Review

Contrast-enhanced ultrasound in the diagnosis of hepatocellular carcinoma

Riccardo Lencioni 1,*, Fabio Piscaglia 2, Luigi Bolondi 2

1 Division of Diagnostic and Interventional Radiology, Department of Oncology, Transplants, and Advanced Technologies in Medicine, University of Pisa, Pisa, Italy
2 Division of Internal Medicine, Department of Internal Medicine and Gastroenterology, University of Bologna, Bologna, Italy

Surveillance of patients at risk of developing hepatocellular carcinoma (HCC) is based on ultrasound (US) examinations performed at either 6 or 12 month intervals. Early detection of HCC in patients with cirrhosis is a challenging issue, since the different entities that are involved in the multi-step process of hepatocarcinogenesis – such as low-grade and high-grade dysplastic nodule – share common US features. Contrast-enhanced US allows reliable detection of arterial neoangiogenesis associated with a malignant transformation. Several reports have shown that the ability of contrast-enhanced US to diagnose HCC currently approaches that of optimized multidetector computed tomography (CT) or dynamic magnetic resonance (MR) imaging protocols. The use of contrast-enhanced US to characterize nodular lesions in cirrhosis has been recently recommended by the clinical practice guidelines issued by the European Federation of Societies for Ultrasound in Medicine and Biology and the American Association for the Study of Liver Diseases. However, contrast-enhanced US has not resulted in any significant improvement in the ability of US to detect small tumor foci, since a comprehensive assessment of the whole liver parenchyma cannot be accomplished during the short duration of the arterial phase. Hence, CT or MR imaging are still mandatory for proper intrahepatic staging of the disease.

© 2008 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

Keywords: Cirrhosis; Hepatocellular carcinoma; Ultrasound; Contrast agent; Computed tomography; Magnetic resonance imaging

1. Introduction

Despite advances in computed tomography (CT) and magnetic resonance (MR) imaging, ultrasound (US) continues to play a key role in the diagnostic algorithm of hepatocellular carcinoma (HCC). According to the European Association for the Study of the Liver (EASL) and the American Association for the Study of Liver Diseases (AASLD), US is the recommended tool for surveillance of patients at risk of developing HCC [1,2]. Moreover, US is the imaging technique most commonly used worldwide to guide biopsy on suspicious nodules [3,4]. The introduction of US contrast agents and the development of contrast-specific scanning techniques have substantially increased the sensitivity and specificity of US in the detection and characterization focal liver lesions [5]. Recently, the European Federation of Societies for Ultrasound in Medicine and Biology has issued recommendations for the use of contrast agents in liver US, and the AASLD clinical

Associate Editor: M. Colombo

* The authors declare that they do not have anything to disclose regarding funding from industries or conflict of interest with respect to the manuscript.

† Corresponding author. Address: Division of Diagnostic and Interventional Radiology, Cisanello University Hospital, Via Paradisa 2, IT-56124 Pisa, Italy. Tel.: +39 050 992509; fax: +39 050 551461.

E-mail address: lencioni@med.unipi.it (R. Lencioni).

Abbreviations: AASLD, American Association for the Study of the Liver Diseases; CT, computed tomography; DN, dysplastic nodule; EASL, European Association for the Study of the Liver; HCC, hepatocellular carcinoma; MR, magnetic resonance; US, ultrasound.
practice guideline too has included contrast-enhanced US – along with contrast-enhanced CT and contrast-enhanced MR imaging – among the techniques that can be used for non-invasive diagnosis of HCC in cirrhosis [2,6]. In this article, we review basic principles and techniques of contrast-enhanced US of the liver and we discuss advantages and limitations of contrast-enhanced US with respect to the other imaging modalities in the HCC setting.

