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Abstract

Most products and manufacturing systems (MS) have an inherent hierarchical structure. They are composed of multiple subsystems, such as 
machines, process components, or resources. In order to optimize the control parameters of such systems, manufacturing planners often follow 
a global black-box approach. The optimization, thus, neglects the hierarchical structure encoded in the model. All subsystems and their 
components have to meet individual constraints and show specific uncertainty in their output. By extracting the information, which modules 
violate the constraints, the optimization algorithm could focus on the parameters of this specific module. Moreover, the planner can define 
objectives evaluating the robustness or sensitivity of a specific solution based on the knowledge of the hierarchical dependencies and about the 
uncertainty in the outputs. To accomplish this, the structure of the optimized system must be known to the respective methods applied.
In this paper, the dependencies of the subsystems are defined by means of a tree structure. Based on this structure, different possibilities to 
define and solve the corresponding optimization problem are introduced. In addition, a concept for addressing the robustness of an MS with 
regard to the uncertainty of the components within the optimization model is proposed. As a practical example, a hot compaction process for 
manufacturing thermoplastic composites is formalized using the tree structure. Individual nonlinear empirical models simulate the input-output 
behavior of each subsystem. Based on this formalization, the results of single- and multi-objective optimization methods are compared and 
their strengths and weaknesses are discussed. 
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1. Introduction

The production industry has experienced a change from a 
supply-oriented to a demand-oriented design of products 
[1, 2]. An efficient adaptation of the manufacturing system 
and the available processes to the changing customer needs is 
an important requirement for industrial success [3].

Modular manufacturing systems (MS) may allow this 
flexibility to be achieved. By using individual models for each 
process or component (denoted as module in the following)
and defining general interfaces to the preceding and 
subsequent modules, the input-output behavior can be 
accurately modelled while providing flexibility with respect to
the combination of the individual modules. Moreover, 
problems can be localized within the MS, which assists in 
finding alternative solutions. In this context, the uncertainty in 

the MS represents an important factor, as it may lead to 
constraint violations, which are not regarded when considering 
only the production quality [4] under ideal conditions.

1.1. State of the art

In industrial practice, the planning of MS often relies on 
the experience of specific experts within the enterprise. 
Hence, research on externalizing the experiences and making 
it available for other employees has a long history [5].

The consideration of technology chains, i. e. sequences of 
processes a component has to run through before its 
completion, represents the first approach to utilize the concept 
of modularization during the formalization of the MS for 
planning tasks [6]. The planning engines behind these systems 
are usually based on qualitative rules. Usually, no continuous
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Nomenclature

di desirability value for specification i
n number of samples for uncertainty quantification
pset target press force of the press
p local normal press force of the press
tH uniform heating time
tM masked heating time
Fmax maximum force absorbed in a 10 J impact test
TIR target temperature of the IR radiator fields
TP,l target temperature of the left tool half
TP,r target temperature of the right tool half
TP local temperature of the pressing tool

Abbreviations

CMA-ES covariance-matrix-adaptation evolutionary strategy
DACE design and analysis of computer experiments
DI desirability index
IR infrared
MS manufacturing system
SMS S-metric-selection-based
EMOA evolutionary multi-objective algorithm
TI technological interface

objectives for applying optimization methods do exist. If key 
performance indicators are considered, statically stored 
information, e. g. based on the recommended parameters of 
the tool manufacturer, is integrated using cost factors for the 
different resources and requirements [7]. The effect of the 
process parameters is therefore neglected.

In order to allow these effect to be considered, flexible and 
accurate surrogate models for the modules or the process 
chain can be used to approximate the parameter-dependent 
input-output behavior. In this context, global optimization 
approaches usually consider the complete MS as a black box 
whose performance is optimized. The respective modelling 
approaches, such as neural networks [8-11] or finite element 
simulations [12], imply a huge experimental effort for training 
or calibrating the underlying empirical, phenomenological or 
analytical models.

In order to reduce the complexity of the modeling task,
which parameter space D d grows exponentially in the 
input dimension, Tönshoff et al. [13] have recommended the 
separated modeling of the processes within the process chain 
while considering the interactions between the process steps
by means of Technological Interfaces (TI). These interfaces 
encode properties of the tools or workpieces that result from 
previous processes, but have an impact on later process steps. 
The complexity of the modelling is reduced without 
significantly reducing the complexity of the system. The 
experiments of Denkena et al. [13-17] have shown that the 
results of the multi-objective optimization of a multi-stage 
process chain can be significantly improved by considering 
the technological interfaces in comparison to a separated 
modeling of the processes without interactions. The 
combination with a monitoring-based approach, in which the 
deviations between the specified and the achieved workpiece 

properties are measured after each process step, allows even 
compensation processes to be utilized [18].

