It is immediate that 6 -I@,. To be a (V’-Cat)-left adjoint says that 

@,[&,,B’, B]=[B’, @*B]‘. 

The underlying sets of these V-categories are isomorphic, so consider 
F, G : @,B’+B in V-Cat. Then 

SB’ B(F(B?, G(W)- i WW’I GW) 

=t l-I &* B’(C’, 0’) m B(F(C?, G(U)) 
c’. D 

is exact. Since @ has a left adjoint, it preserves the equalizers and products. Further- 
more, the cotensor in the last term is in V, so it is the internal horn. Hence @ applied 
to the last terms gives 

@V(h’(C’, D’), B(F(C’), F(D))) = V’(B’(C’, D’), @B(F(C’), G(D))) 

which shows that 
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If Fb, Gb : B’-+@,B correspond to F and G, then they agree with F and G on 

objects and their actions are given by adjointness, so that 

@[&B’, B](F, G)=[B’. @tB](Fb, Gb) 

which yields the desired isomorphism. Part (ii) follows from (i) by 2.2.2. c3 

A particular case of this is given by U : V-Sets since if 0 is an ordinary left 

adjoint to U, then 

LN(ir(X), W) = VO( ii(X), W) = Sets(X, U( W)) 

so iris Sets-left adjoint to U. 

2.3.4. Proposition. Let U : V-Sets have a /eft adjoint i! Then 
(1) opreserves tensor products; i.e.. 0(Xx Y) = i’X@ OY. 

(2) i’, --I U, and ii, preserves tensor products; i.e., ii,(C x ID) = ir* C@ ii, ID 
where @ and ID are small categories. 

(3) As a Cat-category, V-Cat is complete and cocomplete; in particular 
U@B= o.O@B and UhB=[iiO, B]. 

(4) If 6-i @ : V+ v’ as in 2.2.3 and if I/ and U’ have /eft adjoints, then @, 
preserves cotensors and 6, preserves tensors; i.e. 

@*[ir,C, B]=[Lj:O, @,B] and &j,(ri:3@B]=ir,U@&B’. 

(5) If T : (oe O)OPx 0.0 -+B, then there are exact sequences 

1; T(i, II--+ II T(i, i)* fl n Tti, k), 
I J.t 0:/-k 

U ll Tu, k)=t 11 T(i, i)-+S’ T(i, i) 

Proof. (1) follows from 2.2.2. (2) is a special case of 2.3.2. 

(3) It is well-known that if V has limits and colimits, then so does V-Cat. We 

make V-Cat into a Cat-category (see Section 3) by taking the Cat-valued horn to be 

V-Cat(B, B’) = U, [B, B’]. 

Since U, has a left adjoint, it is immediate that limits and colimits are Cat-enriched. 

It follows from 1.3(a), that the tensors and cotensors in this situation are as 

indicated. 

(4) Since U’@ = U, it follows that ii= $0 and hence ii, = &,, L?‘*. Thus by 2.3.2, 

cP,[ir,U, B]=@,[&(j:O, B]=[Li:O, @tB]‘. 

The second equation holds because &* preserves tensor products. 

(5) Since i’, preserves tensor products, (ii,O)‘P@i/*U = ir,(U’+‘x I), SO in fact 

T: o.(O”Px O)-+B, which by adjointness is the same as an ordinary functor 
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Tb : UOP x 0 * U, B which has the same values on objects as T. We must show that 

n irtU k)h Tti, k)= ; ,‘-, 7-U k) 
J.P 

or, in general, that iJX(ks = nxB in B. This follows from 1.3(a), since for any V- 
category B, we have UB( -, - ) = Bo( - , -), while, in 2.2, we calculated tensors and 
cotensors over Sets. 0 

For any small category 0, the V-category 0, [I is called thefree V-category on I. It 

has the property that V-functors o* J-B correspond bijectively to ordinary functors 
U-, U.B. It follows from (4) above that if @ : V+V’has a left adjoint, then there is a 
bijection between V-functors ir* 0 -B and V’-functors 0.0 -+@,B. Also, we get a 
description of V-natural transformations in this case, since they are ordinary 
functors 2-+ CJ* [A, B] which can be regarded as V-functors in three different ways: 
0,2-[A, B], or o,Z@A-B, or A*[0*2, B]. 

2.3.5. Remarks. In this section we have discussed several operations of a closed 
functor @ : V-V’ on V-functors. These are the following. 

(i) A V-functor F : A-+B determines a V’-functor Gjl F : Gi, A-GP,B and this is 
the operation on objects of the components of the V’-natural transformation given 

by @ + : @,[A, B]-[@,A, @*B]‘. 

(ii) If @ is normal with a V’-left adjoint 6, then a V-functor F : &,,A’-B corres- 
ponds by adjointness to a V’-functor Fb : A’ + Cp, B. The correspondence going the 
other way is denoted by ( ) ‘, so F= (F”))*. 

(iii) The V’-functor 6 : @,V-+V’ induces V’-functors @$= [@,A, 6]0(cj,)A,V : 

@,[A, V]-[@,A, V’]’ which are natural in A. On objects, if F: A+V, then 
@s(F) = $o@,, (F). See 2.7.7 for an important property of this operation which 
plays a central role in the applications of this theory. 

2.3.6. Proposition. Let @ : V-+V’ be a normal closed functor with a V-left adjoint 
a. Then &5”, : 6, [A,V’]‘- [&*A, V] is given by @(F) = (&OF)“. 

Proof. In the notation of 2.2.4 $2 : V’-@,V is the V’-left adjoint of 6. By 
naturality 

(&~F)L=(~#~&jl(F)=&~&,(F)=6;(F), 

The last equality by definition of 6; and the third equality by 2.2.4. 

2.4. Mean cotensor products 

Let V be a closed category, A a small V-category and B a complete and co- 
complete V-category. Define { - , - }B : [A, V]“P@[A, B]+B by the formula 
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This is the cotensor product for the THC-situation in which AI = [A, V], AZ= B and 

A3=[A, B]. Here T: [A, V]@B-[A, B] is given by T(F, B)(A)=F(A)@B and 

H : B@[A, B]-[A, V] is given by H(B, G)(A)=B(B, G(A)). 

2.4.1. Proposition (Cf. [2]). If F : A-V and G : A-B, then 

[A, Bl(F(-I@& G(-))=[A, VW-1, WB, G(-)))=W, (6 G),). 

Proof. 

B(B, (F, G}g)zB(B, SA F(A)hG(A))zS, B(B, F(A)hG(A)). 