2. Basic principles

US contrast agents are stabilized microbubbles containing either air (first-generation contrast agents) or other gases (second-generation contrast agents). Contrast-specific techniques are based on the complex interactions between microbubbles and US beam. The major determinant of this interaction is the peak negative pressure of the transmitted US pulse, grossly reflected in the mechanical index. By scanning with a low peak pressure, microbubbles behave as linear backscatterers, alternatively contracting and expanding according to the positive and negative pressures of the sinusoidal sound waves. This results in a simple reflection of US echoes. As the incident peak pressure increases, microbubbles show non-linear characteristics, and start emission of harmonics. Harmonics are created since on the negative portion of the sound waves, microbubbles can become quite large, but on the positive portion there is a limit at which they can be compressed: this asymmetry is what constitutes the harmonic emission. With further increase in the peak pressure of the incident US field, however, the shell of the microbubbles is disrupted [5].

Contrast-specific techniques suppress linear US signals coming from tissues and use the non-linear response of microbubbles to enhance signals from the contrast agent over the background. The advent of second-generation agents has been instrumental in improving the ease and the reproducibility of the examination, since low solubility gases offer improved stability and more favourable resonance behaviour than air at low acoustic pressure [7]. Hence, contrast-specific imaging can be performed at a low mechanical index, thus preventing microbubbles disruption and enabling visualization of the dynamic enhancement pattern in real time over several minutes.

Unlike iodinated contrast agents for CT and gadolinium chelates for MR imaging, US contrast agents are not cleared by the kidneys. Therefore, it is not necessary to perform any laboratory test of renal function before administering them. In general, US contrast agents are very safe with a low incidence of side-effects. Serious adverse events in abdominal applications have been reported with a rate of 0.0086% [8].

3. Technique

A full assessment of the liver with baseline US is mandatory before i.v. injection of the contrast. Then, contrast-specific imaging mode at low mechanical index is selected. This will ensure adequate cancellation of tissue signals, with only major vascular structures and some anatomical landmarks such as the diaphragm remaining barely visible. In some equipment, simultaneous display of tissue and contrast signals has been implemented to ensure that a lesion seen on contrast-enhanced imaging can be concurrently detailed on conventional B-mode. The US contrast agent is administered intravenously via bolus injection followed by saline flush. Because of the dynamic nature of real time contrast-enhanced US, the investigation should be documented on video or digital media, storing clips for each vascular phase [6]. Complete examination of the liver using various sweeps is possible within a time frame of approximately 4-5 min.

Enhancement patterns at contrast-enhanced US are typically described during subsequent vascular phases (arterial phase, portal venous phase, and late phase), similar to contrast-enhanced CT or contrast-enhanced MR imaging (Table 1). An inherent advantage of US is the possibility to assess the contrast enhancement patterns in real time, with a substantially higher temporal resolution than CT or MR imaging and avoiding the need to predefine scan time points or to perform bolus-tracking. US contrast agents, however, have different pharmacokinetics with respect to iodinated contrast agents for CT and gadolinium chelates for MR imaging. US microbubbles are confined to the intravascular space, whereas the majority of currently approved contrast agents for CT and MR imaging are rapidly cleared from the blood pool into the extracellular space [9]. Hence, despite many similarities, the enhancement pattern of a given lesion at contrast-enhanced US may not be identical to that observed at CT or MR imaging (Fig. 1).

4. Detection of HCC

Surveillance programs aimed at early detection of HCC in patients at risk are based on US examinations

<table>
<thead>
<tr>
<th>Phase</th>
<th>Start (s)</th>
<th>End (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterial phase</td>
<td>10–20</td>
<td>20–35</td>
</tr>
<tr>
<td>Portal venous phase</td>
<td>30–45</td>
<td>120–180</td>
</tr>
<tr>
<td>Late phase</td>
<td>120–180</td>
<td>240–300</td>
</tr>
</tbody>
</table>

The individual global haemodynamic situation will influence the time of onset of the three vascular phases.

* Time of visualization from start of contrast injection.

b Until microbubble disappearance.
Early detection of HCC, especially in patients with cirrhosis, is a challenging issue. Cirrhosis is characterized by fibrous septa and regenerative nodules. These features produce a coarse pattern on US, that may impair identification of small tumors. Moreover, a comprehensive assessment of the liver parenchyma may sometimes be hampered by the patient’s body habitus, colonic interposition, or morphologic changes induced by cirrhosis – such as retraction of the right liver lobe – which reduce the ability to explore the liver via intercostal scans. The ability to detect the emergence of a small HCC is highly dependent on the expertise of the operator performing the examination and the availability of state-of-the-art equipment. When these requirements are met, surveillance has proved effective in detecting HCC at an early stage [12–15]. The value of US surveillance performed in a primary care setting by operators who do not have specific skills is questionable. If the expertise is not available, the efficacy of surveillance will be lost. Upon detection of a suspicious nodule, the recommended policy is to evaluate the patient in referral centers with optimal human and technical resources [1].