In a hierarchical approach for modelling complex energy 
flows in MS [19], the optimization is based on the 
identification of unnecessary energy consumers in the process 
chain. Based on a retrofitting approach, the corresponding 
components are exchanged or removed and the reduction of 
the energy consumption is validated by simulating the process 
chain with the new modules on a global level. In contrast to 
the approach proposed in this paper, the process parameters 
are fixed and therefore neglected during the optimization.

1.2. Scope and structure

In this paper, a framework for encoding, modelling and 
optimizing modular MS is presented and validated. The 
design and the methodical foundations of the framework are 
presented in section 2. To show the validity of the proposed 
approach, the modeling of the process chain for 
manufacturing self-reinforced thermoplastic single-polymer 
composites is considered within as a case study in section 3.
Based on the implementation of the case study into the 
framework, the results of some selected algorithms and 
objective functions are presented and discussed in section 4. 
In section 5, these results are summarized and an outlook on 
further enhancements to the framework is presented.

2. Framework

In this section, the framework representing the basis for the 
flexible encoding and optimization of arbitrary MS is 
presented. The effects of the inputs of each module (process 
parameters and TIs) are integrated based on individual 
empirical models (section 2.1). A special focus is put on the 
flexibility and generality of the approach. Hence, arbitrary 
dependencies can be encoded using a tree-based structure 
(section 2.2). Based on the obtained hierarchy, the framework 
allows the uncertainty propagation within the MS to be 
quantified. To accomplish this, model-based uncertainty 
estimates and Monte Carlo sampling are combined (section 
2.3). The foundations for the actual optimization of the MS 
are introduced in sections 2.4 and 2.5. First, objective 
functions evaluating the accordance with the specifications of 
the final product and the effect of uncertainty are defined 
(section 2.4). Then, the flexible single- and multi-objective 
optimization algorithms implemented for optimizing the 
defined objective functions are presented.

2.1. Modelling of the input-output behavior of the modules

An independent module represents each process or 
component of the MS. Within each module, an empirical 
model describes the input-output behavior of the respective 
process or component. As inputs, the model considers all 
process parameters to be adjusted for the respective process 
step or component. In addition, the model regards the 
dependencies to the preceding modules by means of TIs (cf. 
section 2.2.). They act as additional inputs of the model.
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Empirical models are based on training data, which is 
interpolated or regressed in order to provide a continuous 
prediction. The required data is usually obtained by 
simultaneous and subsequent measurements in real-world 
experiments or by simulation studies. An experiment is hence 
either monetary or computationally expensive. 

In order to provide accurate predictions based on a
minimum number of experiments, models of the Design and 
Analysis of Computer Experiments (DACE) [20] were 
enhanced with regard to the requirements of manufacturing 
processes [21]. These models explicitly consider the 
uncertainty of the response with regard to both the model and 
the observation/measurement of the property value. 
Consequently, they not only allow the product properties and 
constraints to be predicted under ideal conditions, but also the 
respective uncertainty to be estimated.

2.2. Modelling of the process chain

In most cases, the process chains are the result of a 
synthesis process [22]. Within the synthesis, manufacturing 
functions are determined, and then modules implementing 
these functions are selected [21]. To accomplish this, either 
manufacturing engineers or expert systems can be used [23].

In line with this approach, the manufacturing functions 
determine the specification of the actual MS. For each 
manufacturing function, the user has to define a module 
implementing the respective functionality, where it is 
sometimes possible to omit single functions explicitly. If a 
specific module is selected, a link to the empirical surrogate 
models of its outputs, the dependencies to other (preceding) 
modules and the intervals for the process parameters have to 
be specified. The dependencies of each module have to be 
known as the TI inputs of the empirical model require a 
specification based on the outputs of the preceding modules. 
Examples for those outputs are either material properties 
determined by preceding processes or process conditions 
implied by integrated components. The framework 
automatically derives the optimization and evaluation 
sequence, as well as the formulation of the optimization 
problem, based on the local dependence information. 