This last expression can be written either as 

]/I V(F(A), B(& G(A )) = [A, VIE B(B, G( - 1)) 
or as 

jA B(F(A)@)B, G(A))z [A, B](F( -)&J, G). C 

In [2], {F, G}B is called the mean cotensor product of F and G and in [19] it is 

called the indexed limit of G over F. As usual, there are adjunctions 

F(*)@(-)i{F, - jB and { -,G}a%B(-, G(e)). 

We note that if B = V, then 

{F> Gj\=.S, F(A)mG(A)=j, V(F(A), G(A))=[A, VI(F, G), 

so this special THC-situation has the same relation to the general one here as 2.1 has 

to 2.2. 

If R : B-B’is a V-functor, we write RA for the functor [A, R] : [A, B]-[A, B’] 

which is composition on the left with R. 

2.4.2. Proposition. If R : B+B’ is a V-functor with a V-left adjoint d -R, then 
(a) R({F, G}B)~(E RAG}~. 
(b) d”(F(-)@B’)=F(-)@I&‘. 

Proof. Since dA is left adjoint to RA and clearly B(RB’, G( -)) = B(B’, R4G( -)), 
part (a) follows from 1.6(b) by taking (G:, G!) = (R, RA) while (b) follows from 

1.6(a) by taking (Cl, G3) = (I?, RA). 0 

2.4.3. Theorem. Let @ : V-V’ be a normal closed functor with a V-left adjoint 8. 
Let A’ be a V-category, B a V-category and let F : A’+V’ and G : A’- @,B be V’- 
functors. Then 

{F, G}e,Bz {($F)*, G*}B~ {Q;,(F), G#)B, 

F( -)a B=((8F)#( -)@B)b~(&jdA.(F)( -)@B)b. 

Proof. TO derive these formulas, consider the situation in 2.4. 1 for M : &A’-+V 
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and G*, apply @ to this and use the isomorphism @,[6*A’, B] z [A’, @.B]’ to get a 
THC-situation on [A’, @*VI’, @,B, and [A’, @*B]’ in which T(Mb, B)= 

(M( -)@,B)b, H(B, G) = B(B, G*( - ))h and C(M4 G) = {M, G*}a. Now consider 

the V’-adjoint functors 

[A’, &,]‘-[A’, $1’: [A’, Qi.V]‘-[A’, V’]‘. 

We claim that 

[A’, &]‘(B(B, G’( -))b)z $oB(B, G”( -))bz @.B(B, G( -)). 

Thus the cotensors and tensors for @.B(B, G( -)) which are the left hand sides of 

the formulas in the theorem are by 1.3(a), given by the middle formulas. The right 
hand formulas follow from 2.3.6. 

To substantiate the claim observe that in the diagrams 

the commutativity of the first implies that of the second by naturality of the 
adjunction correspondence. Hence 

$oB(B, G”(-))b=60@*(B(B, -))oG 

= @;(B(B, -))oG 

z@.B(B,-)oG=@.B(B, G(-)) 

since, by 2.7.7, @$ commutes with the Yoneda embedding. 

2.4.4. Corollary. Under the hypotheses of 2.4.3 with B = V, 

Proof. Immediate from 2.4.2 and 2.4.3. 

2.5. Mean tensor products 

Let V, A and B be as in 2.4. Define - *- : [A”P, V]@[A, B]-B by the formula 

H *G=j” &4)&G(A) 

This is the tensor product for the THC-situation in which At = [A”P, V], A2= [A, B] 

and A3=B. Here H: [A, B]“P@B-[A OP, B] is given by H(G, B)(A) = B(G(A), B) 
and C : [Aor’, B]“P@B*[A, B] is given by C(H, B)(A)=H(A)kB. 
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25.1. Proposition (Cf. [2]). If H : A”P-V and G : A-B, then 

B(H *G, B)=[AOP, V](H(-), B(G(-), B)) 

=[A, B](G(-), H(-)nB). 

Proof. Coends in the first variable of horn come out as ends; otherwise, it is similar 

to 2.4.1. 

In [2], H * G is called the mean tensorproducf of H and G and in [19] it is called 

the indexed colimit of G over H. As usual, there are adjunctions 

H*(-)-tH(+tI(-) and (-) *G-B(G(*),-). 

2.5.2. Proposition. If R : B-B’ is a V-functor with a V-left adjoint k-R, then 
(a) d(H * G’) = H *l?“G’, 

(b) R’(H(-)~B)sH(-)~IRB. 

Proof. See 2.4.2. 

2.53. Theorem. Let @ : V+V’ be a normal closedfunctor with a V-left adjoint 6, 
let B be a V-category, A’ a V-category and let H : (A?Op-+ V’ and G : A’-+@* B be V’- 

functors. Then 

(H*‘G)a.B= ((+H)# *G#)Rz c&,(H) *G# 

(H( -)m’B)~.Bz(((6H)#( -)~~IB)~)~s $j:,,,,(H)r+B. 

Proof. See 2.4.3. 

2.5.4. Corollary. Under the hypotheses of 2.5.3, with B = V and G’ : A’dV’, 

&(H *’ G’),Gr ($&p(H) * $$(G’)), 

6(6&,(H)( -)fil V)bzH( -)I+ @p(V) 

2.6. Functor categories of two variables 

Ends and coends are V-functorial in any extra V-functorial parameters in their 

arguments, and hence so are mean tensor and cotensor products. In order to 

describe this we shall use (0) and (:) for variables which have been integrated out, 

and ( - ) and ( =) for variables that are still present. Consider four V-categories, A, 

B, C and D and let Al=[A’P@B, V], Az=[A@C, D] and A3=[B@C, D]. Let 

PEAI, Q~Azand REAM. Let T(P, Q)=P(*,-) *Q(=,=)EA~; i.e., 

W, QW, Cl =SA 44, @@Q(A Cl. 

Similarly H(Q, R)= [C, D](Q( -,*), R( =.a))EAI; i.e. 

NQ, RNA, B) = SC D(Q(A, C>, R(& 0). 



Finally C(P, R)= {P( -,*), R(*, =)) EA:; i.e., 

C(P, R)(A, C) = Is P(A, B)h R(B, C). 

2.6.1. Proposition. This is a THC-situarion; i.e., 

[BBC, Dl(T(P, QL R)=[AopOB, VW, fQQ> RI) 

=[AOC, WQ, W, RI). 

Proof. 

