Symbolic Computation of Conserved Densities for Systems of Nonlinear Evolution Equations†

ÜNAL GÖKTAŞ AND WILLY HEREMAN

Department of Mathematical and Computer Sciences, Colorado School of Mines, Golden, CO 80401-1887, U.S.A.

A new algorithm for the symbolic computation of polynomial conserved densities for systems of nonlinear evolution equations is presented. The algorithm is implemented in Mathematica. The program condens.m automatically carries out the lengthy symbolic computations for the construction of conserved densities. The code is tested on several well-known partial differential equations from soliton theory. For systems with parameters, condens.m can be used to determine the conditions on these parameters so that a sequence of conserved densities might exist. The existence of a large number of conservation laws is a predictor for integrability of the system.

© 1997 Academic Press Limited

1. Introduction

An indication that certain evolution equations might have remarkable mathematical properties came with the discovery of an infinite number of conservation laws for the Korteweg-de Vries (KdV) equation, \( u_t + uu_x + u_{3x} = 0 \). The conserved quantities \( u \) and \( u^2 \), corresponding to conservation of momentum and energy, respectively, were long known, when Whitham (1974) found a third one, \( u^3 - 3u^2 \), which corresponds to Boussinesq's moment of instability. Zabusky and Kruskal found a fourth and fifth. However, the search for additional conserved densities was halted due to a mistake in their computations. Miura eventually continued the search and, beyond the missing sixth, found an additional three conserved densities (Newell, 1983). It became clear that the KdV equation had an infinite sequence of conservation laws, later proven to be true.

The existence of an infinity of conserved densities was an important link in the discovery of other special properties of the KdV equation (Zakharov, 1990). It led, for example, to the construction of the Miura transformation, which connects the solutions of the KdV and modified KdV equations. Consequently, the well-known Lax pair, which associates a couple of linear equations to the KdV equation was found. From that, the inverse scattering technique (IST) for direct linearization of integrable equations was developed, and

† Research supported in part by the National Science Foundation under Grants CCR-9300978 and CCR-9625421.
it was then shown that the KdV equation, and many other integrable equations, admit bi-Hamiltonian structures.

There are several motives to construct conserved densities of partial differential equations (PDEs) explicitly. The first few conservation laws have a physical interpretation. Additional ones may facilitate the study of both quantitative and qualitative properties of solutions (Scott et al., 1973). Furthermore, the existence of a sequence of conserved densities (perhaps with gaps) predicts integrability. Yet, the non-existence of conserved quantities does not preclude integrability. There are indeed equations, viz. dissipative equations, with only one conserved density, which can be directly integrated. The most notable is the Burgers equation, which can be transformed into the linear heat equation via the Cole–Hopf transformation (Zakharov, 1990).

Yet another compelling argument to explicitly construct conserved densities relates to the numerical solution of PDEs. It is desirable that the semi-discretization conserves the discrete analogues of the continuous conserved quantities. In particular, the conservation of a positive definite quadratic quantity may prevent the occurrence of nonlinear instabilities in the numerical scheme. The use of conservation laws in solving the Boussinesq equation numerically has been illustrated in Hickernell (1983). Sanz-Serna (1982) describes a scheme for the integration in time of PDEs, which is explicit and capable of conserving discretized quadratic functionals. Since $u$ and $u^2$ are conserved densities for the KdV equation, a discrete scheme should have conservation of momentum, $\sum_j U_j^n$, and energy $\sum_j [U_j^n]^2$. In Sanz-Serna (1982), an explicit self-adaptive conservative scheme with conservation of energy and momentum is given. Conservation of energy implies boundedness of the solutions, and therefore obviates the occurrence of any blowup phenomena. For more details about numerical applications of conservation laws see LeVeque (1992).

We present a new symbolic algorithm for computing closed-form polynomial-type conservation laws for systems of nonlinear evolution equations. Our algorithm is also applicable to wave equations, viz. the Boussinesq equation, provided that the PDE (of higher-order in time) can be written as a system of evolution equations (first order in time). In contrast to fairly complicated algorithms designed by Bocharov (1991), Gerdt and Zharkov (1990), and Gerdt (1993), we introduce an algorithm that is based in part on ideas presented in Hereman and Zhuang (1995), Ito (1994), and Ito and Kako (1985), Kruskal et al. (1970), Kodama (1985), Miura et al. (1968), Verheest and Hereman (1995), and Willox et al. (1995). Our algorithm has the advantage that it is fairly straightforward to implement in any symbolic language. We also present a software package condens.m, written in Mathematica syntax, which automates the tedious computation of closed-form expressions for conserved densities and fluxes.

In Section 2, we give the definitions of conservation law, density and flux. We also state a theorem from calculus of variations about the Euler–Lagrange equations, which will play a role in our algorithm. The remainder of the section is devoted to a detailed exposition of the algorithm, which was implemented in Mathematica, and successfully tested on many well-known evolution systems from soliton theory.

In Section 3, we address applications of our program condens.m. In particular, we show how it could be used in a search for integrable fifth-order evolution equations of KdV type, where we retrieved all the known integrable cases. We carried out a similar computer search for a parametrized class of seventh-order evolution equations. More examples and test results are presented in Section 4. In Section 5, we describe the usage
of our code, and indicate its capabilities and limitations. In Section 6, a comparison with other programs is given. Also, several ongoing projects are briefly addressed.

2. Computation of Conserved Densities

2.1. Definitions

For simplicity, consider a single PDE,

$$\Delta(x,t,u(x,t)) = 0,$$

(2.1)

where $t \in \mathbb{R}$ denotes time, $x \in \mathbb{R}$ is the spatial variable, and $u(x,t) \in \mathbb{R}$ is the dependent variable. A conservation law is of the form

$$D_t \rho + D_x J = 0,$$

(2.2)

which is satisfied for all solutions of (2.1). The functional $\rho(x,t)$ is the conserved density, $J(x,t)$ is the associated flux. Both are, in general, functions of $x,t,u$, and its partial derivatives with respect to $x$. Furthermore, $D_t$ denotes the total derivative with respect to $t$; $D_x$ the total derivative with respect to $x$ (Ablowitz and Clarkson, 1991). Specifically, $\rho$ is a local conserved density if $\rho$ is a local functional of $u$, i.e. if the value of $\rho$ at any $x$ depends only on the values of $u$ in an arbitrary small neighborhood of $x$. If $J$ is also local, then (2.2) is a local conservation law. In particular, if $\rho$ is a polynomial in $u$ and its $x$ derivatives, and does not depend explicitly on $x$ or $t$, then $\rho$ is called a polynomial conserved density. If $J$ is also such a polynomial, then (2.2) is called a polynomial conservation law. There is a close relationship between constants of motion and conservation laws. Indeed, for polynomial-type $\rho$ and $J$, integration of (2.2) yields

$$P = \int_{-\infty}^{+\infty} \rho \, dx = \text{constant},$$

(2.3)

provided that $J$ vanishes at infinity. For ordinary differential equations, the $P$s are constants of motion.

Example 2.1. The most famous evolution equation from soliton theory, the KdV equation (Miura, 1968),

$$u_t + uu_x + u_{3x} = 0,$$

(2.4)

is known to have infinitely many polynomial conservation laws. The first three are

$$(u)_t + \left(\frac{1}{2} u^2 + u_{2x}\right)_x = 0,$$

(2.5)

$$(u^2)_t + \left(\frac{2}{3} u^3 - u_x^2 + 2uu_{2x}\right)_x = 0,$$

(2.6)

$$(u^3 - 3u_{2x}^2)_t + \left(\frac{3}{4} u^4 - 6uu_{2x}^2 + 3u^2u_{2x} + 3u_{2x}^2 - 6u_xu_{3x}\right)_x = 0.$$

(2.7)

The first two express conservation of momentum and energy, respectively. They are easy to compute by hand. The third one, less obvious and requiring more work, corresponds to Boussinesq’s moment of instability (Newell, 1983).
Observe that the KdV equation and its densities \( \rho = u, u^2 \) and \( u^3 - 3u_x^2 \) are all invariant under the scaling symmetry
\[
(x, t, u) \rightarrow (\lambda x, \lambda^3 t, \lambda^{-2} u),
\]
where \( \lambda \) is a parameter. Stated differently, \( u \) carries the weight of two derivatives with respect to \( x \); denoted symbolically by
\[
u \sim \frac{\partial^2}{\partial x^2}.
\]
Scaling invariance, which is a special Lie-point symmetry, is an intrinsic property of many integrable nonlinear PDEs. Our algorithm exploits this idea in the construction of conserved densities.

2.2. Euler operator

We introduce a tool from calculus of variations: the Euler operator, which is very useful for testing whether an expression is a total derivative (Ito and Kako, 1985; Olver, 1986), without having to carry out any integrations by parts.

**Theorem 2.1.** If \( f = f(x, y_1, \ldots, y_N) \), then
\[
\mathcal{L}_{\vec{y}}(f) \equiv \vec{0},
\]
if and only if
\[
f \equiv \frac{d}{dx} g,
\]
where \( g = g(x, y_1, \ldots, y_{N-1}) \).

In this theorem, for which a proof can be found in Olver (1986, pp. 252), \( \vec{y} = [y_1, \ldots, y_N]^T \), \( \mathcal{L}_{\vec{y}}(f) = [\mathcal{L}_{y_1}(f), \ldots, \mathcal{L}_{y_N}(f)]^T \), \( \vec{0} = [0, \ldots, 0]^T \), with \( T \) for transpose, and where
\[
\mathcal{L}_{y_i} = \frac{\partial}{\partial y_i} - \frac{d}{dx} \left( \frac{\partial}{\partial y_i} \right) + \frac{d^2}{dx^2} \left( \frac{\partial}{\partial y_i} \right) + \cdots + (-1)^n \frac{d^n}{dx^n} \left( \frac{\partial}{\partial y_i} \right),
\]
is the *Euler operator* (or variational derivative). We will use this theorem in our algorithm.

2.3. Algorithm

We now describe our algorithm to compute polynomial conservation laws (2.2) for systems of nonlinear evolution equations of order \( n \),
\[
\vec{u}_t = \vec{F}(\vec{u}(x, t), \vec{u}'(x, t), \ldots, \vec{u}^{(n)}(x, t)),
\]
where \( \vec{u} = [u_1, \ldots, u_N]^T \), or, component-wise,
\[
u_i, t + F_i(u_j, u'_j, u''_j, \ldots, u^{(n)}_j) = 0, \quad i = 1, 2, \ldots, N, \quad j = 1, 2, \ldots, N,
\]
where
\[
u_i, t \equiv \frac{\partial u_i}{\partial t}, \quad u_j^{(n)} \equiv \frac{\partial^n u_j}{\partial x^n},
\]
and all components of \( \vec{u} \) depend on \( x \) and \( t \).