In the framework, it is assumed that the MS does not 
contain cycles, i. e. no modules are visited more than once. 
Consequently, the hierarchy expressed by the local 
dependence information can be formally expressed using a
tree data structure [24]. For generating the tree, first the user 
explicitly specifies the core module. This module usually 
determines the final properties of the product. It hence acts as 
the root of the directed hierarchy tree, also called out-tree.
From the root module, the framework performs a depth first 
search [24] following the dependencies specified in each 
module until it ends up in modules without any dependencies.
These modules are denoted as leaves with regard to the tree 
structure. The algorithm buffers the visited modules with 
more than one child module in a queue [24]. The search 
continues until the buffer is empty. As the number of 
dependencies can be arbitrary, neither the tree is balanced nor 
is the number of child modules fixed.

2.3. Uncertainty quantification

The hierarchy tree derived using the methods of section 2.2 
provides the basis for analyzing the propagation of 
uncertainties within the MS. Starting from the leaves, the 
outputs and the corresponding uncertainties are predicted. In 
case, the output follows a Gaussian normal distribution, as for 
instance if using the DACE models [20] proposed in 
section 2.1, only the corresponding mean and standard 
deviation are stored. Otherwise, a characteristic sample is 
created by means of Monte Carlo simulation; i. e. a finite set 
of random numbers from the respective distribution is created.
As the size n of the set determines the approximation quality 
with regard to the estimated performance and the evaluation 
time during the optimization (cf. section 2.4), the user can 
specify n beforehand according to his specific needs. 

Based on the distributions obtained from the leaf modules,
the framework generates a set of inputs for evaluating the 
modules of the next level. To accomplish this, the framework 
combines all normally distributed inputs in order to compute a 
multivariate normal sampling of size n. In the current version,
independence of the inputs is assumed. Whereas, this 
assumption can be easily dropped for the normally distributed 
inputs, the final sample combining normal and non-normal 
inputs would be much harder to generate. In the current 
version of the framework, this sample is directly constructed
by combining the samples describing the remaining inputs 
with the multivariate one generated before.

In order to assess the uncertainty of the respective outputs, 
all samples are evaluated by means of the empirical model. 
The resulting output distribution can then be used to 
characterize the expected outcome and its uncertainty/ 
robustness. Moreover, the so-obtained non-normal samples
can also be used as input(s) for the subsequent module.

2.4. Problem formulation

In order to optimize the MS, a formalization into a 
mathematical optimization problem is required. The 
framework performs this formalization automatically based 
on the specification of the final product and the constraints 
defined for each module. The user only needs to provide 
target values and tolerance ranges for each important property 
of the product. The framework then constructs continuous 
functions evaluating the agreement of the final product after 
the core module with each specification by means of 
Harrington’s two-sided desirability function [25]. After this 
transformation, all the properties are comparable and on the 
same scale (di [0, 1]). Hence, a scalarization of the 
specification into an aggregated objective function is possible. 
As recommended for desirability functions, the desirability
index (DI), i. e. the geometric mean of the individual 
desirability values di, is computed. This aggregation offers the 
advantage to prefer balanced solutions while penalizing 
products violating a specification. The latter property is 
utilized to directly integrate the constraints into the objective 
function. If at least one constraint within at least one of the 
modules is violated, the aggregated value is set to zero. 
Hence, no special constraint handling is required.
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In case the quantification of the uncertainty is desired, the 
above procedure is applied for each design point in the input 
sample of the core module (cf. section 2.3.). As a result, n
different desirability values are available. To allow the trade-
off between the chance and risk of the MS to be judged by the 
user, different statistics can be computed over the sample. 
Typical choices are the mean, the standard deviation, and 
higher percentiles of the sample (for instance the 95 %-tile). 
The latter provides a threshold value, which is obtained within 
at least the given percentage within the sample.

2.5. Optimization methods

Due to the before-mentioned possibility to choose between 
different statistics of the sample and with a view to future 
requirements, such as energy efficiency, the framework is 
capable of performing single- and multi-objective 
optimization tasks. Whereas the former results in the proposal 
of a single optimum solution, the latter obtains a set of 
alternatives, from which the user can choose the desired setup.

For solving single-objective optimization problems, the
MATLAB implementation of the Covariance-Matrix-
Adaptation Evolutionary Strategy (CMA-ES) [26] including a 
restart-based adaptation of the population size [27] is applied.
The CMA-ES is a well-established black box optimization 
approach, which has shown very good results in many 
benchmark studies [26, 27].

