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1. Introduction and main results 

In this note I would like to draw attention to a precise formulation of the following 

intuitively obvious claim “Any functorial change introduced in lower dimensions of 

a space must have a similar influence via ‘higher homotopies’ on higher dimensions.” 

We will consider homotopy properties of functors F from spaces to spaces. Although 

we restrict attention to idempotent functors (with F y F’; F) this is by no means 

a crucial assumption as explained in the last sections (3.3). It simply makes the 

formulation neater. We have in mind localization functors [7] but also the James 

construction, Dold-Kan functor X + RX, Bousfield-Kan functor X -+ R, X, etc. 

Here is an example of a result in the above-mentioned direction. A functor 

F: (spacesj -+ {spaces) 1s called continuous if the function between mapping spaces 

map (X, Y) + map (FX, FY) is continuous. 

1.1. Proposition. Let F be a continuous, co-augmented. homotopy idempotent functor 

,fiom spaces to spaces. If F{O, 1) is a connected space then FX is a contractible space,for 

all X. 

Proof. For a simple, “one diagram”, proof see 1.10. 

Remark. Thus if a natural coaugmented construction: X -+ FX kills z,, X then it kills 

n,X for all n 2 0. Similarly in the pointed category one cannot kill njX in a natural 

and idempotent fashion for any j 2 1 without killing at the same time all higher 

homotopy groups nlX for I 2 j. 

We now give a general “higher homotopies” theorem of which the above is a special 

case and from which some other interesting cases follow directly. 

We consider functors F: {spaces} + {spaces) that are continuous, coaugmented 

and idempotent up to homotopy: 

Continuity means that the functorial correspondence of spaces of maps: 

map(X, Y) + map(FX, FY), where f ++ Ffis a continuous function or simplicial one 
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if one works simplicially. It is equivalent by adjunction to the condition that F comes 

with a natural transformation 

KxFX+F(KxX) 

between these two-variable functors, that commutes with the obvious maps from 

K x X compare [S]. 

Idempotency for coaugmented F means that if j: X + FX is the coaugmentation 

then both jF and Fj:FX -+ FFX are homotopy equivalences. Examples of such 

functors are localization functors X + XCp) and taking a Postnikov section, X + P,,X 

(Although in the usual presentation they are not continuous, they can be made such). 

Pointed, unpointed: We will state the results for the category Y of (unpointed) 

spaces but all the major results in this paper are true without change in the pointed 

category. We are given a function complex construction in our category of spaces that 

we denote either by map(X, Y) or by Yx. The pointed case allows us to consider 

higher homotopy groups. For example the pointed version of 1.2 when applied to the 

map q: * -+ S” says that if a functor F “kills” rc,X it “kills” sZ”X, i.e., then it kills also all 

higher homotopy groups (above n) of any space X. 

1.2 Theorem. Let F: {spaces) + {spaces} be a continuous, coaugmented and idem- 

potent functor and let cp : A -+ B be any cofibration. If the map induced by cp, F: 

map(q, FX): map(B, FX) + map(A, FX) 

is 

(1) a one-to-one map on 7x0 for X = B, 

(2) a surjective map on z. for X = A; 

then it is a homotopy equivalence for every space X. 

The point of 1.2 is that we assume a no-surjection and no-injection for certain spaces 

(A, B) and get homotopy equivalence for all spaces. A proof appears in 2.1.2. 

The main tool for proving 1.2 is theorem 2.1. 

Other readable formulations of 1.2 are the following weaker versions. 

1.3 Corollary. Let F, cp : A -+ B as in 1.2. Iffor every space X the map offunction spaces: 

map(q, FX) induces an isomorphism on the sets of path components, i.e. on no, then, for 

every space X, it is a homotopy equivalence. 

Remark. If we take cp in 1.2 to be the map from the two points space to the one point 

space we get 1.1 as a special case of 1.2. 

1.4 Corollary. If cp : A -+ A is a self map and map (q, FX) induces an isomorphism on 7t0 
for X = A then it is a homotopy equivalence for all X. 
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Proof. See 2.1.1. 