Unfortunately, the use of contrast-enhanced US did not result in increased sensitivity US in the detection of small HCC tumors. As a general rule, contrast-enhanced US techniques are subject to the same limitations as any other US mode: if the baseline scan is unsatisfactory, the contrast-enhanced US study will be unsatisfactory as well [6]. In addition, as described later, the greatest contrast between tumor and liver parenchyma is seen during the short time of the arterial phase. While multidetector CT and dynamic MR sequences can automatically image the entire liver parenchyma in a few seconds, a comprehensive manual scanning of the whole liver with US during the arterial phase is hardly attainable, even when performing repeated contrast injections. Thus, there is currently no indication to use microbubble contrast agents to increase the detection rate of HCC in patients undergoing US surveillance [6].

5. Characterization of HCC

Carcinogenesis is often a multi-step process in cirrhosis. This process includes progression from cirrhotic nodule, to macroregenerative nodule, to low-grade dysplastic nodule (DN), to high-grade DN, to frank HCC [16]. Progression along the multi-step pathway is characterized by cytological and architectural changes [17]. Unfortunately, these entities show variable and overlapping features at baseline US, making reliable differential diagnosis impossible. Small HCC may appear hyperechoic, hypoechoic, or isoechoic with respect to the surrounding parenchyma, and is usually undistinguishable from macroregenerative nodule or DN. In addition, small hyperechoic HCC may be undistinguishable from hemangioma [18].

One of the key pathologic factors for differential diagnosis between HCC and non-malignant hepatocellular
lesions that is reflected in imaging appearances is the vascular supply to the nodule. The progression from macrorregenerative nodule, to low-grade DN, to high-grade DN, to frank HCC, is characterized by loss of visualization of portal tracts and development of new arterial vessels, termed non-triad arteries, which becomes the dominant blood supply in overt HCC lesions [19–21]. This arterial neoangiogenesis is the landmark of HCC and is the key for imaging diagnosis [22,23].

Doppler US techniques have long been used in attempts to evaluate tumor vascularity in HCC [24–27]. At color or power Doppler US, large HCC is usually displayed as a vascular-rich lesion containing intratumoral flow signals with an arterial Doppler spectrum. A basket pattern, which is a fine blood-flow network surrounding the nodule, and tumor vessels flowing into the lesion and branching within it are typically observed. Doppler interrogation shows a pulsatile Doppler waveform with high frequency shifts (>1 kHz) and abnormally elevated resistive index (>0.71) [25,27]. Creation of arterio-portal fistula can be occasionally demonstrated (Fig. 2). In contrast, macrorregenerative nodule and DN either do not have any detectable intratumoral vascularity or show arterial vessels with low frequency shifts and normal resistive index [28]. However, in small HCC tumors, the sensitivity of Doppler US in showing arterial neoangiology is low, and abnormal flow can be demonstrated in less than 50% of the lesions [24,28]. In addition, the technique is quite cumbersome and the positive predictive value is not high [29].

Several reports have shown that contrast-enhanced US is a tool to show arterial neoangiogenesis in HCC [30–33]. HCC typically shows strong intratumoral enhancement in the arterial phase, while macrorregenerative nodule and DN usually do not show any early contrast uptake, and resemble the enhancement pattern of liver parenchyma. The ability of contrast-enhanced US to show arterial hypervascularization appears to approach that of optimized multidetector CT or dynamic MR imaging protocols, provided that the nodule can be clearly identified on baseline scans (Table 2).