Our goal is to compute the densities \( \rho(\vec{u}, \ldots, \vec{u}^{(m_1)}) \) and the fluxes \( J(\vec{u}, \ldots, \vec{u}^{(m_2)}) \) of order \( m_1 \) and \( m_2 \), respectively. There will be no restriction on the order \( n \) of the system (2.8), or on its degree of nonlinearity. But, all the components of \( \vec{F} \) must be polynomial in their arguments. Furthermore, we only consider systems of evolution equations in \( t \) with one spatial variable \( x \).
In our algorithm, we tacitly assume that we have an evolution equation for every dependent variable $u_i$. In cases where there are more dependent variables than equations, one can always add trivial evolution equations $u_{i,t} = 0$. Further on, we use the notation $u_{j,nx}$ instead of $u_j^{(n)}$ because it is closer to the notation in our code.

**STEP 1. DETERMINE THE WEIGHTS OF VARIABLES AND PARAMETERS**

We define the *weight* of a variable as the number of partial derivatives with respect to $x$ the variable carries, and the *rank* of a term as the total weight in terms of partial derivatives with respect to $x$ (Kruskal *et al*., 1970; Miura *et al*., 1968). The rank is assumed to be non-negative and rational.

For the system (2.9), we first try to determine the weights (scaling properties) of all the variables. We assume that all terms in a particular equation have the same rank. We call this property *uniformity in rank*. Different equations in (2.9) can have different ranks. Having defined the weight of a variable in terms of $x$-derivatives, we (can) pick $w\left(\frac{\partial}{\partial x}\right) = 1, \ldots, w\left(\frac{\partial^n}{\partial x^n}\right) = n$, where $w$ returns the weight of its argument.

For simple systems, in particular those with uniform rank, only the variables $u_i$ and $\frac{\partial}{\partial t}$ have weights. However, to be able to handle more general systems, we allow for constant parameters to be introduced and also for these parameters to carry weights. The trick of introducing parameters with weights allows one to handle equations without uniform rank. Let us assume that there are $P$ such parameters in the system, denoted by $p_i$, $i = 1, 2, \ldots, P$. Thus, the extended list of variables that carry weights is \{$\frac{\partial}{\partial t}, u_1, u_2, \ldots, u_N, p_1, p_2, \ldots, p_P$\}.

Weights must be non-negative and rational, except for $w\left(\frac{\partial}{\partial t}\right)$, which may be positive, zero, or negative. More precisely, the weight of at least one $u_i$ must be positive; the weights of the parameters $p_i$ must be non-negative. We proceed with the following steps:

(a) Take the $i$th equation in (2.9). Denote the number of terms in the equation by $K_i$.

(b) Compute the rank $r_{i,k}$ of the $k$th term in the $i$th equation as follows:

$$r_{i,k} = d(x) + d(t)w\left(\frac{\partial}{\partial t}\right) + \sum_{j=1}^{N} g(u_j)w(u_j) + \sum_{j=1}^{P} g(p_j)w(p_j), \quad k = 1, 2, \ldots, K_i,$$

where $g$ returns the degree of nonlinearity of its argument, $d$ returns the number of partial derivatives with respect to its argument. For evolution equations $d(t)$ is either zero or one.

(c) Assuming uniformity in rank in the $i$th equation, form the linear system

$$A_i = \{r_{i,1} = r_{i,2} = \cdots = r_{i,K_i}\}.$$

(d) Repeat steps (a) through (c) for all of the equations in (2.9).

(e) Gather the equations $A_i$ to form the global linear system $\mathcal{A} = \bigcup_{i=1}^{N} A_i$.

(f) Solve $\mathcal{A}$ for the $N + P + 1$ unknowns $w(u_j)$, $w(p_j)$ and $w\left(\frac{\partial}{\partial t}\right)$.

If the solution of the system $\mathcal{A}$ still has free weights, consider two cases:

(1) If two or more weights are undetermined, prompt the user to enter choices.

(2) If only one weight is free, say $w(u_k)$, take the equations obtained in (f), set their left hand sides equal to one, and solve them piece by piece for $w(u_k)$. Include the
choice $w(u_k) = 1$. For all choices for $w(u_k)$ test: (i) if $w(u_k)$ is negative, increment it until it is positive; (ii) reject $w(u_k)$ if any other weight is negative. Continue with the smallest integer value for $w(u_k)$ if present, else take the smallest fractional value. This produces at most one positive value for the free weight, out of possibly infinitely many choices. If the algorithm fails, prompt the user to enter a value for $w(u_k)$.

**Step 2. Construct the Form of the Density**

The second step involves the construction of the polynomial density with a prescribed rank $R$. All the terms in the density $\rho$ must have that same rank $R$. Since we may introduce parameters with weights, the fact that the density will be a sum of monomials of uniform rank does not necessarily imply that the density must be uniform in rank with respect to the dependent variables. Note that the rank $R$ can differ from any of the ranks of the equations in (2.9). The rank $R$ must be positive and rational.

Let $V = \{v_1, v_2, \ldots, v_Q\}$ be the sorted list of all the variables with positive weights, including the parameters $p_i$, but excluding $\frac{\partial}{\partial t}$. The variables are ordered according to descending weights: $w(v_1)$ is the largest weight, $w(v_Q)$ is the smallest. The following procedure is used to determine the form of the density of rank $R$:

(a) Form all monomials of rank $R$ or less by taking combinations of the variables in $V$. Recursively, form sets consisting of ordered pairs. In each pair, the first component has a specific combination of different powers of the variables, the second component has the weight of the first component.

Set $B_0 = \{(1; 0)\}$ and proceed as follows:

For $q = 1$ through $Q$

For $m = 0$ through $M - 1$ do

Form $B_{q,m} = \bigcup_{s=0}^m \{(T_{q,s}; W_{q,s})\}$, where $M$ is the number of pairs in $B_{q-1}$, $T_{q,s} = T_{q-1,m} + s w(v_q)$, $W_{q,s} = W_{q-1,m} + s w(v_q)$, $(T_{q-1,m}; W_{q-1,m})$ is the $(m + 1)$-st ordered pair in $B_{q-1}$, and $b_{q,m} = \left\lfloor \frac{R - W_{q-1,m}}{w(v_q)} \right\rfloor$ is the maximum allowable power of $v_q$.

Set $B_q = \bigcup_{m=0}^{M-1} B_{q,m}$.

(b) Set $G = B_Q$. Note that $G$ has all possible combinations of powers of the variables that produce rank $R$ or less.

(c) Introduce partial derivatives with respect to $x$. For each pair $(T_{Q,s}; W_{Q,s})$ in $G$, apply $\frac{\partial^\ell}{\partial x^\ell}$ to the term $T_{Q,s}$, provided $\ell = R - W_{Q,s}$ is integer. This introduces just enough partial derivatives with respect to $x$, so that all the pairs retain weight $R$.

Gather in a set $H$ all the terms that result from computing the various $\frac{\partial^\ell(T_{Q,s})}{\partial x^\ell}$.

(d) Remove those terms from $H$ that can be written as a total derivative with respect to $x$, or as a derivative up to terms kept prior in the set. Call the resulting set $I$, which consists of the building blocks of the density $\rho$ with desired rank $R$.

(e) If $I$ has $I$ elements, then their linear combination will produce the polynomial density of rank $R$. Therefore,

$$\rho = \sum_{i=1}^I c_i I(i),$$
where $I(i)$ denotes the $i$th element in $I$, and $c_i$ are numerical coefficients, still to be determined.

**STEP 3. DETERMINE THE UNKNOWN COEFFICIENTS IN THE DENSITY**

Recall that a conservation law is of the form $D_t \rho + D_x J = 0$, or $D_t \rho = -D_x J$, which means that $D_t \rho$ must be the negative of the $x$-derivative of a functional $J$.

After computation of $D_t \rho$, remove all $(u_{i,t})^{(j)}$, $j = 0, 1, 2, \ldots$ from the expression, using the evolution equations in (2.9). The resulting expression for $D_t \rho$ must be a total $x$-derivative of some expression. To verify this we use Theorem 2.1 and apply the Euler operator. We require that the resulting Euler–Lagrange equations vanish identically by the appropriate choice of the coefficients $c_i$. This leads to a linear system for the $c_i$. The system must be analyzed and solved for the unknown $c_i$. In general, the procedure is as follows:

(a) Compute $D_t \rho$ and replace all $(u_{i,t})^{(j)}$, $i = 0, 1, \ldots, N$ and $j = 0, 1, 2, \ldots$ using the evolution equations in (2.9).

(b) The resulting expression, called $E$, must equal $D_x (-J)$ for some functional $J$. Apply to $E$ the Euler operator $\mathcal{L}$ from Theorem 2.1. If $E$ is completely integrable no terms will be left, i.e. $\mathcal{L}(E) \equiv 0$. If terms remain, set them equal to zero and form the linear system for the $c_i$, denoted by $S$.

(c) Depending on whether or not there are parameters in $S$, two cases occur:

(i) If the only unknowns in $S$ are $c_i$, solve $S$ for the $c_i$. Substitute the (non-empty) solution into the expression of $\rho$ to obtain its final form.

(ii) If in addition to the coefficients $c_i$ there are parameters $p_i$ in $S$, then determine the conditions on these parameters, so that a density in the given rank exists for at least some $c_i$ non-zero. These compatibility conditions ensure that the system $S$ has non-trivial solutions. Obviously, all $c_i$ equal to zero would give the trivial (zero) density. Solving the compatibility conditions may lead to different densities of the same rank, corresponding to different choices of the parameters. Thus, generating the compatibility conditions enables one to filter out all the cases for which there exists a non-trivial density of given rank. Let $\mathcal{C} = \{c_1, c_2, \ldots, c_I\}$ be the set of all the coefficients that appear in the density. In order to determine all possible compatibility conditions, proceed as follows: Under the assumption that no $p_i$ in $S$ is zero, analyze the system $S$. First determine the coefficients $c_i$ that always must be zero. Exclude these $c_i$ from $\mathcal{C}$ and set $i = i'$, where $i'$ is the smallest index of the $c_j$ that remain in $\mathcal{C}$.

While $\mathcal{C} \neq \{\}$ do:

For the building block $I(i)$ with coefficient $c_i$ to appear in $\rho$, one needs $c_i \neq 0$. Therefore, set $c_i = 1$ and eliminate all the other $c_j$ from $S$. This gives compatibility conditions consistent with the presence of the term $c_i I(i)$ in $\rho$.

If $S$ becomes inconsistent, or compatibility conditions require some of the parameters to be zero,
ci must be zero. Hence, set $C = C \setminus \{c_i\}$, and $i = i'$, where $i'$ is the smallest index of the $c_j$ that remain in $C$.

else:

Analyze the compatibility conditions and for each resulting branch; solve the system $S$ for $c_j$, and substitute the solution into the expression of $\rho$ to obtain its final form. Then, collect those $c_j$ which are zero for all of the branches into a set $Z$. Since the $c_i$ in $Z$ might not have occurred in any of the densities yet, set $C = C \cap Z$, and $i = i'$, where $i'$ is the smallest index of the $c_j$ that are still in $C$.