Two familiar examples: As an illustration we offer two examples of application of 

the principle encoded in 1.2 and 1.4. The first says that if a functor HZ-localizes in the 

sense of Bousfield [2] the homotopy groups in a given dimension then it does the 

same to homotopy groups in all higher dimensions. The second concerns turning the 

homotopy groups and modules into p-divisible ones and is of a similar nature: 

1.5 Theorem. Let F: (spaces} -+ (spaces} be continuous, coauymented, homotopy. 

idempotent jiunctor. Assume thut nlF(Vx S1 ) 1s an HZ-local group where v x S’ is 

a countable wedge of circles. Then q,FX are HZ-local (as groups and as n,FX modules) 

,for all n 2 1 and for every spuce X; therefore FX is HZ-local spacefor every space X. 

1.6 Corollary. Let F be as above. If ~jFX is HZ-local for some given j 2 1 then the 

modules 7liFX are HZ-local for all i 2 j. 

Proofs. See 2.5 and 2.6. 

A related result claims that when forming HZ-localization [2] it is sufficient to 

“localize with respect to all self maps of VJ1 S’ inducing an identity on HI (:, Z ).” 

1.7 Proposition. Let YE:V30S1 3 VE S’ be the set of all self-maps with H,(Y%, Z) the 

identity map. The homotopy localization with respect to YZ (see [3,6, 7, l.A]) is 

naturally equivalent to the HZ-localization in the sense of Bousfield. 

Proof. See Section 3. 

The second example of this type: (for a proof see 2.7). 

1.8 Theorem. Let F be a continuous, co-augmented, homotopy idempotent functor,from 

pointed spaces to pointed spaces. Assume that zlFS1 is uniquely p-divisible for some 

prime p 2 2. Thenfor all spaces and all n 2 1 the group n,FX is uniquely p-divisible and 

so is the semi-direct product TC,,FX~TT~FX. Infact the map QFX --) SZFX that takes uny 

loop to its pth power is a homotopy equivalence. 

1.9 Remark on localizations. One evident consequence of the above is that even if one 

attempts to define cp-localization in terms of homotopy classes of map (i.e. Y is 

q: A + B-local if [B, Y] + [A, Y] is an isomorphism of sets) it always entails 

a homotopy equivalence of whole function spaces (see 2.1). In particular it implies that 

certain universal examples do not exist. Namely those defined simply by homotopy 

classes of maps for too small families of maps. For example, there is no universal map 

among all maps of RP2 to l-connected spaces (Guido Mislin). 

1.10 A simple example of the results above is of course 1.1. In a simpler version it 

says that if So -+ F(S”) is null homotopic then so is j: X + FX for all X, for any 
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continuous coaugmented F. This can be seen directly by the following argument due 

to M. Hopkins: Consider the map y:X II X = So x X -+ X which is null on the first 

summand and identity on the second. To prove the assertion we must show that j (- y 

extends from X LI X to X x 1. But since So -+ F(S”) is a null it is sufficient to show that 

the composition j 0 g:X x So + X --f FX factors through X x F(S’). Now due to conti- 

nuity one can construct a commutative diagram 

/ Ii 11 
F(S”) x X - 

F(K) 
F(S”x X) - F(X) 

So we get the desired factorization. 

2. Higher homotopies of idempotent constructions, proofs of 1.2-1.8 

In this section we prove some properties of idempotent functors which makes them 

look very close to localizations functors. We also make some statements about the 

relation between higher and lower homotopy groups of cp-localizations. These general 

properties are used to prove the main results. 

Recall. For any given map cp: A + B one defines a cp-local space Y as a (fibrant) space 

for which the map of function spaces 

map(cp, Y):map(& Y) --) map@4 Y) 

is a weak homotopy equivalence. For any such map there exist a continuous, 

coaugmented, homotopy idempotent functor L, such that j,:X -+ &X is universal 

among all maps of X to q-local spaces. The same goes for any set of maps {pi). [3,7]. 

Note two properties of the localization X --t L,,,X: first for any local space Y and 

any space Z the function space map(Z, Y) is again cp-local as can be checked directly 

by adjunction. Secondly, notice that L, preserves, up to homotopy, finite products: 

This again follows from the exponential law and continuity of L,. 