Table 2

Studies comparing contrast-enhanced US with multidetector CT or dynamic MR imaging in the ability to detect arterial hypervascularization in nodular lesions in cirrhosis

<table>
<thead>
<tr>
<th>Author</th>
<th>No. lesions</th>
<th>Lesion size (cm)</th>
<th>Detection rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaiani et al. [34]</td>
<td>103</td>
<td>2.8 ± 1.3</td>
<td>91</td>
</tr>
<tr>
<td>Bolondi et al. [35]</td>
<td>41</td>
<td>1-2</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>2-3</td>
<td>97</td>
</tr>
<tr>
<td>Forner et al. [36]</td>
<td>60</td>
<td>0.5-2</td>
<td>78</td>
</tr>
</tbody>
</table>

* This series included only tumors showing arterial hypervascularity in multidetector at CT.
In one study, in which only HCC tumors showing arterial hypervascularity at CT were included, the sensitivity of contrast-enhanced US in the detection of arterial hyperenhancement was 91% [34]. In two comparative analyses including consecutive patients with small nodules in cirrhosis detected during surveillance, contrast-enhanced US was superior to multidetector CT and slightly inferior to dynamic MR imaging in showing the presence of arterial hypervascularity (Table 2) [35,36].

Unfortunately, the sole detection of arterial hypervascularity in a small nodular lesion emerged in a cirrhotic liver – although suspicious for HCC – may not be considered as a conclusive finding. It is well established that non-malignant hepatocellular lesions – especially high-grade DN – may show arterial hypervascularization on imaging [37,38]. Small, high-flow hemangioma may also appear as a hyperenhancing nodule [39]. A recent investigation has shown that in the setting of cirrhotic patients undergoing surveillance, the sole imaging finding of arterial hypervascularization in small solitary nodules of 2 cm or less has a specificity of 86% and a positive predictive value of 92% for the diagnosis of HCC [36]. To increase the specificity of imaging diagnosis, it is mandatory to evaluate contrast wash-out during the portal venous and the late phase,

Fig. 3. Non-invasive diagnosis of very-early HCC in cirrhosis. Baseline US shows 1.5-cm isoechoic nodule with hypoechoic halo (a). Contrast-enhanced US shows clear-cut enhancement in the arterial phase (b) with rapid wash-out in the portal venous phase (c). The same findings are observed on multidetector CT scans obtained in the arterial phase (d) and the portal venous phase (e).
as recently recommended by the 2005 EASL conference on HCC and the AASLD practice guideline [2]. Contrary to non-malignant entities, HCC is characterized by rapid wash-out of the contrast agent, and usually appears hypoenhanced in the portal venous or the late phase [36–38] (Fig. 3).

If strict criteria – including hypervascularization in the arterial phase with wash-out in the portal venous or the late phase – are used to diagnose HCC, the very high specificity that can be obtained has the downside of a reduced sensitivity in the diagnosis of malignancy. In fact, the timing of contrast wash-out in HCC appears to be correlated with the degree of tumor differentiation. While moderately or poorly differentiated tumors have fast contrast wash-out and appear as defects in the portal venous or the late phase, well-differentiated tumors may wash out slowly and be isoenhanced with respect to the liver parenchyma in the portal venous or the late phase [41–43]. Thus, diagnosis of small, well-differentiated tumors remains a challenge. Nevertheless, this is the case of any dynamic imaging technique, and the diagnostic accuracy of contrast-enhanced US for the diagnosis of HCC appears to be similar to that of multidetector CT or dynamic MR imaging (Table 3) [36,40].

Table 3

<table>
<thead>
<tr>
<th>Author</th>
<th>No. patients</th>
<th>No. lesions</th>
<th>Lesion size (cm)</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forner et al. [36]</td>
<td>60</td>
<td>60</td>
<td>0.5–2</td>
<td>52</td>
<td>93</td>
</tr>
<tr>
<td>Contrast US</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic MRI</td>
<td></td>
<td></td>
<td></td>
<td>62</td>
<td>97</td>
</tr>
<tr>
<td>Dai et al. [40]</td>
<td>72</td>
<td>103</td>
<td>1–2</td>
<td>91</td>
<td>87</td>
</tr>
<tr>
<td>Contrast US</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multidetector CT</td>
<td>80</td>
<td></td>
<td></td>
<td>98</td>
<td></td>
</tr>
</tbody>
</table>

Note. Figures refer to detection of typical enhancement pattern of HCC, i.e., arterial hypervascularization with venous wash-out.

a This series included only patients with solitary small tumors.