(d) Compute $J = -\int E \, dx$, via integration by parts.

The three examples below illustrate the algorithm. In the first example, we show Steps 1 and 2 in detail. The second and third example illustrate details of Step 3. Examples in Sections 4.1 and 4.2 illustrate what happens if there are free weights.

Example 2.2. The wave equation,

$$u_{tt} - u_{2x} + 3uu_{2x} + 3u_x^2 + \alpha u_{4x} = 0,$$  \hspace{1cm} (2.10)

was proposed by Boussinesq to describe surface water waves whose horizontal scale is much larger than the depth of the water (Ablowitz and Clarkson, 1991; Hickernell, 1983). Conservation laws play a key role in the study of (2.10) for they can be used to prove that solutions are bounded for certain sets of initial conditions (Hickernell, 1983), or, conversely, to prove that solutions fail to exist after a finite time.

For computing conservation laws, we rewrite (2.10) as a system of first-order equations,

$$u_t + v_x = 0,$$

$$v_t + u_x - 3uu_x - \alpha u_{3x} = 0,$$  \hspace{1cm} (2.11)

where $v$ is an auxiliary dependent variable. It is easy to verify that the terms $u_x$ and $\alpha u_{3x}$ in the second equation do not allow for uniformity in rank. To circumvent the problem we use a trick: we introduce an auxiliary parameter $\beta$ with (unknown) weight, and replace (2.11) by

$$u_t + v_x = 0,$$

$$v_t + \beta u_x - 3uu_x - \alpha u_{3x} = 0,$$  \hspace{1cm} (2.12)

or, in our notation,

$$u_{1,t} + u_{2,x} = 0,$$

$$u_{2,t} + \beta u_{1,x} - 3u_1u_{1,x} - \alpha u_{1,3x} = 0.$$  \hspace{1cm} (2.13)

Using the procedure in Step 1, we obtain the weights by first computing

\begin{align*}
 r_{1,1} &= 1 \, w(\frac{\partial}{\partial t}) + 1 \, w(u_1), & r_{1,2} &= 1 + 1 \, w(u_2), \\
 r_{2,1} &= 1 \, w(\frac{\partial}{\partial t}) + 1 \, w(u_2), & r_{2,2} &= 1 + 1 \, w(u_1) + 1 \, w(\beta), \\
 r_{2,3} &= 1 + 2w(u_1), & r_{2,4} &= 3 + 1 \, w(u_1),
\end{align*}

then forming the systems

$$A_1 = \{r_{1,1} = r_{1,2}\}, \quad A_2 = \{r_{2,1} = r_{2,2} = r_{2,3} = r_{2,4}\}, \quad \text{and} \quad A = A_1 \cup A_2,$$
and, finally, solving $\mathcal{A}$ for $w(u_1), w(u_2), w(\frac{\partial}{\partial t})$ and $w(\beta)$. This yields

$$w(u_1) = 2, \quad w(u_2) = 3, \quad w(\beta) = 2, \quad \text{and} \quad w \left( \frac{\partial}{\partial t} \right) = 2.$$ 

Hence, the scaling properties of (2.13) are such that

$$u_1 \sim \beta \sim \frac{\partial^2}{\partial x^2}; \quad u_2 \sim \frac{\partial^3}{\partial x^3}; \quad \frac{\partial}{\partial t} \sim \frac{\partial^2}{\partial x^2},$$

which expresses that (2.13) is invariant under the scaling symmetry

$$(x, t, u_1, u_2, \beta) \rightarrow (\lambda x, \lambda^2 t, \lambda^{-2} u_1, \lambda^{-3} u_2, \lambda^{-2} \beta).$$

Let us construct the form of the density with rank $R = 6$. Here, $\mathcal{V} = \{u_2, u_1, \beta\}$, hence, $v_1 = u_2, v_2 = u_1$ and $v_3 = \beta$ and, obviously, $Q = 3$. We follow the procedure outlined in Step 2:

(a) For $q = 1, m = 0$:

$$b_{1,0} = \left[ \frac{6}{5} \right] = 2.$$ 

Thus, with $T_{1,s} = u_2^s$, and $W_{1,s} = 3s$, where $s = 0, 1, 2$, we obtain

$$\mathcal{B}_1 = B_{1,0} = \{(1; 0), (u_2; 3), (u_2^2; 6)\}.$$

For $q = 2, m = 0$:

$$b_{2,0} = \left[ \frac{6-0}{2} \right] = 3.$$ 

So, with $T_{2,s} = u_1^s$, and $W_{2,s} = 2s$, with $s = 0, 1, 2, 3$, we obtain

$$\mathcal{B}_2 = B_{2,0} = \{(1; 0), (u_1; 2), (u_1^2; 4), (u_1^3; 6)\}.$$

For $q = 2, m = 1$:

we obtain

$$\mathcal{B}_2 = \{(u_2; 3), (u_1 u_2; 5)\},$$

since $b_{2,1} = \left[ \frac{6-3}{2} \right] = 1, T_{2,s} = u_2 u_1^s$, and $W_{2,s} = 3 + 2s$, and $s = 0, 1$.

For $q = 2, m = 2$:

$$b_{2,2} = \left[ \frac{6-6}{2} \right] = 0.$$ 

Therefore, $\mathcal{B}_2 = \{(u_2^2; 6)\}$. Hence,

$$\mathcal{B}_2 = \{(1; 0), (u_1; 2), (u_1^2; 4), (u_1^3; 6), (u_2; 3), (u_1 u_2; 5), (u_2^2; 6)\}.$$

For $q = 3$:

we introduce possible powers of $\beta$. So,

$$B_{3,0} = \{(1; 0), (\beta; 2), (\beta^2; 4), (\beta^3; 6)\}, \quad B_{3,4} = \{(u_2; 3), (\beta u_2; 5)\},$$

$$B_{3,1} = \{(u_1; 2), (\beta u_1; 4), (\beta^2 u_1; 6)\}, \quad B_{3,5} = \{(u_1 u_2; 5)\},$$

$$B_{3,2} = \{(u_1^2; 4), (\beta u_1^2; 6)\}, \quad B_{3,6} = \{(u_2^2; 6)\},$$

$$B_{3,3} = \{(u_1^3; 6)\},$$

and

$$B_3 = \{(1; 0), (\beta; 2), (\beta^2; 4), (\beta^3; 6), (u_1; 2), (\beta u_1; 4), (\beta^2 u_1; 6), (u_1^2; 4), (\beta u_1^2; 6), (u_2; 3), (\beta u_2; 5), (u_1 u_2; 5), (u_2^2; 6)\}.$$

(b) Set $\mathcal{G} = B_3$. 

(c) Next, we apply derivatives to the first components of the pairs in $G$.

Computation of $\ell$ for each pair of $G$ gives

$$\ell = 6, 4, 2, 0, 4, 2, 0, 0, 3, 1, 1, \text{ and } 0.$$ 

Note that in this case all values for $\ell$ are integer. Gathering the terms that come from applying the indicated number, $\ell$, of partial derivatives with respect to $x$, gives

$$H = \{0, \beta^1, u_{1,4x}, \beta u_{1,2x}, \beta^2 u_1, u_{1,x}, u_1 u_{1,2x}, \beta u_1^2, u_1^3, u_{2,3x}, \beta u_{2,x}, u_1 u_{2,x}, u_{1,x} u_2, u_2^2\}.$$ 

(d) Removing from $H$ the constant terms, and the terms that can be written as a $x$-derivative, or as a $x$-derivative up to terms retained earlier in the set $I$, yields

$$I = \{\beta^2 u_1, \beta u_1^2, u_1^3, u_2^2, u_{1,x} u_2, u_{1,x}^2\}.$$ 

(e) Combining these building blocks, the form of the density with rank 6 follows;

$$\rho = c_1 \beta^2 u_1 + c_2 \beta u_1^2 + c_3 u_1^3 + c_4 u_2^2 + c_5 u_{1,x} u_2 + c_6 u_{1,x}^2.$$ 

Using Step 3 of the algorithm (illustrated in detail in the next example) we compute the density of rank 6 in the original variables:

$$\rho = \beta u_2 - u^3 + v^2 + c u x^2.$$ 

Analogously, we computed densities of rank $R \leq 6$. The first four densities of (2.12) are:

$$\rho_1 = u, \quad \rho_2 = v, \quad \rho_3 = uv, \quad \rho_4 = \beta u^2 - u^3 + v^2 + c u x^2.$$ 

After substitution of $\beta = 1$ into the densities above, one gets the densities of (2.11) even though initially this system was not uniform in rank. This trick, which involves the introduction of one or more extra parameters with weights, can always be attempted if any equation in (2.9) lacks uniformity in rank.

**Example 2.3.** Hirota and Satsuma (1981) proposed a coupled system of KdV equations,

$$u_t - 6\alpha u u_x + 6 \nu v_x - \alpha u_{3x} = 0,$$

$$v_t + 3u u_x + v_{3x} = 0,$$ 

(2.14)

where $\alpha$ is a non-zero parameter. System (2.14) describes interactions of two long waves with different dispersion relations. It is known to be completely integrable for $\alpha = \frac{1}{7}$.

In our notation, (2.14) can be rewritten as

$$u_{1,t} - 6\alpha u_1 u_{1,x} + 6 u_2 u_{2,x} - \alpha u_{1,3x} = 0,$$

$$u_{2,t} + 3u_1 u_{2,x} + u_{2,3x} = 0,$$ 

(2.15)

which has scaling properties, $u_1 \sim u_2 \sim \frac{\partial^3}{\partial x^3}, \frac{\partial}{\partial t} \sim \frac{\partial^3}{\partial x^3}$, and a density of rank 4:

$$\rho = c_1 u_1^2 + c_2 u_1 u_2 + c_3 u_2^2.$$ 

Thus far we used Steps 1 and 2 of the algorithm. We now illustrate Step 3, which fixes the undetermined coefficients $c_i$.

(a) Compute $D_1 \rho$ and replace all the mixed derivatives $(u_{1,t})^{(j)}$ by using (2.15). Then,

$$E = 2c_1 u_1 (6\alpha u_1 u_{1,x} - 6 u_2 u_{2,x} + \alpha u_{1,3x}) + c_2 u_2 (6\alpha u_1 u_{1,x} - 6 u_2 u_{2,x} + \alpha u_{1,3x}) - c_2 u_1 (3u_1 u_{2,x} + u_{2,3x}) - 2c_3 u_2 (3u_1 u_{2,x} + u_{2,3x}).$$
(b) Apply the Euler operator to get the linear system for the coefficients \(c_1, c_2\) and \(c_3\):

\[
S = \{(1 + \alpha)c_2 = 0, \ 2c_1 + c_3 = 0\}.
\]

(c) Obviously, \(C = \{c_1, c_2, c_3\}\) and \(S\) has one parameter, \(\alpha\). Thus, we search for compatibility conditions:

Set \(c_1 = 1\), which gives

\[
\{c_1 = 1, \ c_2 = 0, \ c_3 = -2\}
\]

as one of the solutions without any constraint on the parameter \(\alpha\). Since only \(c_2 = 0\), one has \(Z = \{c_2\}\) and \(C \cap Z = \{c_2\}\), with \(i' = 2\).