The main property of continuous, coaugmented idempotent functors that makes 

them “look-like localizations” is the following useful truism (compare [7, l.A]: 

2.1 Theorem. Let F: 9 -+ Y be a continuous coaugmented jiinctor. Then the following 

three conditions are equivalent: 

(I) F is homotopy idempotent. 

(2) For all W, X E Y the map induced by j,: W + FW on homotopy classes: 

[FW,FX] + [W,FX] 

is an isomorphism of sets. 
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(3) For all W, X E S the map induced by j,: W + FW on function complexes 

map(FW,FX) -+ map(W,FX) 

is a homotopy equivalence. 

Remarks. The equivalence of (2) and (3) is in some way the essence of the claim that 

“functorial properties of lower homotopy imply similar properties of higher 

homotopies”. 

Notice that (1) (2) each implies that if F is idempotent then j,, - F( j,) are 

homotopic (see 2.1.4). By definition we only assume that each is a homotopy equivalence. 

An immediate consequence is: 

2.1.1 Corollary. Zf cp: A --f B is any map and F a continuous, coaugmented and idem- 

potent functor as in 2.1. Then F(q) an equivalence F(A) N F(B) if and only if.for all 

X E Y the map q induces an equivalence 

map(B,FX)% map(A,FX). 

Proof. Since F is assumed to be idempotent we get from (1) o (3) in 2.1 that 

map(FW, FX)-.% map( W,FX) is a homotopy equivalence for both W = A and 

W = B. But we assume F,:FA ‘v FB hence map(B,FX) 2: map(A,FX) via the map 

cp. The other direction follows similarly. 

From 2.1.1 we get 1.2 rather easily: 

2.1.2 Proof of 1.2. We need to show that for any cp : A -+ B in Y if [B, FA] --) [A.FA 1 
is surjective and [B,FB] + [A,FB] is injective, then for all X E Y the map 

map(cp,FX) is an equivalence. 

We prove 1.2 by reducing it to Corollary 2.1.1 showing that 1.2, (1) (2) directly 

imply that FA 1 FB is an equivalence. 

Consider the diagram in hoY, the homotopy category: 

cp 
A-B 

j (1) \ l/l j (2) 

FA - FB. 

We have chosen the arrow s by surjectivity of [B, FA] -+ [A, FA] thus the triangle (1) 

commutes. Now triangle (2) commutes after composing back to A and therefore by the 

injectivity assumption triangle (2) commutes. So the chosen s renders the diagram 
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homotopy cummutative. Apply F to the diagram. Since F(j) is an equivalence we get 

that F(s) is the desired homotopy inverse to Fq. 

Proof of 2.1. We proceed with the proof of 2.1 by first giving a characterization of 

idempotent coaugmented functors: this proves the equivalence (1) o (2). 

2.1.3 Lemma. A coaugment functor F: Y -+ Y is idempotent if and only if for all W, 

X E 9’ the coaugmentation j: W -+ FW induces an isomorphism of sets: 

j$:[FW,FX] 7 [W,FX] 

Proof. Here we work in ho9 the homotopy category: Assume first that j$ is an 

isomorphism. To find a homotopy inverse j,, = j:FX -+ FFX we consider the 

homotopy classes of maps of this j into FX, in particular there is a map i:FFX -+ FX 

that corresponds to the identity FX ---f FX. Thus ioj = idFX. To show that jo i - idFFx 

we use the injectivity of the map of homotopy classes: [ j,,,FFX]: Since jo ioj - j,, 

and also idFFx 0 j,, - j,, we get j 0 i - idFFx as needed. So i is a homotopy inverse to 

jFx =j. 
But now consider the (homotopy) commutative square: 

JX 
X - FX 

IX 

,I I 

hx 

F(h) 
FX - FFX (2. I .4) 

Since both jFx and F(jx) compose with jx to the same map X + FFX by our condition 

on j$ for W = X they are homotopic. Since j,, is an equivalence so is F(j,) and thus 

FX is idempotent by definition. 