6. Intrahepatic staging

Accurate intrahepatic staging is essential for the proper clinical management of patients with HCC, particularly given the propensity of HCC, even at early stages, to produce satellite lesions via the invasion of peripheral portal vein branches.

It is well established that US has limited sensitivity in the detection of tiny satellite lesions. When careful imaging-pathologic correlation on explanted livers was performed, the sensitivity of US was as low as 14% in the detection of lesions smaller than 2 cm, and as low as 0% for cancerous foci smaller than 1 cm [44,45]. Although these data have been mostly collected in patients with advanced cirrhosis who underwent liver transplantation – and therefore may not be applicable to the general population of cirrhotic patients with HCC – the rate of underestimation of the extent of the disease with US is clearly unacceptable. Unfortunately, as discussed earlier, the use of contrast agents did not result in any significant improvement in the ability of US to detect small tumors [6]. The duration of the arterial phase – during which HCC tumors stand out against the faintly enhanced liver parenchyma – is far too short to allow a comprehensive manual scanning of the entire organ. In the portal venous and the late phase – contrary to hepatic metastases – the contrast between tumor and liver is usually low, preventing identification of small tumors not detected on baseline scans. Thus, even in the era of contrast-enhanced US, the use of either multidetector CT or dynamic MR imaging for intrahepatic staging of HCC is a mandatory step before therapeutic planning [23,46].

In large HCC tumors, thrombosis of portal vein branches due to tumor invasion is commonly observed on imaging. However, in the setting of liver cirrhosis, portal vein thrombosis has a prevalence of about 5%, even in the absence of HCC [47]. In patients with HCC, distinction between malignant and non-malignant portal vein thrombosis is of paramount importance, as vascular invasion determines the shift from intermediate-stage to advanced-stage according to the Barcelona Clinic Liver Cancer (BCLC) staging system [48]. Recent observations have shown that contrast-enhanced US may be a tool for this purpose [49,50]. Unlike bland thrombosis, malignant thrombi show the typical features of HCC, and show rapid enhancement in the arterial phase due to the presence of hypervascularized tumor tissue (Fig. 4). In one study including 54 consecutive patients who had cirrhosis, biopsy-proven HCC, and thrombosis of the portal trunk or the main right or left branches, contrast-enhanced US showed absolute specificity and higher sensitivity than fine-needle biopsy in showing the malignant nature of the thrombus [49]. In another series of 34 patients listed for transplantation for HCC on cirrhosis, who also showed thrombosis of
the portal trunk or intrahepatic branches, contrast-enhanced US was able to accurately exclude the malignant nature of the thrombus, as confirmed by pathologic analysis of the explanted organs [50].

7. Diagnostic work-up

The detection of a nodular lesion during US surveillance should always raise the suspicion of HCC [1,2]. However, pathologic studies have shown that a significant proportion of small nodules detected by US in cirrhotic livers do not correspond to HCC, but rather to non-malignant hepatocellular nodules. Percutaneous US-guided biopsy could appear as the most straightforward approach to differentiate HCC from non-malignant hepatocellular lesions. Unfortunately, the biopsy of small nodular lesions in cirrhosis is not entirely reliable. In fact, needle placement may be difficult and a sampling error may occur. Moreover, it is very difficult to distinguish well-differentiated HCC from DN on small biopsy specimens, as there is not a clear-cut dividing line between dysplasia and well-differentiated tumor [51]. Therefore, a

Fig. 4. Malignant portal vein thrombosis. Baseline US (a) shows tiny echoic thrombus (calipers) inside the left portal vein in patients with HCC. Signal from tissues is suppressed in the contrast-specific US image (b). Clear-cut contrast uptake of the thrombus is observed in the arterial phase of the contrast-enhanced study, suggesting the malignant nature of the thrombus (c). In the portal phase, the portal lumen fills with contrast, and the thrombus is no longer recognizable (d).

positive biopsy – as assessed by an expert pathologist – is helpful, but a negative biopsy can never be taken as a criterion to rule out malignancy [1,2]. In addition, biopsy is associated with a low but not negligible rate of complications, including tumor seeding along the needle track.