Set \(c_2 = 1\). This leads to the compatibility condition \(\alpha = -1\) and the solution

\[
\{c_1 = -\frac{1}{2}c_3, \ c_2 = 1\}.
\]

Since \(Z = \{\}\) and, consequently, \(C = C \cap Z = \{\}\), the procedure ends.

Therefore, one gets two densities of rank 4, one without any constraint on \(\alpha\), one with a constraint. In summary:

\[
\rho = u_1^2 - 2u_2^2, \quad \text{and} \quad \rho = -\frac{1}{2}c_3u_1^2 + u_1u_2 + c_3u_2^2, \quad \text{with compatibility condition } \alpha = -1.
\]

A search for densities for (2.14) of rank \(R \leq 8\) resulted in:

RANK 2: There is no condition on \(\alpha\). One always has the density \(\rho = u\).

RANK 4: At this level, two branches emerge:

(1) Without condition on \(\alpha\), one obtains \(\rho = u^2 - 2v^2\).

(2) For \(\alpha = -1\) one has \(\rho = uv - \frac{5}{2}(u^2 - 2v^2), \ c\) is free.

Hence, for \(\alpha = -1\), there is a second independent conserved density: \(\rho = uv\).

RANK 6: There is no condition on \(\alpha\). One obtains

\[
\rho = (1 + \alpha)u^3 - 3u^2v^2 - \frac{1}{2}(1 + \alpha)u_x^2 + 3v_x^2.
\]

RANK 8: The system has conserved density

\[
\rho = u^4 - \frac{12}{5}u^2v^2 + \frac{12}{5}u^4 - 2u^2u_x^2 + \frac{8}{5}u^4v_x^2 - \frac{24}{5}u^2v_x^2 + \frac{8}{5}v_x^2v^2,
\]

provided that \(\alpha = \frac{1}{2}\).

Therefore, \(\alpha = \frac{1}{2}\) appears again as one tries to compute the density of rank 8. This value of \(\alpha\) leads to the only integrable case in the parametrized system (2.14).

For \(\alpha = \frac{1}{2}\), we also computed the density of rank 10:

\[
\rho = u^5 - \frac{20}{7}u^3v^2 + \frac{20}{7}u^4v - 5u^2u_x^2 + \frac{10}{7}v^2u_x^2 + uu_{2x}^2 - \frac{1}{14}u_{3x}^2 + 40 - \frac{20}{7}u^2v_x^2 - \frac{80}{7}u^2v_x^2 - \frac{24}{7}u_{2x}^2v_x^2 - \frac{4}{7}v_{2x}^2v_x^2 + \frac{40}{7}uv_{2x}^2v_x^2 - \frac{8}{7}v_{3x}^2.
\]
We continue with Part (b) of Step 3. After applying the Euler operator, the linear system
\[
S \cap \mathbb{Z} = \{c_2, c_4, c_6, c_7\}
\]
which differs from the Hirota–Satsuma system in the interaction and dispersion terms for \(v\). In the absence of \(v\), system (2.16) reduces to the KdV equation. It is a Hamiltonian system with infinitely many conservation laws. The scaling properties of the system (2.16) are
\[
u \sim \frac{\partial^2}{\partial x^2}, \quad \frac{\partial}{\partial t} \sim \frac{\partial^3}{\partial x^3},
\]
and the first five densities are:
\[
\begin{align*}
\rho_1 &= c_1 u + c_2 v, \\
\rho_2 &= u^2 + v^2, \\
\rho_3 &= u^3 + uv^2 - \frac{1}{2} u_{xx}^2, \\
\rho_4 &= u^4 + \frac{4}{3} u^2 v^2 + \frac{1}{5} v^4 - 2 u u_{xx}^2 + \frac{1}{3} u_{2x}^2 - \frac{4}{5} uv x v_x, \\
\rho_5 &= u^5 + 10 \frac{2}{7} u^3 v^2 - \frac{3}{7} uv^4 - 5 u_{xx}^2 - \frac{5}{7} v^2 u_{xx}^2 + uu_{2x}^2 - \frac{1}{14} u_{xx}^2 - 20 \frac{2}{7} uv x v_x - \frac{2}{7} v_x^2.
\end{align*}
\]
To illustrate Step 3 of the algorithm in more detail, we consider
\[
\begin{align*}
u_t + 6 uu_x + 2 vv_x + u_{3x} &= 0, \\
v_t + \alpha (u_x v + v_x) &= 0,
\end{align*}
(2.17)
which is a parametrized version of (2.16). The form of the density of rank 6 is
\[
\rho = c_1 u^3 + c_2 u^2 v + c_3 uv^2 + c_4 v^3 + c_5 u_x^2 + c_6 u_x v_x + c_7 v_x^2.
\]
We continue with Part (b) of Step 3. After applying the Euler operator, the linear system \(S\) for the coefficients \(c_i\) through \(c_7\) is
\[
S = \{6 - \alpha c_2 = 0, c_1 - c_3 = 0, 2c_2 - 3\alpha c_4 = 0, c_1 + 2 c_5 = 0, c_3 + 2 c_5 = 0, c_6 = 0, c_3 + 2 c_5 - \alpha c_7 = 0, \alpha c_7 = 0, 2 c_2 + \alpha c_6 = 0, 2c_2 - 6 c_6 + \alpha c_6 = 0\}.
\]
Obviously, \(C = \bigcup_{i=1}^6 \{c_i\}\) and \(S\) has one parameter, \(\alpha\). Thus, we start the search for compatibility conditions. From the sixth and eighth equations in \(S\) we conclude that \(c_6 = c_7 = 0\). Therefore, replace \(C\) by \(C \setminus \{c_6, c_7\} = \bigcup_{i=1}^5 \{c_i\}\).

Set \(c_1 = 1\) and solve \(S\), which gives
\[
\{c_1 = 1, c_2 = 0, c_3 = 1, c_4 = 0, c_5 = -\frac{1}{2}, c_6 = 0, c_7 = 0\},
\]
without any constraint on the parameter \(\alpha\). Now, \(Z = \{c_2, c_4, c_6, c_7\}\) and \(C\) is replaced by \(C \cap Z = \{c_2, c_4\}\), with \(i' = 2\).

Set \(c_2 = 1\). This leads to an inconsistent system. Thus, \(C = C \setminus \{c_2\} = \{c_4\}\), with \(i' = 4\).

Set \(c_4 = 1\). This implies that \(\alpha = 0\). Hence, \(C = C \setminus \{c_4\} = \{\}\), and the procedure ends.
In summary: \( \rho = u^3 + u v^2 - \frac{1}{2} u_x v^2 \), without any constraint on \( \alpha \). This is the same density as for (2.16).

Computation of the density of rank 8 for (2.17) leads to the condition \( \alpha = 2 \) and density \( \rho_4 \) listed above. For \( \alpha = 2 \), system (2.17) reduces to the integrable case (2.16).

3. Applications

For systems with parameters, the algorithm described in Section 2 can be used to find the necessary conditions on the parameters so that the systems might have densities of fixed rank. If for certain parameters a system has a large number of conserved densities, it is candidate to be completely integrable. This is the major application of the algorithm, and also of our Mathematica program `condens.m`. The next examples illustrate the computer analysis of equations with parameters.

3.1. fifth-order Korteweg–de Vries equations

Consider the family of fifth-order KdV equations,

\[
\frac{u_t}{u} + \alpha u^2 u_x + \beta u_x u_{2x} + \gamma u u_{3x} + u_{5x} = 0,
\]

where \( \alpha, \beta, \gamma \) are non-zero parameters. Special cases of (3.1) are well known in the literature (Fordy and Gibbons, 1980; Hirota and Ito, 1983; Kupershmidt and Wilson, 1981; Satsuma and Kaup, 1977). Indeed, for \( \alpha = 30, \beta = 20, \gamma = 10 \), Eqn (3.1) reduces to the Lax (1968) equation. The SK equation, due to Sawada and Kotera (1974), and also Dodd and Gibbon (1977), is obtained for \( \alpha = 5, \beta = 5, \gamma = 5 \). The KK equation, due to Kaup (1980) and Kupershmidt, corresponds to \( \alpha = 20, \beta = 25, \gamma = 10 \), and the equation due to Ito (1980) arises for \( \alpha = 2, \beta = 6, \gamma = 3 \).

The scaling properties of (3.1) are such that

\[
\frac{u}{\partial t} \sim \frac{\partial^5}{\partial x^5},
\]

Using our algorithm, one easily computes the compatibility conditions for the parameters \( \alpha, \beta \) and \( \gamma \), so that (3.1) admits a polynomial conserved density of fixed rank.

The results are:

**RANK 2:** There are no conditions on the parameters. Indeed, Eqn (3.1) can be written as a conservation law with density \( \rho = u \).

**RANK 4:** The equation has density \( \rho = u^2 \) provided that

\[
\beta = 2\gamma.
\]

Only the Lax and Ito equations have this density.

**RANK 6:** The condition

\[
\alpha = -\frac{1}{10}(2\beta^2 - 7\beta\gamma + 3\gamma^2)
\]

guarantees the existence of the density of rank 6:

\[
\rho = (2\beta - \gamma)u^3 - 15u_x^2, \quad \gamma \neq 2\beta.
\]

The Lax, SK and KK equations have this density.

**RANK 8:** There are two branches:
(1) If the condition (3.2) holds then
\[ \rho = \alpha u^4 - 6\gamma uu_x^2 + 6u_{2x}^2. \]
This branch covers the Lax and Ito cases.

(2) If the condition
\[ \alpha = -\frac{1}{45}(2\beta^2 - 7\beta\gamma - 4\gamma^2) \] (3.4)
holds, one has
\[ \rho = (2\beta + \gamma)^2u^4 - 135(2\beta + \gamma)uu_x^2 + 675u_{2x}^2, \quad \gamma \neq -2\beta. \]
This branch covers the SK, KK and Ito equations.

**Rank 10:** The conditions
\[ \beta = 2\gamma \quad \text{and} \quad \alpha = \frac{3}{10}\gamma^2 \] (3.5)
must hold in order to have the density
\[ \rho = \gamma^3u^5 - 50\gamma^2u^2u_x^2 + 100\gamma uu_{2x}^2 - \frac{500}{7}u_{3x}^2. \]
Only the Lax equation has this density. Naturally, the following question arises: What are the necessary conditions for the parameters \( \alpha, \beta \) and \( \gamma \) so that (3.1) might have infinitely many polynomial conservation laws?