Now assume that F is idempotent thus both j,, and F(jx) are equivalences. To 

prove that jg is an isomorphism of sets we consider the following square for any given 

f.W+FX. 

f 
w - FX 

j I 1, 2 JFX 

Ff 
FW- FFX (2.1 S) 

It follows from j,, being an equivalence that jg is surjective, since we can lift F(f) 
across j,X. On the other hand to prove injectivity ofj& we assume that two maps J g 
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in the following diagram: 

WJW 
f 

FW-FX 
-67-b 

pull back to homotopic maps: fi j, h g 0 j,. Now use the assumption that F( j,) is an 

equivalence to get F(f) - F(g). But since F is idempotent the class of F(g) uniquely 

determines the class of g. Thus f - g as needed. This proves 2.1.3, i.e. (1) o (2). 

Since clearly (3) + (2) we complete the proof of 2.1 by showing that (1) 3 (3). For 

this end one consider the composition (where we use the power notation for function 

complexes): 

FXW F(-) FFXFW L -, FXFW, 

Notation. To decipher the power notation uniquely note that the functor F is never 

applied here to function complexes so that FXY always means (FX)Y. 

Here F(-) is given by continuity of F, i, is composition where i:FFX --f FX is 
a homotopy inverse to j:FX + FFX. We show that the above composition is a 

homotopy inverse (left and right) to the map induced by coagmentation: 

j$:(FX)Fw -+(FX)W. 

First we show that it is a right homotopy inverse: For this it is enough to show that 

the composition 

F(-)o j$:FXFW + FXw%i (FFX)Fw 

is homotopic to map(FW, jFX):FWFW + (FFX)Fw, since jq i - id. 

By definition the composition F(-) c j$ takes a map f : FW -+ FX to a map 
F(f) 0 F(j) in the following ladder: 

j 
W-FW 

t 
- FX 

’ F(j) I F(t.) I 
FW- FFW - FFX 

Therefore the composition F(-)o j$ is equal to the composition (where F2 = FF): 

(here we just used functoriality of F: F(fo j) = F(f) 0 F(j)). But we saw in (2.1.4) that 

2.1(2) implies that the map Fj:FW -+ F* W is homotopic to the coaugmentation map 

jFW:=,jF:FW -+F2W. 

Therefore our composition can be rewritten as 
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Now the composition map(FW, j) : (FX)FW + (FFXrw is homotopic, by commuta- 

tivity of a version of (2.1 S) to j, 3 F(-) as above. (Takes f to F(f) composed with 

j,, = j:FW +FFW.) Therefore, our original composition above is just 

map(FW, j,,) as needed. 

Secondly, we show that the same composition i, ?F(() is a left inverse to the 

induced map j$. For this end we use the diagram: 

WI‘FX 

& I I A, 
+ Ff * 

FW - FFX LFX 

where f is an arbitrary map. In terms of function complexes the commutativity of the 

square is equivalent to the commutativity of the triangle 

(FX)w 

(FFX)r” 
JLV 

t (FFX)” 

In which the maps are the obvious induced maps. Notice that associativity of 

composition i 0 (Ffi j,) = (i 3 Ff) 0 j, in expressed on function space level as com- 

mutativity of the square: 

i, (1 F(p) 
(FX)w y (FX)Fw 

Using both diagrams we can compute: i, 0 F(-) oj$ = i, 3 j&o F(-) = i, 3 (j,,), - id, 

since i is a homotopy inverse to j,, by assumption. This completes the proof of 2.1. 

The following is a special case of 2.1.1 and 2.1: 

2.1.6 Corollary. Let cp: A --f A be a self-map of a space A, F a continuous coauymented, 

idempotent functor. Assume that FA is, up to homotopy, uniquely q-divisible, (i.e. 

[cp, FA] is an isomorphism of sets) then 

(1) F, is an equivalence 

(2) map(cp, FX): map(A,FX) ---f map(A, FX) is a homotopy equivalence for all X. 

We now proceed to show that if one can identify a specific property of the 

fundamental group rcI L for any q-local space where rp: A --f B a any map, this 
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immediately entails an analogous property of the higher homotopy groups as x1- 

modules. 