[BOC CI(W> Q), I= js.c NW’, Q)(B, Cl, R(B, C)) 

=kJ)(~‘-I P(A, B)@QM, CL R(B, 0) 

=!s jc 5.4 WV, B)6Q(A, 0, W, C)) 

= !A Jo SC VUV, B), D(Q(A 0, R(B, C))) 

= SA.B V(P(A, B), SC WQM, CL RB, C))) 

= [AopOB, VIP, WQ, RI). 

The other isomorphism is proved similarly. 

2.6.2. Examples. There are several special cases of this that are interesting. 
(i) Let A = B, C= A”P and D = V. Then [A”P@A, V] is a closed category in 

which the tensor product is T(P, Q) and the internal horn is H(Q, R). For the rest of 
the data in this example, see [5]. 

(ii) Let A = B and C = 1. Then [A, D] is an [A”P@A, VI-category in which the 
[A”P@A, VI-valued horn functor is H(Q, R) and tensors and cotensors are given by 
T(P, Q) and C(P, R). In particular, [ABC, D]s [A, [C, D]] is an [A”P@A, VI- 
category. 

The mean tensor and cotensor products treated here are themselves functors so it 
is possible to iterate these operations resulting in formulas like 2.2.1. 

2.6.3. Proposition. Let P : AOP+V and R : B+C be V-functors. 

(i) If Q : A@B+V, then 

{P(:), {Q(:,*), R(-))) = {P(:) *Q(:,-1. R(=)I. 

(ii) ZfQ : A@BOP*V, then 

[P(:) *Q(:.*)] *R(*)=P(:) *[Q(:,*) *R(e)]. 

Proof. 

{P(:h {Q(:,*>, R(-))l =SA WU~(j, Q(A BdWB)) 
=SA SsPWffVQ(A BdWB)) 
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=SB j,~ (P(A)OQ(A, LWdWB) (by 22.1) 

=Ss (1” P(A)S3QW ~))~W) 
= {P(:) * Q(:,*), R(*1) 

Alternatively, this is a special case of 1.4(b) applied to the situation in 2.6.1 in 
which C = 1 and A is replaced by Aop. Here G2 : [A”P, D] 4-D is {f’, - }, 
GI : [A@B, VI-[B, V] is P * - and G3 = Id. The other equation is proved 
similarly. 0 

There is also a version of this involving a change of closed categories which will be 
needed in discussing the replacement and coreplacement schemes for homotopy 
limits. Let @ : V-V’ be a normal closed functor with a V’-left adjoint 6. Let A’and 
B’ be V’-categories, and let P : ($* A’)OP+ V and R : $i, B’-C be V-functors. We use 
the notation of 2.3.5 in what follows. 

2.6.4. Theorem. (i) If Q : A’@ B’+V’ is a V’-functor, then 

{P(I), {Q(: ,*>, Rb(+}&}c={(QC y-1 *W:Nf.v, R(*)), 

(ii) i’f Q : A’@ B ‘OP--* V’ is a V’-functor, then 

(P(:) *(Q(:,*) *‘Rb(.))*=(Q(:,.) *‘Pb(:))# *R(e). 

Proof. By 2.4.3, 

{Q(-,*,, R%)) ,“.c={(~QVY- v*), R(*))c 

and by 2.5.3, 

(Q(:,-)*‘Pb(:))$.~=(&J)/r(:,-) *P(:). 

Hence, using the symmetry of the tensor product in V, the results are immediate 
from 2.6.3. 

2.7. Aspects of Yoneda and Kan 

The formulas developed in the preceding sections are very useful in expressing the 
Yoneda lemma and in describing Kan extensions. (See [6, 71, etc.) If V is a closed 
category and A is a V-category, then we write the V-valued Yoneda functors as 

YA : A+[AOP, V] : A-A(-,A), 

Y” : Aop* [A, V] : V- A(A, -). 

The Yoneda lemma (or representation theorems) can be written in a number of 
equivalent forms: 

(i) If F : A-B is a V-functor, where B is complete and cocomplete, then 

Jrl A(A’, A)fbF(A)zF(A’) and j” A(A, A’J@F(A)aF(A‘). 
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Equivalently, in the notation of 2.6, 

{A(-,*), F(*)}zF(-) and A(*,-)*F(*)zF(-); 

or, writing A( -, =) = YA( =)( -) = Y.4( -)( =), 

{ YA(*)(-), F(e)} zF( -) and Yh(*)( -) *F(=)zF( -). 

Strictly speaking, we should write Ev( -) Y,A( 0) for YA( l )( - ), etc. 

(ii) If H : A’P+B is a V-functor, then there are analogous formulas derived from 

IA A(A, A’)kH(A)zH(A? and ]” A(A’, A)@H(A)=H(A’). C 

There is one more-intrinsic formula that occurs in the replacement schemes later, 

based on the symmetry of the tensor product in V. 

2.7.1. Proposition. Let F : A-V be a V-functor. Then 

(F(e) * Y.+(*))[A,~IGF. 

Proof. Let A’E A. Then 

(F(-) * YA(-))~~,v&4?=[).4 F(A)@YY”(A)](A’) 

= j” [(F(A)@ YA(A))(A’)] = I,” F(A)@A(A, A’) 

=jl’ A(A, A’)@F(A)sF(A’). 

2.7.2. Corollary. Let Q : A@B-V be a V-functor with Q’ : B-+[A, V] its trans- 
pose under exponential adjointness. Then 

(Q(*,-) * YA(*))[~.~~~Q’(-_). 

The replacement schemes will be a special case of 2.6.4 in a form using the 

Yoneda imbedding. Abstractly, this comes about as follows. Suppose [A, V] has a 

closed category structure (e.g., from a premonoidal structure on A, as in [5]), to be 

denoted by [[A, VI], in such a way that @ = lim : [A, V]-,V is a closed functor - 
with the constant functor F’ : V-[A, V] as a V-left adjoint. Suppose further that 

@,[[A, V]]a[A, V]. Then YA : AOP--+[A, V] corresponds to a [[A, VI]-functor 

(Y”)” : t’,A”P-[[A, V]]. 

2.7.3. Definition (cf. [3]). Let C be a complete and cocomplete [[A, VI]-category. 
(i) If F : F’,A’P-+C is a [[A, VI]-functor, then the total object of F is 

Tot F= (( YA)*, F}c 

(ii) If H : P,A-+C is a [[A, VI]-functor, then the diagonal object of H is 

Diag H = (( Y”) # *H), . 
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2.7.4. Definition. Let A and B be V-categories and let C be a [[A, VI]-category. Let 

R : O.B-C be a [[A, VI]-functor. 

(i) If Q : A@B-V is a V-functor, then set 

Q(R)(-)={Q(-,=), ~b(*))&: P,AoP+C. 