**Lax Case:** The Lax equation admits densities of rank 4 and 6. Combining the conditions (3.2) and (3.3) leads to
\[ \alpha = \frac{3}{10}\gamma^2 \quad \text{and} \quad \beta = 2\gamma, \] (3.6)
fixing \( \alpha \) and \( \beta \) in terms of \( \gamma \) (the latter parameter can always be scaled to 1). The conditions in (3.6) lead to the Lax equation, which is known to be completely integrable and has infinitely many conserved densities.

**SK–KK Cases:** The SK and KK equations admit densities of rank 6 and 8. Combining (3.3) and (3.4) gives
\[ \alpha = \frac{1}{5}\gamma^2 \quad \text{and} \quad \beta = \gamma, \] (3.7)
\[ \alpha = \frac{1}{5}\gamma^2 \quad \text{and} \quad \beta = \frac{5}{2}\gamma. \] (3.8)
The conditions in (3.7) lead to the SK equation, and those in (3.8) to the KK equation. Both equations are indeed integrable and have an infinite sequence of conserved densities.

**Ito Case:** The Ito equation admits only three densities. Combining (3.2) and (3.4) gives
\[ \alpha = \frac{2}{9}\gamma^2 \quad \text{and} \quad \beta = 2\gamma. \] (3.9)
These conditions reduce (3.1) to the Ito equation which is not integrable.

Using our code we were able to retrieve all known integrable cases in the family (3.1), as given in e.g. Mikhailov et al. (1987). The Lax equation comes as no surprise since it is the fifth-order symmetry of the KdV equation (2.4). Our program confirms that,
Computation of Conserved Densities 605

apart from the KdV equation, there are only two non-trivial integrable equations in the family (3.1), namely the KK and SK equations. Some of the conserved densities are listed in Tables 1 and 2. A proof for the gaps (with period three) between conservation laws for the SK and KK equations is given in Sanders and Wang (1996). Mathematical rigorous proofs for the existence of conservation laws of such evolution equations are given in Sanders and Wang (1995b, 1996).

3.2. seventh-order Korteweg–de Vries equations

Consider the family of seventh-order KdV equations,

\[ u_t + au^3 u_x + bu_x^3 + c au_x u_{2x} + d u_x^2 u_{3x} + e u_{2x} u_{4x} + f u_x u_{5x} + gu_{5x} + u_{7x} = 0, \]

where \( a, b, c, d, e \) and \( g \) are non-zero parameters. Special cases of (3.10) are known in the literature. For \( a = 252, b = 63, c = 378, d = 126, e = 63, f = 42, g = 21, \) Eqn (3.10) reduces to the SK–Ito equation, due to Sawada and Kotera, and Ito (1980). For \( a = 140, b = 70, c = 280, d = 70, e = 70, f = 42, g = 14, \) Eqn (3.10) belongs to the KdV hierarchy studied by Lax (1968). For \( a = 2016, b = 630, c = 2268, d = 504, e = 252, f = 147, g = 42, \) the equation belongs to the Kaup–Kupershmidt hierarchy (Bilge, 1992; Gerdt, 1993). The scaling properties of (3.10) are

\[ u \sim \partial^2 \partial_x^2, \quad \frac{\partial}{\partial t} \sim \partial^7 \partial_x^7. \]

With \texttt{condens.m}, we computed the compatibility conditions for the parameters, so that conserved densities of fixed rank exist. The results are:

**Rank 2:** \( \rho = u \) if \( b = \frac{1}{2}(c - 2d) \). True for both the Lax and SK–Ito equations.

**Rank 4:** One has \( \rho = u^2 \) if \( b = c - 3d \) and \( e = 5(f - 2g) \); only true for Lax’s equation.

**Rank 6:** There are three branches. If one of the following three sets of conditions holds:

\[
\begin{align*}
    a &= \frac{1}{294}(28bf - 42cf + 120f^3 - 42bg + 63cg - 720f^2g + 1350fg^2 - 810g^3), \\
    d &= \frac{5}{14}(2f^2 - 9fg + 9g^2) \quad \text{and} \quad e = \frac{14c}{2f - 3g},
\end{align*}
\]

or

\[
\begin{align*}
    a &= \frac{1}{294}(28bf - 42cf - 40f^3 - 42bg + 63cg + 240f^2g - 450fg^2 + 270g^3), \\
    d &= -\frac{5}{42}(2f^2 - 9fg + 9g^2) \quad \text{and} \quad e = \frac{2}{3}\left(\frac{21c + 20f^2 - 90fg + 90g^2}{2f - 3g}\right),
\end{align*}
\]

or

\[
\begin{align*}
    a &= \frac{1}{42}(4bf - 6cf + 24df - 6bg + 9cg - 36dg), \\
    e &= \frac{14c - 14d + 10f^2 - 45fg + 45g^2}{2f - 3g},
\end{align*}
\]

then

\[ \rho = (2f - 3g)u^3 - 21u_x^2, \quad f \neq \frac{3}{2}g. \]

**Rank 8:**

\[
\begin{align*}
    \rho &= (40c + 10f^2 - 45fg + 20g^2)u^4 - 252(2f - g)uu_x^2 + 1764u_{2x}^2, \\
    c &\neq -\frac{1}{49}(10f^2 - 45fg + 20g^2),
\end{align*}
\]
provided that
\[ a = -\frac{1}{882}(49cf + 10f^3 - 196cg - 85f^2g + 200fg^2 - 80g^3), \]
\[ b = \frac{1}{42}(14c + 2f^2 - 9fg + 4g^2), \quad d = \frac{1}{42}(7c - 2f^2 + 9fg - 4g^2), \quad \text{and} \]
\[ e = 2fg - g. \]
Combining the conditions for rank 2 through rank 8 yields
\[ a = 4\frac{1}{147}g^3, \quad b = \frac{1}{7}g^2, \quad c = \frac{6}{7}g^2, \quad d = \frac{2}{7}g^2, \quad e = 3g, \quad f = 2g, \quad (3.11) \]
or
\[ a = 5\frac{98}{147}g^3, \quad b = \frac{5}{14}g^2, \quad c = \frac{10}{7}g^2, \quad d = \frac{5}{14}g^2, \quad e = 5g, \quad f = 3g, \quad (3.12) \]
or
\[ a = 4\frac{1}{147}g^3, \quad b = \frac{5}{14}g^2, \quad c = \frac{9}{7}g^2, \quad d = \frac{2}{7}g^2, \quad e = 6g, \quad f = \frac{7}{2}g. \quad (3.13) \]
In each case all of the parameters are fixed in terms of \( g \), which could be scaled to 1. The Eqns (3.11), (3.12), and (3.13) belong to the SK–Ito, Lax and KK hierarchies, respectively, and they are all integrable (Bilge, 1992). Some of the conserved densities for the SK–Ito and Lax equations are listed in Table 3 for the choices \( g = 21 \) and \( g = 14 \), respectively.

The conditions in (3.13) are satisfied for \( a = 2016, \quad b = 630, \quad c = 2268, \quad d = 504, \quad e = 252, \quad f = 147, \quad g = 42 \), and the first five conserved densities of (3.10), corresponding to the KK hierarchy, then are:
\[ \rho_1 = u, \quad \rho_2 = u^3 - \frac{1}{8}u_x^2, \quad \rho_3 = u^4 - \frac{3}{4}uux^2 + \frac{1}{48}uw^2, \]
\[ \rho_4 = u^6 - \frac{35}{8}u^3u_x^2 - \frac{31}{384}u^4 + \frac{17}{32}u^2u_x^2 + \frac{37}{1152}u_x^3 - \frac{5}{192}uux^2 + \frac{1}{2304}u^4w, \]
\[ \rho_5 = u^7 - \frac{63}{8}u^4u_x^2 - \frac{287}{320}u^5u_x^4 + \frac{161}{120}u^3u_x^2 + \frac{97}{640}u^2u_x^2u_x^2 + \frac{737}{2880}u^3u_x^3 - \frac{53}{480}u^2u_x^2 - \frac{133}{5760}u^2u_xu_x^2 + \frac{1}{240}u^4u_x^2 - \frac{1}{17280}u^5u_x^2. \]

Our results merely confirm the computer analysis of (3.10) carried out with REDUCE by Bilge (1992) and Gerdt (1993).

4. More Examples

4.1. Nonlinear Schrödinger equation

The nonlinear Schrödinger (NLS) equation (Ablowitz and Clarkson, 1991),
\[ iq_t = q_{2x} + 2|q|^2q = 0, \quad (4.1) \]
arises as an asymptotic limit of a slowly varying dispersive wave envelope in a nonlinear medium and, as such, has significant applications in nonlinear optics, water waves, and plasma physics. Equation (4.1) is known to be completely integrable, and together with the ubiquitous KdV equation (2.4), is one of the most studied soliton equations.
Table 1. Conserved densities for Sawada–Kotera and Lax fifth-order equations.

<table>
<thead>
<tr>
<th>Density</th>
<th>Sawada–Kotera equation</th>
<th>Lax equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho_1$</td>
<td>$u$</td>
<td>$u$</td>
</tr>
<tr>
<td>$\rho_2$</td>
<td>—</td>
<td>$\frac{1}{2} u^2$</td>
</tr>
<tr>
<td>$\rho_3$</td>
<td>$\frac{1}{3} u^3 - u_x^2$</td>
<td>$\frac{1}{3} u^3 - \frac{4}{5} u_x^2$</td>
</tr>
<tr>
<td>$\rho_4$</td>
<td>$\frac{1}{4} u^4 - \frac{2}{3} uu_x^2 + \frac{2}{3} u_x^2$</td>
<td>$\frac{1}{4} u^4 - \frac{1}{4} uu_x^2 + \frac{1}{16} u_x^2$</td>
</tr>
<tr>
<td>$\rho_5$</td>
<td>—</td>
<td>$\frac{1}{5} u^5 - u^2 u_x^2 + \frac{1}{5} uu_x^2 u_x^2 - \frac{1}{10} u_x^3 u_x^2$</td>
</tr>
<tr>
<td>$\rho_6$</td>
<td>$\frac{1}{6} u^6 - \frac{26}{9} u^3 u_x^2 - \frac{16}{25} u_x^4 + 6 u_x^2 u_x^2$</td>
<td>$\frac{1}{6} u^6 - \frac{5}{3} u^3 u_x^2 - \frac{5}{25} u_x^4 + \frac{1}{5} u_x^2 u_x^2$</td>
</tr>
<tr>
<td>$\rho_7$</td>
<td>$\frac{1}{7} u^7 - 9 u^4 u_x^2 - \frac{54}{35} uu_x^4 - \frac{27}{25} u^3 u_x^2$</td>
<td>$\frac{1}{7} u^7 - \frac{5}{3} u^4 u_x^2 - \frac{5}{25} uu_x^4 + \frac{1}{5} u_x^3 u_x^2$</td>
</tr>
<tr>
<td>$\rho_8$</td>
<td>—</td>
<td>$\frac{1}{8} u^8 - \frac{7}{9} u^4 u_x^2 - \frac{35}{12} u^2 u_x^4 + \frac{7}{5} u^3 u_x^2$</td>
</tr>
</tbody>
</table>
Table 2. Conserved densities for Kaup–Kupershmidt and Ito fifth-order equations.