Both the 2005 EASL conference on HCC and the AASLD practice guideline have recommended to further investigate nodules detected during US surveillance with dynamic imaging techniques – including contrast-enhanced US, multidetector CT, or dynamic MR imaging – to highlight the different vascular supply of HCC versus non-malignant entities [2]. However, the diagnostic protocol should be structured according to the actual risk of malignancy and the possibility to achieve a reliable diagnosis. Since the prevalence of HCC among US-detected nodules is strongly related to the size of the lesion, the diagnostic work-up depends on the size of the lesion [2]. Lesions smaller than 1 cm in diameter have a low likelihood of being HCC. However, such minute nodules may become malignant over time. Therefore, these lesions need to be followed up in order to detect growth suggestive of malignant transformation. A reasonable protocol is to repeat US every 3 months, until the lesion grows to more than 1 cm, at which point additional diagnostic techniques are applied [1,2]. It has to be emphasized, however, that the absence of growth during the follow-up period does not rule out the malignant nature of the nodule because an early HCC may occasionally take more than one year to increase in size [1].

When the nodule exceeds 1 cm in size, the lesion is more likely to be HCC and diagnostic confirmation should be pursued. It is accepted that the diagnosis of HCC can be made without biopsy in a lesion larger than 1 cm that shows characteristic vascular features of HCC – i.e., arterial hypervascularization with washout in the portal venous or the late phase – even in patients with normal alpha-fetoprotein values [2]. While for lesions above 2 cm a single imaging technique showing the characteristic vascular profile of HCC mentioned above may confidently establish the diagnosis, in lesions ranging 1–2 cm, AASLD guidelines recommend that typical imaging findings are confirmed by two coincident dynamic imaging modalities to allow a non-invasive diagnosis [2]. Such lesions ranging 1–2 cm are the true target of screening programs, as they identify the population of patients with very-early HCC tumors, who have the highest likelihood for cure with surgical resection or percutaneous ablation [52]. Specificity of imaging diagnosis is crucial to prevent therapeutic errors due to false-positive diagnoses of malignancy.

The combination of contrast-enhanced US and multidetector CT (or contrast-enhanced US and dynamic MR imaging) appears as the most rationale for non-invasive diagnosis of small tumors. This is clearly the most cost-effective combination, as the contrast-enhanced US study can be performed immediately upon the detection of a focal lesion at baseline US, and only one additional examination (either CT or MR imaging) is needed as a confirmatory test. In addition, given the different pharmacokinetics of US contrast agents (blood-pool compounds) with respect to CT and MR imaging contrast agents (extracellular fluid space compounds), such a combination provides complementary information. In a prospective validation of AASLD criteria conducted in a series of consecutive patients with a solitary focal lesion smaller than 2 cm detected during US surveillance, the combined use of contrast-enhanced US and dynamic MR imaging achieved 100% specificity for the diagnosis of HCC [36].

If the lesion does not show typical features of HCC, or the vascular profile is not coincidental between the imaging techniques, biopsy is recommended [2]. It is important to point out that the absence of arterial hypervascularization on imaging does not rule out HCC. It is well established that HCC tumors at a very-early stage may not exhibit the characteristic vascular features of overt HCC [35]. Delaying the diagnosis of HCC until imaging detection of arterial hypervascularization could reduce the chances of radical cure, since the incidence of microscopic vascular invasion and satellite nodules significantly increases when tumor exceeds 2 cm and develops imaging-detectable neoangiogenesis [17]. As a matter of fact, in the setting of cirrhotic patients in whom a solitary nodule smaller than 2 cm is detected during US surveillance, biopsy is still needed in about two-thirds of the cases, and – given the well-known limitations of pathology reading – repeated biopsies are needed in as many as 30% of cases [36]. This is the area where advances in imaging techniques based on liver-specific contrast agents (including hepatocyte-targeted agents and reticuloendothelial system-targeted agents) should be further investigated [53] and research on new diagnostic tools – based on immunostaining, gene expression assessment, or protein profiling – will have to focus [54].

References