(ii) If Q : A@B’P-tV is a V-functor, then set 

Q(R)(-)=(Q(--,*I *Rb(*N&: V.A-C. 

2.7.5. Proposition. (i) Tot Q(R) z {Q’(e)*, R( l )}c 

(ii) Diag Q(R)=(Q’(*)” *R(o))~. 

Proof. By 2.6.4 and 2.7.2 

Tot Q(R)= {(y”)‘L:h {Q(:,*), Rb(*)l&lc 

= {(Q(:v*) *Y”W;,vlv R(*))c 

= IQ’(*)“, R(*))c 0 

Kan extensions can also be expressed by ends and coends; namely, if F : A-B is a 

V-functor with A a small V-category and if D is a complete and cocomplete V- 

category, then 

[F> Dl : P, Dl -iA, Dl 

has a V-left adjoint given by 

EF-(G)(-)=LanFG(-)=j’B(F(A),-)@G(A)=B(F(*),-) *G(e) 

and a V-right adjoint given by 

EF(G)(-)=RanFG(-)=l,B(-, F(A))hG(A)={B(-, F(e), G(m))}. 

Note that not only does [F, D] trivially preserve tensors and cotensors, but also, by 

2.2.2, EF preserves tensors and EF preserves cotensors. Kan extensions along the 

Yoneda functors occur in the applications later. Using the Yoneda lemma, the 

following results are immediate. 

2.7.6. Proposition. (i) Let G : A-D and H : A”P-+V. Then Eu,~(G)(H) = H *G so 

E y,(G) has a V-righr adjoint given b,v I? y,(G)(D) = D(G( - ), D). 

(ii) Let G : A-+D and F: A+V. Then E@(G)(F)={F, G} so E”(G) is V- 

adjoint on the right to E yA(G)(D) = D(D, G( - )). 

Proof. By Yoneda, 

EY,(G)(H) = [Aop, WY4*), JO *G(*) 

= { YA(-)(:), H(:)) *G(*)=H(*) *G(e) 
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and, by 2.5, - *G has the indicated right adjoint. Finally, we need one other 
property of the Yoneda functor. 

2.7.7. Proposition. Let @ : V-V’ be a closed functor. Then @$ : @,[B, VI-+ 
[@,B, V]‘(see 2.3.5) commutes with Yoneda; i.e., @$o@.(YB)= Y@*B. 

Proof. If BE B, @,( YB)(B> = B(B, -)E @,[B, V]. Composing with @g gives 
[I, $](@.(B(B, -))) which is $o@*(B(B, -)) : @*B-V’. The value of this on an 
object B’ is @(B(B, B’)) = @,B(B, B’) and on a horn-object @,B(B’, B”) it is the 
composition 

V’(@B(B, B’), @B(B, B”) 

where o* is adjoint to the composition for B. A calculation shows that the result is 
adjoint to the composition for @*B and hence $o@*(B(B, -))= @,B(B, -). 

2.7.8. Remark. One can combine this with 2.7.6 to give a functorial version of 
2.4.3, but we don’t need this here. 

3. Lax limits 

In this section we apply the preceding results to the Cartesian closed category 
V=Cat; i.e., the category of small categories. Since @ = x, we shall write the 
internal horn functor exponentially; thus Mk is the category of functors from M to V 
and natural transformations between such. The prefix Cat- is unattractive and is 
therefore replaced everywhere by the prefix 2-. As general references, see [lo] or 

t121. 
The underlying set functor - : Cat-Sets, which assigns to a category its set of 

objects, is part of a string of adjunctions 

where D(X) is the discrete category with objects X, G(X) is the trivial groupoid on 
X and z(X) is the set of path components of X (cf. [lo]). Clearly D = G =id, 
nD= id and nG = 1 (the one point set). Note that by 2.2, - is a normal closed 
functor and D = 2 is a closed functor. A trivial calculation shows that n = d is a D- 
left adjoint to D and hence rc preserves (finite) products and is a closed functor. 

These closed functors give rise to a similar string of closed functors 

X,-ID,- - .iG, 
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between 2-Cat (= “Cat’‘-Cat) and Cat (= “Set’‘-Cat). In general, if @ : V-V’ is 

closed then the closed functor @ l : V-Cat--‘-Cat determines the (V’-Cat)-category 

(@*).(V-Cat) and the (V’-Cat)-functor 6.. In this case V=Cat, V’=Sets, and V’- 

Cat = Cat = V so 2-Cat can be regarded (via - a .) as a 2-category. Cat itself is of 

course the fundamental 2-category, and all of the above functors determine 2- 

functors which will be denoted by the same symbols. 

3. I. Lax comma categories 

If F, : A,-B, i= 1, 2, are 2-functors between 2-categories, then FINFz denotes 

the lax comma category of FI and FZ (called the 2-comma category in [lo] and 

denoted by [FI, Fz] there). Its objects are triples (AI, h, AZ) where A,EA; and 

h : FI(A i)-+F2(A2) in B. Its morphisms are triples 

cfl, y. ./I) : (AI, h, A?)-+(A’I, h’, rl?) 

wherefi : A,-+A’,, i= 1, 2, and y : Fz(f$h-h’F,Cfl) is a 2-cell in B. Finally, its 2- 

cells are pairs 

where p, : fi-f',, is a 2-cell in A,, i= 1, 2 and h’Fl(rpl) l y = y’* F?((o:)h. (Note. 

Justaposition composition in B takes precedence over l composition within the horn 

categories B(f3, C).) Usually FL//F? is regarded as a 2-category over AI x Az via the 

projection 2-functor P : f~//Fz-+AI x Az given by P(A I. h, A$ = (A I. AZ), etc. The 

components of P are denoted by PI and P:. 

In particular, if 1 : l-Cat is the functor whose value is the category 1 E Cat and 

F : A-Cat, then l//F is the “Grothendieck category” of F, denoted by ASF in 

[12], which notation we adopt here. Another special case of interest is given by the 

identity 2-functor on a small 2-category A together with the “name of an object” 2- 

functor ‘A’ : 1 -+A. The lax comma category is u.ritten A//A in this case. Note that 

morphisms here are diagrams 

A 

and a 2-cell (rp, 1) : (F, p, 1) = u’, y’, 1) satisfies h’(o l y = y’. (Cf., Street [19] and 

[3].) If s : A-A’ in A, then composition with s determines a 2-functor 

A//s : A//A-A//A’ and a 2-cell w : s=s’ determines a 2-natural transformation 

A//W : A//s= A/.s’this construction yielding a 2-functor A//- : A-+2-Cat. Dually, 

there is a 2-functor -//A : A OP+2-Cat. We shall be interested in the composed 2- 

functor TC+ o(A//-) : A-Cat. If II is a small category, then D, 0 has no non-trivial 2- 

cells, so D, 0 h’i = D, (I /i) where 0 /i is the ordinary comma category of objects over i. 
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Hence n*(D.O//i)=(l/i) and 

n, o(D,ii//-)=(I/--)” : D,3-Cat 

(see [3]). Similarly, n, o( - iYD. 0) = ( - A) * which is denoted by 0 \ - in [3]. 