<table>
<thead>
<tr>
<th>Density</th>
<th>Kaup–Kupershmidt equation</th>
<th>Ito equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \rho_1 )</td>
<td>( u )</td>
<td>( u )</td>
</tr>
<tr>
<td>( \rho_2 )</td>
<td>( \frac{1}{3} u^3 - \frac{1}{8} u_x^2 )</td>
<td>( \frac{1}{2} u^2 )</td>
</tr>
<tr>
<td>( \rho_3 )</td>
<td>( \frac{1}{4} u^4 - \frac{1}{16} u u_x^2 + \frac{3}{64} u_x^2 )</td>
<td>( \frac{1}{4} u^4 - \frac{9}{4} u u_x^2 + \frac{3}{4} u_x^2 )</td>
</tr>
<tr>
<td>( \rho_4 )</td>
<td>( \frac{1}{5} u^6 - \frac{31}{128} u^3 u_x^2 - \frac{31}{256} u^4 + \frac{21}{64} u^2 u_x^2 )</td>
<td>( \frac{1}{5} u^6 - \frac{31}{128} u^3 u_x^2 - \frac{31}{256} u^4 + \frac{21}{64} u^2 u_x^2 )</td>
</tr>
<tr>
<td>( \rho_5 )</td>
<td>( \frac{1}{5} u^6 - \frac{13}{32} u^3 u_x^2 - \frac{13}{64} u^4 + \frac{11}{32} u^2 u_x^2 )</td>
<td>( \frac{1}{5} u^6 - \frac{13}{32} u^3 u_x^2 - \frac{13}{64} u^4 + \frac{11}{32} u^2 u_x^2 )</td>
</tr>
<tr>
<td>( \rho_6 )</td>
<td>( \frac{1}{7} u^7 - \frac{27}{64} u^4 u_x^2 - \frac{369}{256} u u_x^4 + \frac{69}{32} u^3 u_x^2 )</td>
<td>( \frac{1}{7} u^7 - \frac{27}{64} u^4 u_x^2 - \frac{369}{256} u u_x^4 + \frac{69}{32} u^3 u_x^2 )</td>
</tr>
<tr>
<td>( \rho_7 )</td>
<td>( \frac{1}{9} u^8 - \frac{45}{256} u^5 u_x^2 - \frac{369}{256} u u_x^4 + \frac{69}{32} u^3 u_x^2 )</td>
<td>( \frac{1}{9} u^8 - \frac{45}{256} u^5 u_x^2 - \frac{369}{256} u u_x^4 + \frac{69}{32} u^3 u_x^2 )</td>
</tr>
<tr>
<td>( \rho_8 )</td>
<td>( \frac{1}{9} u^8 - \frac{14}{32} u^5 u_x^2 - \frac{14}{64} u^4 + \frac{11}{32} u^2 u_x^2 )</td>
<td>( \frac{1}{9} u^8 - \frac{14}{32} u^5 u_x^2 - \frac{14}{64} u^4 + \frac{11}{32} u^2 u_x^2 )</td>
</tr>
<tr>
<td>( \rho_9 )</td>
<td>( \frac{1}{10} u^9 - \frac{11}{32} u^6 u_x^2 - \frac{477}{256} u^3 u_x^2 - \frac{10441}{512} u^4 )</td>
<td>( \frac{1}{10} u^9 - \frac{11}{32} u^6 u_x^2 - \frac{477}{256} u^3 u_x^2 - \frac{10441}{512} u^4 )</td>
</tr>
</tbody>
</table>
Table 3. Conserved densities for Sawada–Kotera–Ito and Lax seventh-order equations.

<table>
<thead>
<tr>
<th>Density</th>
<th>Sawada–Kotera–Ito equation</th>
<th>Lax equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho_1$</td>
<td>$u$</td>
<td>$u$</td>
</tr>
<tr>
<td>$\rho_2$</td>
<td>$\frac{1}{3} u^3 - \frac{1}{9} u_x^2$</td>
<td>$\frac{1}{3} u^3 - \frac{1}{6} u_x^2$</td>
</tr>
<tr>
<td>$\rho_3$</td>
<td>$\frac{1}{4} u^4 - \frac{3}{4} u u_x^2 + \frac{1}{12} u_x^2$</td>
<td>$\frac{1}{4} u^4 - \frac{1}{2} u u_x^2 + \frac{1}{6} u_x^2$</td>
</tr>
<tr>
<td>$\rho_4$</td>
<td>$\frac{1}{6} u^6 - \frac{25}{72} u^3 u_x^2 - \frac{17}{36} u u_x^4 + \frac{5}{3} u^2 u_x^2$</td>
<td>$\frac{1}{6} u^6 - \frac{5}{9} u^3 u_x^2 - \frac{5}{36} u u_x^4 + \frac{1}{9} u^2 u_x^2$</td>
</tr>
<tr>
<td>$\rho_5$</td>
<td>$\frac{2}{27} u_x^3 - \frac{7}{36} u u_x^2 + \frac{1}{2} u u_x^2$</td>
<td>$\frac{5}{27} u_x^3 - \frac{1}{12} u u_x^2 + \frac{1}{3} u x^2$</td>
</tr>
<tr>
<td>$\rho_6$</td>
<td>$\frac{1}{4} u^7 - 3u^4 u_x^2 - \frac{6}{3} u u_x^4 + \frac{10}{3} u^3 u_x^2$</td>
<td>$\frac{1}{4} u^7 - \frac{5}{2} u^4 u_x^2 - \frac{5}{2} u u_x^4 + \frac{3}{4} u u_x^2$</td>
</tr>
<tr>
<td>$\rho_7$</td>
<td>$\frac{32}{27} u_x^2 u_x^2 - \frac{20}{9} u u_x^4 - \frac{29}{18} u^2 u_x^2 - \frac{1}{2} u_x^3 u_x^2$</td>
<td>$\frac{1}{4} u^7 - \frac{1}{2} u^4 u_x^2 + \frac{1}{2} u u_x^4 - \frac{1}{12} u u_x^2$</td>
</tr>
<tr>
<td>$\rho_8$</td>
<td>$\frac{1}{8} u^8 - \frac{7}{9} u^4 u_x^2 - \frac{35}{27} u^2 u_x^4 + \frac{1}{8} u^4 u_x^2$</td>
<td>$\frac{1}{8} u^8 - \frac{7}{9} u^4 u_x^2 + \frac{1}{8} u^4 u_x^2$</td>
</tr>
</tbody>
</table>

Computation of Conserved Densities
There are two different ways to compute conserved densities for (4.1).

**METHOD 1.** One can replace (4.1) by
\[
\begin{align*}
    u_t - v_{2x} + 2v(u^2 + v^2) &= 0, \\
    v_t + u_{2x} - 2u(u^2 + v^2) &= 0,
\end{align*}
\]
where \( q = u + iv \). The scaling properties are such that
\[
\begin{align*}
    u \sim & v \sim \frac{\partial}{\partial x}, & \frac{\partial}{\partial t} \sim & \frac{\partial^2}{\partial x^2}. \n\end{align*}
\]
We computed seven conserved densities with our program, of which the first six are:
\[
\begin{align*}
    \rho_1 &= u^2 + v^2, & \rho_2 &= vu_x, & \rho_3 &= u^4 + 2u^2v^2 + v^4 + u_x^2 + v_x^2, & \rho_4 &= u^2vu_x + \frac{1}{3}u^3u_x + \frac{1}{6}v_xu_{2x}, \\
    \rho_5 &= v^6 + 3u^4u^2 + 3u^2v^4 + v^6 + 5u^2u_x^2 + 3u^2v_x^2 + 3u^2v_x^2 + 5v^2v_x^2 + 4uvu_xv_x \\
    &+ \frac{1}{2}u_{2x}^2 + \frac{1}{2}v_{2x}^2, & \rho_6 &= u^4vu_x + \frac{2}{3}u^2v^3u_x + \frac{1}{5}v^5u_x + \frac{1}{3}vu_x^2v_x + \frac{1}{3}u^2u_{2x}v_x + \frac{1}{3}u^2v_{2x}v_x + \frac{1}{3}vu_xv_{2x} \\
    &+ \frac{1}{30}u_{3x}v_{2x}.
\end{align*}
\]

**METHOD 2.** One could consider \( q \) and \( q^* \) as independent variables and add the complex conjugate of (4.1) to the NLS equation. Absorbing \( i \) in the scale of \( t \) then yields:
\[
\begin{align*}
    q_t - q_{2x} + 2q^2q^* &= 0, \\
    q^*_t + q^*_{2x} - 2q^*q &= 0.
\end{align*}
\]

According to the procedure described at the end of Step 1 in Section 2.3, our program computes the constraints
\[
w(q) = 2 - w(q^*), \quad w(q^*) = w(q^*), \quad w \left( \frac{\partial}{\partial t} \right) = 2,
\]
and sets the left-hand sides of the first two equal to one. Then, it solves the equations
\[
1 = 2 - w(q^*), \quad 1 = w(q^*),
\]
piece by piece. Both lead to the solution \( w(q^*) = 1 \). Hence, the program continues with \( w(q) = w(q^*) = 1 \).

For rank 2 through rank 6 our program produces the conserved densities:
\[
\begin{align*}
    \rho_1 &= qq^*, & \rho_2 &= q^*q_x, & \rho_3 &= q^*q^* + q_xq^*_x, & \rho_4 &= qq^*q_x + \frac{1}{3}q_xq^*_x, \\
    \rho_5 &= q^3q^3 + \frac{1}{2}q^2q^2q^2 + 4qq^*q_xq^*_x + \frac{1}{2}q^2q_x^2 + \frac{1}{2}q^2q^*_x^2.
\end{align*}
\]

Obviously, these two sets of conservation laws are connected (but not piece by piece) via a simple change of variables: \( u = \frac{1}{2}(q + q^*) \), \( v = \frac{1}{2i}(q - q^*) \).

The second method has the advantage that the conserved densities are expressed in
the original variable $q$ and it conjugate $q^*$. On the other hand, the conserved densities from Method 2 may not be independent.