2.2 Proposition. Let cp: A -+ B be any map. Assume that C, is a class of groups such that 

for every q-local space X one has 7tIX E C,. Then for every cp-local space X the 

semi-direct product 7c,Xr?xIX, with respect to the natural action of x1X on z,X, is 

in C,,. 

In order to prove it we need 

2.3 Lemma. For any’ connected pointed space X rcl map’,e’(S”-l, X) is the semi-direct 

product of q,X with II,X with the natural action where mapfree denotes the null 

component of the space of free (unpointed) maps. 

Proof. (Cf. [lo]) There is a fibration sequence with a section 

(P- ‘X), -+ map’,‘““(S”- ‘,X) 5 X 

from which the above lemma follows upon taking fundamental groups: The funda- 

mental group of the total space is naturally isomorphic to the group of components of 

map’“‘(S”- ‘, QX) which is evidently the semi-direct product: (xx). (_vb) 

= .xy( J -‘ay)p where c(, /?, y-’ “cy are in the null component of QX. 

2.4 Proof of 2.2. Given a cp-local space X, it is evident from the definition that for any 

space Y each component of the free function space map’“‘(Y,X) is cp-local (recall 

above). Therefore mapforee(S”-‘, X) is cp-local and its fundamental group is by assump- 

tion in C,. But this group is the desired semi-direct product by 2.3. 

2.5 Proofs of 1.5 and 1.8. We first make two claims. 

2.5.1 Claim. Let G be an HZ-local group then a G module M is HZ-local (in the sense 

of Bousfield) as a G-module if and only if the semi-direct product Mr?G is again an 

HZ-local group. This follows directly from [2,4] and 2.2. 

2.5.2 Claim. Let {cp’ :V= S’ + V5 S ‘} be the set of all self-maps of a countable copies 
of the circle which induce an identity on thefirst homology with Z coefficients H, (-, Z). 

Then u space X has HZ-local fundamental group if and only lf the map on classes 

cvx S’,Xl s CVmS',Xl 1s an isomorphism for every ‘p’ as above. A proof of 2.5.2 is 
given in 2.8. 

2.6 Proof of 1.5. Since nlF Va: S ’ is HZ-local by assumption, then by 2.5.2 the map 

[q’,F ~~,S’1inducedbyanymapcp’:~,S1~~,~S1withHl(cp,,~)=identity, 
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is a set isomorphism. Therefore by 2.1 [(pi, FX] is a set isomorphism for every space 

X and we can apply 1.2 for the set of map {p’> as above. Therefore for every such 

a map q1 the space FX is cp’-local - namely map (cp’,FX) is a weak homotopy 

equivalence. But we know again by 2.5.2 that for every space which is cp’-local for 

every cpl with H, (ql, Z) the identity, the fundamental group is HZ-local. Therefore by 

2.2 the semi-direct products q,FXxn, FX are HZ-local groups and by 2.5.1 n,FX is 

HZ-local as nlFX module as needed. It follows that FX is an HZ-local space for every 

space X. 

2.7 Proof of 1.8. This follows easily from 2.1 again as in 2.6, consider though the 

remark below above p-divisible spaces: 

Remark about uniquelyp-divisible spaces: (Cf. [lo]) It was noted by Baumslag [l] that 

the semi-direct product of a uniquely p-divisible group G with a uniquely p-divisible 

module M over G is not, in general, a uniquely p-divisible yp. To that end one needs to 

require that the module in M is uniquely p-divisible by all elements in the group ring 

of the form (1 + 4 + t” + t3 + ‘.. + lp-‘). In our context this means as noted by 

[lo] that map(p,X):map(S’,X) !+ map(S’,X), induced by p:S’ --f S’ the degree 

p map, is a homotopy equivalence if and only if 7ciX is uniquely p-divisible and the 

higher homotopy groups are divisible by the above mentioned elements. 

Therefore we get the “algebraic” conclusion that nlFS1 is uniquely p-divisible for 

a functor F as above iff n,FX is uniquely divisible by (1 + t + t2 + ... + <Pm ‘) for all 

Xandall~ErriXandalln21. 