3.2. Lax natural transformations 

2-Cat is a closed category via x and [ - , -1 as in 2.3, SO [ - , -1 coincides with the 

exponentiation in the Cartesian closed structure here. However, there is another 

“functor category” for a pair of 2-categories A and B, denoted by Fun(A, B). Its 

objects are 2-functors from A to B and if F,G : A-B are such, then 

Fun(A, B)(F, G) is the category whose objects are lax natural trnnsformafions from 

F to G; i.e., 2-functors o : A-F//G such that PO= A.4 (the diagonal functor from 

A to Ax A). Its morphisms are 2-natural transformations s : a-d between such 

functors satisfying Ps= id. (For a more explicit description, see “quasi-natural 

transformations” in [lo] or [ 12) .) 

if A is a small 2-category, then PA : B-Fun(A, B) denotes the constant 

embedding; i.e., V’A(B)(A)=B for all A EA. Left and right 2-adjoints (=Cat- 

adjoints), to C’A, if they exist, are called lax colimits and lax limits respectively. They 

are denoted by 

llim 7 VA 7 llim 
_ A --A 

It can be shown easily by direct computation that if B=Cat and F : A-Cat is a 2- 

functor then 

llim F=n,(A 1 F) and llim F : T(A j F). 
- .a ---\ 

Here T(A J 0 denotes the category of sections of P : A 5 F-A. 

3.3. Lax Kan extensions 

In [lo] these are called quasi-Kan extensions. The lax left-Kan extension along a 

2-functor F : A-B between small 2-categories is constructed as follows: If 

H : A-C, replace F and H by 

A F PC 

\ 

H 

C 

FN B 
p2 

l B 
\ 

PI 

/ 
A 

\ 



Pz and HP1 as illustrated. By definition, I Lan,c H=! Lanp:(HPt), where for any 

K : FIB-C, one defines 

I Lanp,(K)(B) = IH&p;l,s,(Kl P? ‘(B)). 

Here P{)(B) is the fibre of F//B over BE B; i.e., the sub 2-category consisting of i- 
cells, i=O, 1, 2 which project to B. 

In particular, taking F to be the identity 2-functor on A, this gives a 2-functor 

1 Lan.4 : Fun(A, B)+B’ 

which is left adjoint to the inclusion 2-functor J going the other way and which 

coincides with Street’s “first construction” in [IS]. 

3.3.1. Proposition. If C E Cat, then the constontjirnctor V,&(C) : A-Cat satisfies 

/ Lan,4([7A(c) = sr,(A// -) Xc. 

Proof. It is immediate that for PZ : Id//A-A, one has P?‘(A) =A//A, and the 

corresponding K : A//A-Cat is the constant functor with value ‘C. But then clearly 

(A//A) j K = (A//A) x D,C. Since rr preserves products, so does n,; hence 

IH&-y,,.,,(KI P<‘(A)) = n,(A//A x D,5)= rr.(AYA) x z‘. 

3.4.2. Theorem (Street [ 191). Let A be a srrzall2-category and B a complete and co- 
complete 2-category. If F : A-B is a 2-functor then 

llim F= {rr*(A//-), F}H, him F=rr,(--//‘A) *F. ‘___4 -\ 

Proof. The Cat-valued representable functors on B preserve and collectively create 

lax limits and colimits, so it is sufficient to prove these for B = Cat; e.g., assuming 

the result for Cat, one has 

B(llJr*F, B)z ll$AdoB(F( - ), B)r { n,(AoPl - ), B(F( - h B)lcar 

E IA B(F(A), B)~.(.~‘“J,.-I) G j,-I B(n,(A”P//A)@F(A), B) 

rB(j” TC~(A”P/A)@F(A), B)rB(n,(-/A) *F, B) 

since A”P//A = A//A. Now, when B = Cat, one has the situation 

Fun(A, Cat) 

%& 

where “h&t; = him 0J is the restriction of E+ to Cat”. 
-A 
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Since 1 LanA-J and P.4 7 llim , it follows that 1 
“El’ is a representable functoT;eing represented by 

LanAOVA- “llim”. Hence 
-., 

I Lanh(O,~(l))=n*(A//-)x 1 =?r,(A/-) 

by 3.4.1. Thus 

&4(R=Cat,4(n,(A/-), F)={n.(A//-), Flc,, 

by the comment following 2.4.1. 

3.3.3. Remarks. Two other proofs of this can be found in Street [19]. It follows 
from 2.4.1 and 2.5.1 that @\(-)= {n,(A//*),- )B has a left adjoint given by 
n,(A//*)@- and Ilim (-)=n*(*//A)*(-) has a right adjoint given by 
n*(=//A)fh(-). In cG”B=Cat, then llim~(-)=Cat*(n.(Ai/*),-) with left 
adjoint n,(A//.)x(-) and %*(-) is Kan extension along Yoneda of TC.(.//A) 
with right adjoint (-)*J*“*). Following Street [19], one can identify n,(A//-) in 
another way since, by the Yoneda lemma, Cat,4( Y*( - ), F) =F( -), one has 
&IAF= @*Cat*( Y*( - ), F) = Cat*(l+AOP Y*( - ), F). Hence n,(A//-)= 

hnAOP Y*. - 

4. Homotopy limits 

4.1. Set valued functor categories 

Let 0 be a small category. The functor category Sets] is a Cartesian closed 
category; i.e., @ = x and the internal horn, written exponentially, is given by the 
usual formula 

GF(i) = Sets#x U(i, -), G). 

The underlying set functor is U= lim -----I 
: Setst*Sets and its left adjoint is o= P 1, 

since 

lim GF=Sets(l, lim G3=Setsi(V;l, GF) 
-; 

= Set&V 1 I x F, G) = Set&F, G). 

We omit the subscript 0 from PO when no confusion is possible. Note that V also has 
a left adjoint, Gl, but this is Sets”-left adjoint to r only if a is directed. (Cf., 
2.2.2.) As a Sets-category, Set& is tensored and cotensored by X@F= VXx F and 
XhF=FvX. (Cf., 2.3.1.) 