4.2. NON-DISPERSIVE LONG WAVE SYSTEM

The non-dispersive long wave equations (Kupershmidt, 1985a)

\[
\begin{align*}
    u_t + vu_x + uw_x &= 0, \\
    v_t + u_x + vv_x &= 0,
\end{align*}
\]

is another example of an integrable system.

We use this example to illustrate how our code determines a free weight. Indeed, for (4.4), $w(u) = 2w(v)$, $w(v) = w(v)$, $w(\frac{\partial}{\partial t}) = 1 + w(v)$, with $w(v)$ as the only free weight. As described in Step 1 of the algorithm, the program sorts the right-hand sides of these constraints, sets their left-hand sides equal to one, and proceeds with solving

\[1 = w(v), \quad 1 = 2w(v), \quad 1 = w(v) + 1,\]

one by one. That leads to the choices $w(v) = 1$, $w(v) = \frac{1}{2}$, and $w(v) = 0$. Since the latter is zero it is incremented by one to get $w(v) = 1$.

The first choice, $w(v) = 1$, gives $w(u) = w(\frac{\partial}{\partial t}) = 2$. The second choice, $w(v) = \frac{1}{2}$, gives $w(u) = 1$, $w(\frac{\partial}{\partial t}) = \frac{3}{2}$. Another valid choice (not considered by our program) would be $w(v) = \frac{1}{3}$, $w(u) = \frac{1}{2}$, and $w(\frac{\partial}{\partial t}) = \frac{5}{2}$. Obviously, there are infinitely many fractional choices for $w(v)$. Recall that fractional weights and ranks are indeed allowed.

The program continues automatically with the smallest integer choice, $w(v) = 1$. Hence, $w(u) = 2$, or, symbolically,

\[u \sim \frac{\partial^2}{\partial x^2} \quad \text{and} \quad v \sim \frac{\partial}{\partial x}.
\]

For rank 1 through 8 we obtained the following densities:

\[
\begin{align*}
    \rho_1 &= v, & \rho_2 &= u, \\
    \rho_3 &= u v, & \rho_4 &= u^2 + u v, \\
    \rho_5 &= u^2 v + \frac{1}{3} u v^3, & \rho_6 &= u^3 + 3 u^2 v^2 + \frac{1}{2} u v^4, \\
    \rho_7 &= u^3 v + u^2 v^3 + \frac{1}{12} uv^5, & \rho_8 &= u^4 + 6 u^3 v^2 + 3 u^2 v^4 + \frac{1}{3} uv^6.
\end{align*}
\]

This set of densities remains the same for any valid choice of $w(v)$. Indeed, we could have computed the conserved density $\rho = uv$ with different choices of the free weight $w(v)$. This $\rho$ has rank $R = w(u) + w(v) = 3w(v)$. If we choose $w(v) = \frac{1}{2}$ then $\rho = uv$ has rank $R = \frac{3}{2}$. On the other hand, for the choice $w(v) = \frac{1}{3}$, this density has rank $R = \frac{4}{3}$.

In conclusion, choosing $w(v)$ differently does not affect the form of the desired densities, provided the rank of $\rho$ is also adjusted appropriately. Due to the superposition principle, the same argument can be made if $\rho$ is the sum of many terms, involving $x$-derivatives of the dependent variables.

4.3. three-component Korteweg–de Vries equation

Consider the three-component extension of the KdV equation (Kupershmidt, 1985b),

\[
\begin{align*}
    u_t - 6uu_x + 2vv_x + 2ww_x - u_{3x} &= 0, \\
    v_t - 2vu_x - 2uw_x &= 0, \\
    w_t - 2wu_x - 2uw_x &= 0,
\end{align*}
\]

(4.5)
which can be written as a bi-Hamiltonian system with infinitely many conservation laws. The scaling properties indicate that

\[ u \sim v \sim w \sim \frac{\partial^2}{\partial x^2}, \quad \frac{\partial}{\partial t} \sim \frac{\partial^3}{\partial x^3}, \]

and the first four densities for (4.5) are:

\[ \rho_1 = c_1 u + c_2 v + c_3 w, \quad \rho_2 = u^2 - v^2 - w^2, \quad \rho_3 = u^3 - uv^2 - uw^2 - \frac{1}{2} u_x^2, \]

\[ \rho_4 = u^4 - \frac{6}{5} u^2 v^2 + \frac{1}{5} v^4 - \frac{6}{5} u^2 w^2 + \frac{2}{5} v^2 w^2 + \frac{1}{5} w^4 - 2 uu_x^2 + \frac{1}{5} u_x^2 + \frac{4}{5} v u_x v_x + \frac{4}{5} w u_x w_x. \]

Obviously, from \( \rho_1 \) we can see that \( u, v \) and \( w \) are independent conserved densities.

5. Using the Program condens.m

We now describe the features, scope and limitations of our program condens.m, which is written in Mathematica syntax (Wolfram, 1996). The program condens.m has its own menu interface with 30 samples of data files. Users are assumed to have access to Mathematica (version 2.0 or higher). The code condens.m and the data files should be put in one directory.

5.1. The Menu Interface

After Mathematica comes up with ‘In[1]:=’, type

\[ \text{In[1]} := \text{<<condens.m} \]

to read in the code condens.m and start the program. Via its menu interface, the program will automatically prompt you for answers.

Example 5.1. Let us compute the density of rank 4 (provided it exists) for the Drinfel’d-Sokolov system (Ablowitz and Clarkson, 1991):

\[ u_t + 3 v v_x = 0, \]

\[ v_t + 2 v_{3x} + 2 u v_x + u_x v = 0. \] (5.1)

Since this example is in the menu, start the program and pick entry 25 from the menu.
30) Boussinesq System (d_bous.m)
nn) Next Page
tt) Your System
qq) Exit the Program
------------------------------------------
ENTER YOUR CHOICE: 25
Enter the rank of rho: 4
Enter the name of the output file: drisokr4.o

*********************************************************
WELCOME TO THE MATHEMATICA PROGRAM
by UNAL GOKTAS and WILLY HEREMAN
FOR THE COMPUTATION OF CONSERVED DENSITIES.
Version 3.0 released on February 24, 1997
Copyright 1996

*********************************************************

2
The normalized density \( \rho(x,t) \) is: \( u^2 \)

*********************************************************

The corresponding flux \( J(x,t) \) is: \( 2 u^2 - 2 u^{2,x} + 4 u^2 u^{2,xx} \)

*********************************************************

Result of explicit verification \( \rho_t + J_x = 0 \)

*********************************************************

At the end of computation, the normalized density and flux are available. In the absence of parameters, both are normalized according to the coefficient of the first term in the density. If there are parameters, the common denominators that have been multiplied through are shown. To see the density and flux in standard Mathematica notation, type \( \rho(x,t) \) or \( j(x,t) \). However, type \texttt{pdeform[\rho(x,t)]} or \texttt{pdeform[j(x,t)]} to see them in subscript notation.

Note that the form of the densities \( \rho \) is not unique. Densities can always be integrated by parts to obtain equivalent forms, modulo total derivatives. In Mathematica version 2.2, equivalent forms can be obtained via the command \texttt{Integrate[\rho(x,t),x]}.
5.2. PREPARING DATA FILES

To test systems that are not in the menu, prepare a data file in the format of our data files. Of course, the name for a new data file should not coincide with any name already listed in the menu, unless you intended to modify those data files.
Example 5.2. For the parametrized Hirota–Satsuma system (2.14) the data file reads:

(* start of data file d_phrsat.m *)

debug = False;

(* Hirota–Satsuma System with one parameter *)

eq[1][x,t] = D[u[1][x,t],t] - aa*D[u[1][x,t],[x,3]] - 6*aa*u[1][x,t]*D[u[1][x,t],x] + 6*u[2][x,t]*D[u[2][x,t],x];

eq[2][x,t] = D[u[2][x,t],t] + D[u[2][x,t],[x,3]] + 3*u[1][x,t]*D[u[2][x,t],x];

noeqs = 2;
name = "Hirota–Satsuma System (parameterized)";
parameters = {aa};
weightpars = {};

(* user can supply the rank of rho and a name for the output file *)
(* rhorank = 6; *)
(* myfile = "phrsatr6.o; *)

(* user can give the weights of u[1], u[2] and partial t *)
(* weightu[1]=2; weightu[2]=2; weight[t]=3; *)

(* user can give the form of rho. Here, for density of rank 6: *)
(* formrho[x,t] = {c[1]*u[1][x,t]^3 + c[2]*u[1][x,t]*u[2][x,t]^2 + c[3]*D[u[1][x,t],x]^2 + c[4]*D[u[2][x,t],x]^2}; *)

formrho[x,t] = {};

(* end of data file d_phrsat.m *)

Explanation of the lines in the data file:

debug = False;

No trace of internal computations, otherwise, set it *True*.

eq[k][x,t] = ...;

Give the kth equation of the system in *Mathematica* notation. Note that there is no == 0 at the end.

noeqs = 2;

Specify the number of equations in the system.
name = "Hirota-Satsuma System (parameterized)";

Pick a short name for the system. The quotes are essential.

parameters = \{aa\};

Give the list of the parameters in the system. If there are none, set parameters = \{\}.

weightpars = \{\};

Give the list of the parameters that are assumed to have weights. Note that weighted parameters are not listed in parameters, which is the list of parameters without weight.

(* rhorank = 6; *)

Optional; give the desired rank of the density. Useful if you want to work with the program less interactively (in batch mode).

(* myfile = "hirsatr6.o; *)

Optional; give a name of the output file. Useful for less interactive use of the program.

(* weightu[1]=2; weightu[2]=2; weight[t]=3; *)

Optional; specify a choice for some or all of the weights. The program then skips the computation of the weights, but still checks for consistency. Particularly useful if there are several free weights and non-interactive use is preferred.

formrho[x,t] = \{\};

The program will compute the form of \( \rho \) of the given rank.

formrho[x,t]={c[1]*u[1][x,t]^-3+c[2]*u[1][x,t]*u[2][x,t]^-2+c[3]*D[u[1][x,t],x]^2+c[4]*D[u[2][x,t],x]^2};

Alternatively, one could give a form of \( \rho \) (here for rank 6). The density must be given in expanded form and with coefficients \( c[i] \). The braces are essential. If \( \rho \) is given, the program skips both the computation of the weights and the form of the density. Instead, the code uses what is given and computes the coefficients \( c[i] \). This option allows one, for example, to test densities from the literature.

Anything within (* and *) are comments, and ignored by Mathematica.

Once the data file is ready, run it via the choice “tt) Your System” in the menu.

5.3. scope and limitations

Our program can handle PDEs that can be written as systems of evolution equations. The evolution equations must be polynomials in the dependent variables (no integral
Computation of Conserved Densities

terms). Only two independent variables (x and t) are allowed. No terms in the evolution equations should explicitly depend on x and t.

Theoretically, there is no limit on the number of evolution equations. In practice, for large systems, the computations may take a long time or require a lot of memory. The computational speed depends primarily on the amount of memory.