2.8. HZ local groups as uniquely cp’-divisible ones. We would like to express the 

property that x1X is HZ-local by saying that for certain collections of maps p: A + B 

the induced map rcO map (cp, X) is an isomorphism. It turns out that one may take a set 

of maps with A = B = S1 for all these maps where Vz is a countable wedge of circles. 

To this end we recall [8] that being HZ-local can be expressed in terms of uniqueness 

and existence of solutions to certain family of equations. 

Proposition. Let {cp’:(V,S’)+(V,S’)) be thesetofallselj’mapsV,S’ Z$. V,,S’ 

of countable wedge of circle which induce an identity on H,(Z). Then 7c1X is HZ-locul in 

the sense of BousJield ifand only if 7-c,, map (q’, X) is on isomorphism of sets. Furthermore 

a space X is Bousjield HZ-local @map (q’, X) is a weak equivalence. 

Proof. Recall [S] that a group is HZ-local in if and only if every system of countable 

equations of the form Xz = gaC,(Xpl ... X,,) in a countable number of unknowns 

{Xj) and where C, is a word in Xj with the total degree of each Xj is 0, has a unique 

solution. We can assume with no loss of generality that C, is a word in Xj with no 

group elements since for each group element one can add one more equation X, = g. 
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Each system of equations x, = g,C, can also be written as ga = X, . C,. Thus a group 
G is HZ-local if for each such system e, the map fe:flm G -+ nm G taking the sequence 
(X,), to (X&Z,), is an isomorphism of sets. Now nm G = map(F( oo), G) whereP( cc) is 
the free group on a countable number of generators {yj}. And the above map fe is 
induced by a map ge:F( co) -*F( co) sending the generator y, to y,C,(yOr ... yp,,). 
Notice however that this map F( co) + F( cg) is the most general map that induces an 
identity on the abelianization of F( co), since the abelianization of y,C, is [ya]. 

Therefore, we get the first part of the conclusion. The rest follows immediately from 
1.2. 2.2 and 2.1. 

3. Further examples and questions 

We begin with a proof of 1.7. 

3.1 Theorem. Let {~p:v~Sl --, VS’} be the set of all self-maps of countable wedge of 
circles that induce an identity on the Z-homology group H,, ( ,Z). The homotopy 

localization functor with respect to {cp> is the Bousjield HZ-localization functor for all 
spaces. 

Proof. Given a space X, let @ : X + Lip) X be the homotopy localization with respect 
to {cp} clearly H,(@,Z) is an isomorphism by construction. But we saw above (1.5) 
that L;,,,,X is HZ-local space since all its homotopy groups are HZ-local. It follows 
from [4] that @ is equivalent to the HZ-localization. 

3.2 Question. One suspects that for other interesting homological localizations with 
respect to h, in the sense of Bousfield there exist a relatively small sets of map 
Y: A + B of “generating h,-isomorphism” with L;,) = Lh*. For example it might be 
true that if Y is the collection of Adams maps between Moore spaces we get K-theory 
localization as Liai. 

3.3 Non-idempotent functors. Many functors are known in homotopy theory that are 
continuous and coaugmented but are not idempotent. For example JX, Z,X, Z,,X, 
P’S”X, QX, etc. A careful reading of the proof of 1.2 shows that the assumption of 
idempotency can be dropped if a slight weakening of the conclusion is allowed. In fact, 
for an appropriate class C of groups and n-modules the following can be proved by 
similar arguments as above. 

3.3 Proposition. Let F be a continuous, co-augmented functor. If the map 
7c1X -+ xlFX factors through a group in C:niX + G + rriFX for G E C, then for all 
n 2 1 n,,X --f n,,FX factor through a n-module in C. 
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3.4 Examples. 

(1) Co = {O} the class that contain only the trivial group. 
(2) CN = nilpotent group and nilpotent n-modules 
(3) Cz = Bousfield groups and modules. 
(4) C, = groups G and G-modules M with T,G = O(T,.M = 0) for a fixed integer 

i-2 1. 
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