4.2. Simplicial sets 

Let d denote the category whose objects are the sets [n]= (0, . . ..n} and whose 
morphisms are non-decreasing functions. The category X = SetsFC’ is called the 
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category of simplicial sets. It is Cartesian closed with the structures described in 4.1. 

Standard terminology for FE Y is Fn instead of F([n]). Also, the representable 

functor V( - , [n]) is denoted by V[n], so exponentiation is given by 

(G’-))n=-r/o(Fx V[n], G), 

the elements of which are called higher homotopies. The underlying set functor 

l+rop is evaluation at [O] since [0] is terminal in V. 

4.3. Simplicial-set-valued functor categories 

Let II be a small category. There are several ways to view the functor category .il’ ‘. 
(i) .I’ ! = (Setsr”4: = SetsroPXq which, as a Set-valued functor category, is Cartesian 

closed with the structures described in 4.1. Hereafter .x’ ’ will denote this closed 

category with the internal horn written exponentially; viz., QP for P, Q E 1’ ‘. 

(ii) .x; is the underlying category of, the complete and cocomplete ~-category 

[(V)* 0, .w 1, by 2.3.1, in which the ~-valued horn functor is given by 

[(V)*O, .Yl(P, Q)=j,X(P(i), Q(i))=j,Q(i)“‘). 

Here V refers to Vdop. 

(iii) There is another way to make .I” into a .X -category using the adjoint pair 

in which 3’ plays essentially the same role as Sets in 4.1. Since l&: preserves 

products, it is a closed functor with respect to the Cartesian closed structures and, 

since 177; preserves products, it is a .X-left adjoint to E. (cf. 2.2.2). We can form --, 
the .X-category ( k:)..Y ’ in which the K-valued horn between P and Q in .iy ’ is 

given by &,(Qq. These two structures on .~‘a coincide; i.e., we have the following 

result. 

4.3.1. Proposition. [(V)* 0, _“] = ( lim )*.Xc. 
----I 

Proof. The underlying categories are the same and there are two possible .J-valued 

horn functors. To show they are the same it is sufficient to show the corresponding 

tensor products are the same. Let FE I, PE .XA. The tensor product for [(V)* 0, ._I’] 

is given by 

(F@P)(i) = FOP(i) = Fx P(i) 

by 2.3.1, while the tensor product for ( ET),I” is given by F@P= V:Fx P, by 

2.2.2. These are clearly the same. 

4.4. The nerve functor 

Let J : A -Cat be the “inclusion” functor given by J([n]) = II@ 1. Here n denotes 

the ordered category with n objects and @ means ordinal sum, so n@ 1= m where 
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m = n + 1. J is clearly a full embeddin g. Let i\j : .I -Cat be the left Kan extension of 

J along YA as in 2.6, where Cat is treated as a Sets-category. As such, Cat is tensored 

by X&Z = DXx @ (cf. Section 3), so if FE .Y, one has 

By 2.7.6, 3 has a right adjoint N : Cat--l given by N(C) = Cato(J( - ), C). The 

functor N is called the nerve functor (cf., [9, 131, etc.) and fi(written this way to 

emphasize that it is the left adjoint to IV) is called the categorization functor. It is 

important to know that fi has an explicit description from [9]; namely, I\jfl is the 

category whose set of objects is FO and whose maps are generated by the elements of 

FI subject to the relation that for each cr E Fz, (doa)(d& = dia. 
There are a number of simple properties of this situation. 

(i) Since YA is fully faithful, fi= J, so &(A [n]) = n@ 1. 

(ii) Since J is fully faithful, N(n@ 1) = A [n]. 
(iii) By the explicit description, the adjunction map E : &‘-id is an isomor- 

phism, so N is fully faithful and &‘is dense. 

(iv) Since N has a left adjoint, it preserves products and hence N is a normal 

closed functor with respect to the Cartesian closed structures on Cat and .n’. 

(v) By the explicit construction, ~Vppreserves products, so by 2.2.3, i\iis .x-left 

adjoint to m : N,Cat- iy i.e., if C E Cat and FE I, then 

N(C‘+) = (fVC)F. 

Furthermore, &is a normal closed functor. 

(vi) By (iii) and (v), N preserves exponentiation; i.e., 

(NC)(.W s /V(@“) s V(EI). 

Hence m : N,Cat-.X is .W -fully faithful. 

4.5. Homotopy limits 

We are interested in the simplicial version of homotopy limits as in [3] rather than 

the topological version as in [21]. There is apparently no convenient simplicial 

notion of a homotopy natural transformation between (homotopy) .x/ -functors 

(although there probably is a cubical version of this), so we cannot mimic the 

development of lax limits in Section 3. Instead, following [3], we shall use an 

analogue of 3.4.2 as a definition. In order to do so, given a .)v -category A, we need a 

.x’-functor ZA : A--+ x’ which is analogous to rrc+ (A// -) for a 2-category and which 

satisfies suitable properties. To describe this let rc.(N*A// -) : fi* A-Cat be the 2- 

functor described in 3.1 and let N : N,Cat-.-i’ be the .N-functor associated with 

the normal closed functor N : Cat--.x as in 2.2. By 2.3.3, i;v: -iN, so TC,(&*A// -) 

corresponds to a .X-functor 

~,(fi*A//-)~ : A-N,Cat. 
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4.5.1. Definition. ZA=N~X~(I%‘.A~--)~ : A-+ J’. 

4.5.2. Proposition. (i) fii(ZA) = n.(fi,A// -). 

(ii) If 0 is a small category, then 

Zr.j=N(U/-)‘. 

Proof. (i) By 2.3.6, 

i\id,(Z~)=(iljoZ~)~=(j;J~mo.t(~*A//-)~)# 

zn.(r;I,Ah’-)b” = ~(.(j\j,A//-) 

since &01”3= id, by 4.4(iii). 

(ii) The composition 

0 2 Cat0 .L .x0 

determines N(O/ -)” : V,O-+.Y by adjointness. On the other hand, U/ - : J-Cat0 

corresponds by adjointness to x1 (D. 0 17 - ) : D, B -+Cat by the comment at the end 

of 3.1. But D,O=fi*O.O and, by naturality, ~Z~~TI.(D,U//-)~=N(U/-)~ since 

&=N. 

4.5.3. Definition. Let A be a small .X-category and M : A-B a I-functor. Then 

h$t M= {Z,, M}B, holim M = ZAOP * M. 
_f s. 