In a multi-objective optimization, the MATLAB 
implementation of the S-Metric-Selection-based Evolutionary 
Multi-Objective Algorithm (SMS-EMOA) [28] is used in 
order to approximate the set of optimal trade-offs. This 
algorithm has proven its superiority to other EMOA within 
comprehensive benchmark studies [29].

3. Case Study

The practicability of the framework is demonstrated based 
on a case study. In this study, a multi-station laboratory press 
including preceding heating steps for producing functionally 
graded products is modelled using the framework. 
Functionally graded products are made of a monomaterial, but 
are characterized by a continuous distribution of properties 
over at least one of the three spatial dimensions [23]. To 
accomplish this, complex thermo-mechanically coupled 
processes lead to differential thermo-mechanical loads 
inducing local transformations of the microstructure [23].

Based on the concept of functional gradation, products can 
be tailored to the requirements of their application. The 
framework assists the product planner during the process of 
planning and optimizing the process chain for manufacturing 
a specified component. In this case study, it is assumed that 
the synthesis of the process chain, i. e. the choice of the 
modules implementing the manufacturing functions, has 
already been performed – for instance by using the procedure 
proposed by Biermann et al. [22]. For the obtained MS, the 
properties of the final component are optimized with regard to 
the expected agreement, and also with regard to the 
robustness against stochastic variations within the MS. The 
latter is done for the first time in this paper.

Fig. 1. Photographs of the MS considered in the case study.

The considered MS is shown in Fig. 1. It consists of two 
stations, three process steps, and four modules: uniform 
infrared (IR) preheating, partial masking and compression 
molding with a special molding tool. The first two steps are 
performed within the preheating station (a) directly connected 
to the press station (b). In the first process step, the layered 
textiles fixed within the sheet frame (6) are heated by IR-
radiation (1) with target temperature TIR and heating time tH.
For initiating the second process step, two rectangular 
masking sheets (2) made of aluminum are integrated between 
the radiators (1) and the frame (6), and the masking time TM

begins. The masking sheet shadows half of the surfaces in 
order to provide a thermal gradient into the component. After 
the masking time tM is over, the sheet frame is automatically 
transferred to the press (b). Once in the press, the force-
controlled compression molding with target press force pset

starts automatically.
The press offers a modular design allowing different 

molding tools to be integrated using the clamping area (3) and 
the corresponding mold carrier (4). The molding tool mainly 
determines the geometry of the final composite, but also the 
local normal press force and temperature during the molding 
process. The latter is particularly important with regard to the 
thermomechanical processing for manufacturing functionally 
graded products. Isolation plates (5) avoid thermal creeping 
into the clamping area.

The molding tool considered in the case study combines 
two separately heatable zones with target temperatures TP,l

and TP,r. In the center of the tool, a triangular insert with a 
height of 47.25 mm and an opening angle of 110° results in a 
reduced normal press force of p = 0.696 pset due to the 
distribution of the axially applied force at the angle section.
The distribution of the temperature and the normal press force
are shown in Fig. 2 for an exemplary setting of TP,l, TP,r and 
pset. The task of the case study is to find the parameter values 
for the modules of this specific MS (preheating, masking, 
press, molding tool) robustly resulting in the best possible 
agreement with an exemplary specification of the final 
product while meeting all the constraints of the individual 
modules.

Based on the geometry of the molding tool, a triangular 
component of size 350 mm 350 mm was defined. As target 
property, the local impact resistance of the component, 
measured by the maximum force Fmax absorbed within a 10 J 
impact experiment [21] had to be functionally graded. The 
respective gradation was motivated by potential future 
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Fig. 2. Design of the molding tool and distribution of temperature TP and the 
normal press force p over the tool for the exemplary process parameter setting 

pset = 4 kN, TP,l = 170 °C, and TP,r = 190 °C .

Fig. 3. Comparison of the target property values of the final product in the 
case study and the obtained ones based on the optimized parameter settings.

applications as interior door panels [30]. For the left flat part
of the product, a high Fmax = 3 kN was specified. The left half 
of the angle section should have a linear gradient starting with 
the high Fmax and ending with Fmax = 2.25 kN. The right part
of the angle section should be more impact resistant 
(Fmax = 3 kN), whereas the right flat part had to provide the 
lowest Fmax = 2 kN. A tolerance of 0.5 kN was allowed for all 
specifications. This target specification is shown in Fig. 3.

4. Results

The input-output behavior of each of the four modules was 
internally described using DACE surrogate models [20]. 
Details on the experimental designs, the formal aspects of the 
models, and the experimental validation can be found in [21]. 