The program only computes polynomial conserved densities in the dependent variables and their derivatives, without explicit dependencies on x and/or t.

By design, the program constructs only densities that are uniform in rank. The uniform rank assumption for the monomials in \( \rho \) allows one to compute independent conserved densities piece by piece, without having to split linear combinations of conserved densities. Due to the superposition principle, a linear combination of conserved densities of unequal rank is still a conserved density. This situation arises frequently when parameters with weight are introduced in the PDEs.

The input systems may have one or more parameters, which are assumed to be non-zero. If a system has parameters, the program will attempt to compute the compatibility conditions for these parameters such that densities (of a given rank) exist.

The assumption that all parameters in the given evolution equation must be non-zero is necessary. As a result of setting parameters to zero in a given system of evolution equations, the weights and therefore the rank of \( \rho \) might change.

In general, the compatibility conditions for the parameters could be highly nonlinear, and there is no general algorithm to solve them. The program automatically generates the compatibility conditions, and solves them for parameters that occur linearly (see Section 3.2). Gröbner basis techniques could be used to reduce complicated nonlinear systems into equivalent, yet simpler, non-linear systems. For PDEs with parameters and when the system for the coefficients \( c_i \) is complicated, the program saves that system and its coefficient matrix, etc., in the file worklog.m. Independent from the program, the worklog files can later be analyzed with Mathematica functions.

The assumption that the evolution equations are uniform in rank is not very restrictive. If the uniform rank condition is violated, the user can introduce one or more parameters with weights. This also allows for some flexibility in the form of the densities. Although built up with terms that are uniform in rank, the densities do not have to be uniform in rank with respect to the dependent variables alone. This is illustrated in Example 2.2.

Conversely, when the uniform rank condition is fulfilled, the introduction of extra parameters (with weights) in the given PDE leads to a linear combination of conservation laws, not to new ones.

In cases where it is not clear whether or not parameters with weight should be introduced, one should start with parameters without weight. If this causes incompatibilities in the assignment of weights (due to non-uniformity), the program may provide a suggestion. Quite often, it recommends that one or more parameters be moved from the list of parameters into the list weightpars of weighted parameters.

For systems with two or more free weights, the user will be prompted to enter values for the free weights. If only one weight is free, the program will automatically compute some choices for the free weight, and eventually continue with the lowest integer or fractional value (see Examples 4.1 and 4.2). The program selects this value for the free weight; it is just one choice out of possibly infinitely many. If the algorithm fails to determine a suitable value, the user will be prompted to enter a value for the free weight.

Negative weights are not allowed, except for \( w(\frac{\partial}{\partial x}) \). If \( w(\frac{\partial}{\partial x}) < 0 \), the program will give a warning, but continue with the computations. Zero weights are allowed, but at
least one of the dependent variables must have positive weight. The code checks these conditions, and if they are violated the computations are aborted. Note that fractional weights and densities of fractional rank are permitted.

Our program is a tool in the search of the first half-dozen conservation laws. An existence proof (showing that there are indeed infinitely many conservation laws) must be done analytically, e.g. by explicitly constructing the recursion operator (Kodama, 1985; Sanders and Wang, 1995b, 1996) that connects conserved densities, or by computing high-order symmetries with Lie symmetry software (Hereman, 1996). If our program succeeds finding a large set of independent conservation laws, there is a good chance that the system of PDEs has infinitely many conserved densities and that the recursion operator could be constructed explicitly. If the number of conservation laws is 3 or less, most likely the PDEs are not integrable, at least not in that coordinate representation.

6. Other Software Packages

This section gives a review of other symbolic software for the computation of conserved densities, together with recent developments in this area.

6.1. SYMCD

The program SYMCD, written by Ito (1994), is an improved version of CONSD by Ito and Kako (1985). Both programs are in REDUCE. Similar to our program, SYMCD uses scaling properties to compute polynomial conserved densities for systems of any number of evolution equations with uniform rank. CONSD had a limit on the number of evolution equations. This limitation was removed in SYMCD. Evolution equations must be polynomial in the dependent variables and their derivatives, and variables with negative weight are not allowed. With REDUCE 3.5 on an IBM Risc 6000 work station, we tested the version of SYMCD released in 1996. Our test cases included equations (2.4), (2.12), (2.14), (3.1) and (4.5).

For systems with or without parameters, SYMCD gives the same conserved densities as our program (up to terms that can be converted via integration by parts). However, SYMCD does not properly handle systems with parameters. It stops after generating the necessary conditions on the parameters, which must be analyzed separately. Such analyses revealed that the conditions do not always lead to a density of fixed rank. Indeed, in solving for the undetermined coefficients, SYMCD considers all possible branches in the solution, irrespective of whether or not these branches lead to a conserved density, as confirmed by Ito (1996). Another major difference is that parameters with weights are not allowed in SYMCD, which restricts the scope of SYMCD to systems with uniform rank. In conclusion, our code is more sophisticated than SYMCD in handling systems with parameters and systems of non-uniform rank. For more information contact Ito at ito@puramis.amath.hiroshima-u.ac.jp.

6.2. DELiA

The PC package DELiA for Differential Equations with Lie Approach, developed in the period 1989–1991, is an outgrowth of the SCoLar project by Bocharov and Bronstein. DELiA, written in Turbo PASCAL by Bocharov (1991) and coworkers, is a commercial computer algebra system for investigating differential equations using Lie’s approach.
The program deals with symmetries, conservation laws, integrability and equivalence problems. It has a special routine for systems of evolution equations, which we used for computing conserved densities. We tested **DELiA 1.5.1** on a PC with Intel 486 processor and 16 MB of RAM. Our test cases included Eqns (2.4), (2.12), (2.14), (2.14) with $\alpha = 1/2$, (3.1) with arbitrary $\alpha$, $\beta = 20$ and $\gamma = 10$, (4.4) and (4.5).

For (2.4) and (2.14) with $\alpha = 1/2$, **DELiA** returned the same densities as the ones listed in this paper, up to terms that differ via integration by parts. With **DELiA**, one cannot compute densities for (2.12), (4.4), and (4.5). These systems are out of its class: the program requires second or higher-order spatial derivative terms in all equations. For systems with parameters, **DELiA** does not automatically compute the densities corresponding to the (necessary) conditions on the parameters. One has to use **DELiA**’s integrability test first, which determines conditions based on the existence of formal symmetries. Since these integrability conditions are neither necessary nor sufficient for the existence of conserved densities, one must further analyze the conditions manually. Once the parameters are fixed, one can compute the densities. For further information we refer to Bocharov at alexei@wri.com.

### 6.3. FS

The REDUCE program **FS** for “formal symmetries” was written by Gerdt and Zharkov (1990). The code **FS** can be applied to polynomial nonlinear PDEs of evolution type, which are linear with respect to the highest-order spatial derivatives and with non-degenerated, diagonal coefficient matrix for the highest derivatives. The algorithm in **FS** requires that the evolution equation are of order two or higher in the spatial variable. However, the formal symmetry approach does not require that the evolution equations are uniform in rank.

We tested **FS** with REDUCE 3.5 on an IBM Risc 6000 work station for Eqns (2.4), (2.12), (3.1), (4.4) and (4.5). We were unable to compute the densities for systems (2.12), (4.4), and (4.5), since **FS** is not applicable to such systems. For (2.4), **FS** gave the same densities as our program, up to terms that differ via integration by parts.

Like **DELiA**, applied to equations with parameters, **FS** computes the conditions on the parameters using the symmetry approach. For (3.1), **FS** and **condens.m** gave equivalent sets of compatibility conditions on the parameters. More information can be obtained from Gerdt at gerdt@jinr.dubna.su.

### 6.4. SOFTWARE UNDER DEVELOPMENT

In addition to the available software, several research groups are currently developing software for conserved densities.

Sanders and Wang at the Free University of Amsterdam are developing a software package in Maple and FORM to compute both conserved densities and recursion operators (Sanders and Roelofs, 1994; Sanders and Wang, 1995a). Their approach is more abstract and relies on the implicit function theorem. In contrast to our algorithm, their code makes no assumptions about the form of the conserved density. Further information can be obtained from Sanders at jansa@cs.vu.nl.

Wolf (1995) at the University of London is designing a package in REDUCE for the computation of conserved densities, which implements two methods. If the density is of fixed order, then the program constructs it directly. This method is currently limited
to two independent variables. In the second method the characteristic function of the
conservation law is constructed first, and the density and flux are recovered via integra-
tion by parts. There is no limitation on the number of independent variables for this
method. Both approaches use Wolf’s program CRACK for solving overdetermined sys-
tems of PDEs. See Hereman (1996) for a review of CRACK and for additional references
to Wolf’s work. Wolf’s algorithm is particularly efficient for showing the non-existence
of conservation laws of high order. In contrast to our program, it also allows one to
compute non-polynomial conserved densities. For further information contact Wolf at
T.Wolf@maths.qmw.ac.uk.

Ahner, Tschantz, and Cook at Vanderbilt University are working on a similar project in
Mathematica (Ahner, 1995). We have no details about their algorithm or implementation.
Contact Ahner at ahnerjf@ctrvax.vanderbilt.edu for further information.

Hickman (1996) at the University of Canterbury, Christchurch, New Zealand, has im-
plemented a slight variation of our algorithm in Maple. Instead of computing the differ-
ential monomials in the density by repeated differentiation, Hickman uses a tree struc-
ture combining the appropriately weighted building blocks. For further information, send
email to M.Hickman@math.canterbury.ac.nz.

7. Conclusions

A prototype of condens.m was used to compute conserved densities of a generalized
KdV equation due to Schamel (Verheest and Hereman, 1995), and a modified vector
derivative NLS equation (Willox et al., 1995). Based on the results obtained with the
software, integrability questions for these equations could be answered.

We offer the scientific community a Mathematica package to carry out the tedious
calculations of conserved densities for systems of nonlinear evolution equations. Details
about the algorithm and its implementation can be found in Göktaş (1996a), and Göktaş
and Hereman (1997). The code condens.m, together with several data and output files,
is available via anonymous FTP (Göktaş, 1996b).

Extensions of the algorithm presented in this paper towards PDEs with more than one
spatial variable, dynamical systems, and systems of differential-difference equations are
under development. Further information about extensions can be obtained via email to
ugoktas@mines.edu or whereman@mines.edu.

Acknowledgements

The authors are grateful to F. Verheest for many valuable comments and suggestions.
The Belgian National Fund for Scientific Research is thanked for a special research grant
which made possible the stay of W.H. at the University of Ghent, where this work was
started. Ü.G. appreciates the generous financial aid from the Turkish Government which
supported his studies in part. V. Gerdt, M. Hickman, M. Ito, J. Sanders and T. Wolf are
thanked for sharing information about their packages.

References


Originally received 15 May 1996
Accepted 12 May 1997