Remarks. If A = V, ii where 0 is a small category, then by 4.5.2(ii), 

ho&-t M= {Zr.:, M}B=jiN(O/i)fbM(i), 

holim M= Zr.:op *M= li N(i/U)@M(i). 

If B = J’, thezese formulas agree with the definitions in [3]. 

One can derive a general description of h$m M from 2.4.1, since 

B(B, h&t M) = B(B, {ZA, M}) 

= [A, d(zA(*), WB, M( *>I>. 

If B= h&n;l M, then the identity map of B on the left hand side corresponds to a 

I -natural transformation q with components 

qil : ZA(A) =N(n.(&A//A))-B(h&t M, M(A)) 

)?A is a map in I so it has components for each n, 

(q& : N(rr.(&AA//A)),z-B(h&t M, M(A)), 

E.g., if B = 2, then the right hand side here is 

X(h&t M, M(A))n=Yo(h&~ MxA[n], M(A)), 
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so that if G,,E N(n.($, A//A)),,, then (r]~),,(o,,) has components 

((q..~)n(on))p : (h&y Wp X A@, n)*M(A)p 

satisfying a number of equations. (See 131.) The J-natural transformation r] is 
universal in the sense that given any .ir-natural transformation, cp : ZA-+B(B, M), 
then there is a unique map f : B-hey M such that (p = Bcf, M) 0~; e.g., if B = .x 
as above, then 

45.4. Proposition. Let F : B-B’ be a I-functor with a J-left adjoint I? Then 

F(hst A4) = h$t FM, g(holim M) = holim l%X 
~ .* ----A 

Proof. Immediate from 2.4.2 and 2.5.2. 

4.55 Proposition. (i) h&t : [A, B]-,B has a X-left adjoint given by 

L(B) = ZA( -)@B. 
(ii) h%m : [A, B]*B has a X-right adjoint given by R(B)=ZAOP( -)hB. 

Proof. Immediate from 2.4.1 and 2.5.1. 

We now turn to the replacement schemes of [3] for calculating holim and holim. 
We consider only the case in which A = V Ic 1, where I is an ordinary small cateGy. 
These results are direct consequences of 2.7.5. In the situation described before 
2.7.3, we take V=Sets, and A=d’P so [A, V]=SetsdoP and [[A, V]]=J’. The 
functor @ is the underlying set functor, I&~P, and clearly @,.)I/= .&=Sets4”. 
The Yoneda functor Y““’ : (d”P)oP-+Sets-rop is the same as YA : d +SetsdOp and it 
corresponds to the d-functor Yz : V7.4 -x. 

The total object and the diagonal object introduced in 2.7.3 in this case are 
described as follows. Let F : c7,d -C be a Ix;functor. Then 

Tot F={ Yz, F}c=j,, Y,#(n)mF(n); 

e.g., if C= X, then 

Tot F= {,, F(n) Y3n) 

so in degree p, 

(Tot F)P = ( f,, F(n) r~(“))P = jn (F(n) uy(“))P 

= gn SetsdQP( Yz (n) x d [p], F(n)) 

= j,, SetsdoP(d ( - , n) x d ( - , p), F(n)( - )) 

On the other hand, if H : 17*,d”P*C is a I-functor, then 

Diag H=(Yz *H)c=J” Yz(n)QH(n); 
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e.g., if C = .iy , then 

Diag H= j” Yy (n) x H(n) 

so in degree p, 

(Die WP = (S” Yd” (n) x M~))P = j” ( Yd” (n) x Mn)), 

=j”o(p, n)xH(n),=H@),. 

The “replacement” functors introduced in 2.7.4 have the following description in 

this case. The functor N(O/-) : O-+SetsdoP corresponds by adjointness to Q= 

N(O/-)’ : d”PxO-+Sets. If R : V,O--+C is a I-functor, then (following the 

terminology of [3]) we set 

It 
n*R=Q(R)={N(U/+-,, Rb(‘)}C, 

=(jiN(U/i)~-~dlR(i))* : V’,d-C. 

The cotensor here is over Sets, so by the remark preceding 2.2.1, in degree n, 

fl * R(n)=j; fl R(i). 
.V(i,l), 

Similarly, the functor N( - A) : O”p+SetsduP corresponds to Q=N( - /J)b : d”Px 

U”P--rSets. If R : V* 0-C is a .A’-functor, then we set 

LL,R=Q(R)=(N(=/U)(-, *Rb(& 

=(j’N(i/O)c-,@R(i))# : l’,d”P--+C, 

so in degree n, 

&R(n) = j’ ,,lL, R(i). 
n 

4.5.6. Theorem (The replacement schemes). Let R : V * 0 -+C be a .I’-funcfor. Then 

hsrrr R = Tot n *R, hoJ$ R = Diag U,R. 

Proof. Immediate from 2.7.5. 

Using the preceding descriptions, one can describe these homotopy limits as 

follows, in case C = J! . 

(i) ( h>n R)P = (Tot n *R)p 

=j,,Setsdop(d(-, nIxAt-, PL ji II R(i)(-)) 
N( l/i), 

= Ji jn Jl, Set+‘““(~( -, n) x d ( - 9 ~1, RUN - )>. 
n 

Thus a p-simplex of h>piR is a choice for each element of N(O/i), of a map 



(in .I’) of d [n] x d Lo] into R(i) in such a way that the choice is “natural” in n and i. 

(ii) ( holim R),= (Diag I_L,R)p 
-r.: 

= (U.R@)),= j, ,\;u, R(~)P 
‘P 

4.6. Homotopy limits in Cat 

In this section, the relation between homotopy limits and lax limits will be 
discussed. Let B be a 2-category. In the corresponding .X-category N,B, we can 
consider homotopy limits indexed by a .I-category A. 

4.6.1. Proposition. Let F : A’+N,B be a I-func~or, with Fd : ti*A’-B the 

corresponding 2-functor. Then 

h&y F= llim,v.A, Fb, h~li_~ F= l&,<.~, F#. 

Proof. 

h&m F= {ZX, F}:\;.Bz {~;~(Zx), F#‘je 

a{n.(Nj.A’//-), F#}a==ll@.v,~~F#, 

the first equality by Definition 4.5.3, the second by 2.4.3, the third by 4.5.2 and the 
last by 3.4.2. The second formula follows similarly, replacing 2.4.3 by 2.5.3. 

4.6.2. Corollary. Let G : A-B be a 2-functor. Then 

holim,v.A N,Gz l&n* G, M ho1im‘v.A N,G 2 ll&* G. - 

Proof. This is immediate from 4.6.1 since N,N,A = A and (N,G)” = G. 