For the given MS, the compression molding process was 
defined as the core process step. Starting the depth first search 
from this module, the tree structure shown in Fig. 4 was 
obtained. The modules of processes or tools without
predecessor or subcomponents were identified as leaves and 
were thus evaluated first. The masked preheating module was 

Fig. 4. Tree structure and optimization sequence for the MS of the case study.

buffered during the depth first search of the left path in Fig. 4. 
It is hence scheduled next per definition. The core process 
was evaluated as the last component in order to consider the 
influence of all its components and predecessors.

In the first optimization task considered, the uncertainty 
propagation was neglected. Only the predicted values of the 
TIs were passed to the parent processes of the module tree. 
Based on this formulation, the single-objective optimization
using the CMA-ES results in a DI of 0.62, which corresponds 
to a good overall agreement with the specification.

In the second step, the uncertainty propagation was 
considered within a multi-objective optimization of both, the
maximization of the mean and the minimization of the
standard deviation over a sample of size n = 10 constructed 
using the methods of section 2.3. Compared to the evaluation 
based on the ideal TI values, the mean DI over the sample 
decreases to 0.59. The standard deviation of the DI values 
within the sample amounts to 0.038, thus, explaining the loss 
with regard to the single-objective evaluation.

The multi-objective optimization of both indicators by 
means of the SMS-EMOA resulted in the approximation of 
optimal trade-offs shown in Fig. 5. Despite using a population 
of 100 solutions, the SMS-EMOA found only seven 
nondominated trade-offs.  As could be expected, the solution 
obtained by the CMA-ES represented an extreme solution. 
None of the candidates in the approximation (black dots in 
Fig. 5) provides a mean DI close to the one of the CMA-ES. 
These observations suggest evidence that both objective 
functions strongly correlate and that the elaborated adaptive 
variation applied within the CMA-ES is superior to the rather 
static one of the SMS-EMOA using real-coded genetic 
operators with fixed probabilities and step sizes.

Despite the potential problems in the variation of the 
solutions, the SMS-EMOA returned a set of trade-offs that 
significantly reduce the standard deviation within the DI 
values of the sample while only slightly deteriorating the 
mean. Moreover, the trade-offs show a strong knee towards 
the ideal point in the lower right corner of Fig. 5. The black 
arrow indicates the a-posteriori selected solution. This 
solution reduced the standard deviation to 0.013 – one third of 
the value of the CMA-ES solution. At the same time, the 
mean value was reduced to 0.52, which corresponds to a 
reduction of only 12 %.

Technologically, the solution selected from the trade-offs 
of the SMS-EMOA reduced the press force pset from 
pset = 6 kN to pset = 3.6 kN and the press temperatures TP,l and
TP,r from TP,l = 182.1 °C and TP,r = 183.5 °C to TP,l = 180.9 °C 
and TP,r = 179.9 °C. At the same time, it increases the

Fig. 5. Approximation of the optimum trade-offs obtained by the SMS-
EMOA. Red color highlights the solution of the single-objective CMA-ES.



164   Tobias Wagner and Dirk Biermann  /  Procedia CIRP   41  ( 2016 )  159 – 164 

preheating time and makes use of the masking (tM = 21 s
instead of tM = 0 s). These changes reduce the variation in the 
pressing temperatures TP, which mainly determine the 
properties of the material [21]. They avoid the partial melting 
of the fibers and therewith the loss of the self-reinforcement. 
As shown in Fig. 3, also the overall variation within the 
values of Fmax is lower for the SMS-EMOA solution.

5. Summary and Conclusion

In this paper, a framework for the multi-level modelling 
and optimization of hierarchical systems was proposed. The 
framework was applied to a case study on a MS for 
manufacturing functionally graded thermoplastic composites. 
It was shown that the internal algorithms for single- and 
multi-objective optimization are capable of optimizing small-
size MS as the one considered in the case study. By using the 
methods for uncertainty quantification and propagation 
implemented in the framework, optimum trade-offs between 
the mean performance and its variation could be 
approximated. This allowed the decision maker an informed 
choice to be performed. In the considered case study, the 
variation could be reduced by 67 % while only 12 % were lost 
with regard to the mean performance.

In future work, the framework will be applied to MS 
involving more components and levels. To accomplish this, 
the generation of solutions within the SMS-EMOA will be 
improved. The availability of multi-objective optimization 
algorithms allows other objectives, such as energy efficiency, 
throughput, and costs, to be considered, as soon as models for 
these indicators do exist.
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