4.6.3. Proposition. (i) Let G : A-Cat be a 2-functor. Then 

fl( ll&G) 3 hplim,v.A N;(G). 

(ii) Let F : A’-.>’ be a .Y-functor. Then 

&(holim F) s llimv A’ PA,(F). 
----A’ -‘ * 

Proof. 
N((llim&G)zn(ho&,v.A N,G) 

z holim,v...t (NoN,G) s holim,v.A N;(G), 

the first equality by 4.6.1, the second by 4.5.4 and the third by the definition of N< 
in 2.3.5(iii). The second formula follows similarly, replacing 2.3.5 by 2.3.6. 

4.6.4. Corollary. Let G : A-Cat. Then 

llim G =fl ho&,v.A N;(G), 
-.* 

ll&*G = &‘ho&,v.A PA(G). 
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Proof. The first formula follows by applying IV to the first formula in 4.6.3 since 

P?N= id. For the second, observe that under the isomorphism Cat =fi.N,Cat, one 

has fi<._,,,(m z id. Hen ce G=i\j,N,G=~~..,~(m~N,G)=~~...~(N~(G)), so 

Him G = Ilim,\;..v..t h%N.,4(N~(G)) = fi( ~oJF~N~(G)). 
--A A 

If the index category over which these limits are taken is an ordinary category 1, 

then much of the notation can be suppressed by ignoring the various closed category 

structures and just treating everything as ordinary categories; i.e., N : Cato-+.xb 

with an ordinary left adjoint fi. 

4.65. Proposition. Let F : 0 -+ nb and G : U-Cat be functors. Then 

N( him G) = holim NC, llim &7==iV holim F 
-1 -_ __ 

and 
-. 

him G = IV h&m NC, him G = IV holim NC. 
-1 ~ -1 

Proof. These follow from the precedin, 0 discussion or from the following direct 

argument. Consider the diagram 

Then IV-N, N;YN’, holim-(*)xN(U/-) by 4.5.5 and !I&IJ -(*)x(1/-) by 

3.4.3. But by 4.4(v), N pzerves products and, since P?Nsiid, one has 

$((.)xN(I/-))=i\j(=)xm(l/-)=&)x(W) 

so the diagram of left adjoints commutes. Hence so does the diagram of right 

adjoints, i.e., 

IV him = holim N;. -- ~ 

The formula for colimits follows similarly, using the fact that N preserves 

exponentiation. 

4.6.6. Remark. In [20], it is shown that N(l& G) and hol&:NG are homotopy 

equivalent. The only unknown relation is that between fi(holim;F) and !f&&. a 
If F= NC, these are isomorphic by the above, but we have not tried to determine the 

answer in general. 

4.6.7. Example. It follows from 4.6.4 or 4.6.5 that any lax limit in Cat can be 

calculated from a corresponding homotopy limit in .li . These in turn can be con- 
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strutted from the replacement schemes in 4.5.6. For instance, if G : I -Cat, then by 

the description following 4.5.6, 

(hsm NG), = II In ,J, SetsdoP(d ( - , n) x d ( -, P). NW( - 1) 

= L L Ng,, Catd(nO 1) x (PO 11, G(O) 

= L Catd(b 1) x (PO I), 1; III, G(i)) 

since &‘+N, fi preserves products, and &(A(--, n))‘=n@l. Since Him G= ----I 
&I holim NC we only need the expressions above for p =O, 1, and possibly 2 if ----I 
composition is not obvious. 

In simple cases this calculation is actually feasible. As an example, let 

il=2=(0- 1). Then O/O= 1 and O/l z2 so N(O/O)=d[O] which has one simplex of 

each degree and N(B/l) = d [l] which has n + 2 simplices of degree n, the ith one 

being the map of [n] to [l] taking the last i entries to 1 for 05 is n + 1. A functor 

G : 2-,Cat determines a functor f : A-, IB in Cat, with G(0) = A, and G( 1) = B. A 

simple calculation shows that 

1, n G(i)=AxlB”+’ 
iV(3/!). 

which is functoria1 in n+2 via various projections together with f: A-B when 

necessary; hence 

(hfim NG)o= j,, Cat(n@l, Ax ,“+I) 

(hsm NG)I = jn Cat(2 x (n@ l), Ax lB”+‘), 

so the entries in (ho&m NC)1 are natural transformations between the entries in 

(ho&r NG)o. To calculate these latter entries, it is sufficient to look at n = 0 and 1 

since all higher n’s are expressible (via degeneracies or colimits) in terms of 

n@ 1 = 2. For n = 0, one has just A x B and for n = 1, one has functors 

y: 2-AxlBxB; 

i.e., y=(yr, ~2,~s) where yt is a morphism in A and yr and y3 are morphisms in 3. 

From the map so : [l] + [0] it follows that ye = id.4 and y3 = ids and from the two 

maps d”,d’ : [O]-[l] it follows that y2 : &4)-B in 3; i.e., (h&m NG)o consists 

of the objects of the comma category f/ES, and hence (h&m NG);consists of the 

maps in this comma category. This yields the well-known result. 

ll&,G=N hgm NG=f/;B. 

4.7. Extensions 

Let V be an arbitrary closed category and let M : .Wo+Vo be any functor. Then 

one can more or less trivially extend the definition of homotopy limits to V as 

follows: 
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4.7.1. Definition. If F : 0 -Bo is a functor where B is a V-category, then 

ho&r F={MoZI, F}=j;(MN(U/i)hF(i>, 

holim F=MoZW *F= j’MN(i/U)@F(i). 
-0 

If M has a right adjoint A?t: V+J’ which is a normal closed functor, such that M 

is I-left adjoint to A?, then this agrees with the notion of homotopy limits in &?,B 

by 2.4.3 and 2.5.3. If M does not have such a right adjoint then this notion of 

homotopy limits may or may not be interesting. For instance, if R is a ring and if 

(Mod R) + is the category of positive chain complexes of (right) R-modules, then the 

chain complex functor C.( -, R) : I -(Mod R) + gives a notion of homotopy 

limits in (Mod R)’ whose usefulness is justified by its use in describing derived 

functors of limits. See, e.g., [3] or, for a much more thorough account with 

“classical” references, [ 151. 

Of course, one may also generalize lax limits in the same way for any functor 

M : Cat-V. Taking, for example, N : Cat-+X shows that homotopy limits are 

special cases of lax limits in this generalized sense. (Note: N does not preserve 

coequalizes so it has no right adjoint.) Since one proves in 3.4.2 that lax limits are 

represented by the construction (O/-), this perhaps helps to understand why 

homotopy limits are defined in terms of N(O/ -). 
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