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Abstract

A prospective study was conducted during an 8-month period, from August 2006 to April 2007, to describe the epidemiology of Staphylo-

coccus aureus-associated infections. In addition, the molecular characteristics, antimicrobial susceptibilities and antibiotic resistance deter-

minants were identified in S. aureus isolates from hospitals and the community in Vladivostok, Russia. Among the 63 S. aureus isolates

eligible for this study, methicillin resistance was observed in 48% (n = 30). Hospital-acquired strains accounted for 93% (28/30) of all

methicillin-resistant S. aureus (MRSA) isolates. The major MRSA clone (sequence type (ST) 239, staphylococcal cassette chromosome mec

(SCCmec) type III, Panton–Valentine leukocidin (PVL)-negative, with two related staphylococcal protein A gene (spa) types (types 3 and

351)) represented 90% of all of the MRSA isolates. This clone was multidrug-resistant, and 41% of isolates showed resistance to rifampi-

cin. Community-acquired MRSA isolates (n = 2) were categorized as ST30, SCCmecIV, spa type 19, and PVL-positive, and as ST8,

SCCmecIV, of a novel spa type 826, and PVL-negative. Eight different STs were detected among methicillin-susceptible S. aureus (MSSA)

isolates, of which 55% were PVL-positive. One MSSA clone, which was categorized as ST121, spa type 273, and PVL-positive, caused fatal

community-acquired pneumonia infections. The strains predominantly isolated in hospitals in Russia belonged to the multidrug-resistant

Brazilian/Hungarian ST239 MRSA clone; however, this clone has new antibiotic susceptibilities. Additionally, the emergence of PVL-

positive MSSA strains with enhanced virulence was observed, warranting continued surveillance.
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Introduction

Staphylococcus aureus is of special concern because of its abil-

ity to cause a number of life-threatening conditions and its

widening resistance to currently available antimicrobial drugs

[1]. Methicillin-resistant S. aureus (MRSA), which harbours

the staphylococcal cassette chromosome mec (SCCmec), has

become a leading cause of hospital-acquired infections world-

wide, accounting for >60% of S. aureus isolates in US hospi-

tals [2]. Molecular epidemiological studies have shown the

spread of several MRSA clones internationally, in the hospital

setting. These epidemic hospital-acquired MRSA (HA-MRSA)

clones have been identified as the Archaic/Iberian (sequence

type (ST) 247, SCCmecI), Brazilian/Hungarian (ST239,

SCCmecIII), Berlin (ST45, SCCmecIV), New York/Japan (ST5,

SCCmecII), paediatric (ST5, SCCmecIV), EMRSA-15 (ST22,

SCCmecIV) and EMRSA-16 (ST36, SCCmecII) clones [3].

Since the mid-1990s, MRSA infection in healthy individuals

who do not have any of the known risk factors for MRSA

has increased. These community-acquired MRSA (CA-MRSA)

strains have a different genetic background from the

HA-MRSA strains, belong mainly to (ST1 (USA400; SCCme-

cIV), ST8 (USA300; SCCmecIV), ST30 (SCCmecIV), ST59

(USA1000; SCCmecIV), and ST80 (SCCmecIV), and are often

associated with the production of Panton–Valentine leuko-

cidin (PVL) [4]. PVL has been implicated in the pathogenesis

of severe infections caused by CA-MRSA, especially pneu-

monia [5].
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Methicillin-sensitive S. aureus (MSSA) isolates show greater

genetic diversity than MRSA isolates, and they provide a pool

of organisms for the emergence of new MRSA clones [6].

Hence, knowledge of the molecular characteristics of MSSA

is essential for controlling the potential emergence of new

epidemic MRSA clones.

Data on the antimicrobial resistance of S. aureus in Russia

have been reported [7], but the data on clonality, virulence

gene profiles and genetic determinants of antibiotic

resistance remain incomplete. The aims of this study were to

analyze the genetic characteristics of both community-

acquired and hospital-acquired MRSA and MSSA strains

isolated in Vladivostok, Russia, and to evaluate the antimicro-

bial susceptibilities of the isolates and the presence of

antibiotic resistance genes.

Materials and Methods

Bacterial strains

S. aureus isolates were collected from paediatric and adult

inpatients and outpatients using a systematic random sam-

pling method at four hospital laboratories in Vladivostok (the

largest city in the Primorsky region of Russia), from August

2006 to April 2007. The laboratories served the four Vlad-

ivostok city hospitals, which housed a combined total of

2124 beds and had more than 5000 outpatient visits per

year. Each of the laboratories was asked to provide a maxi-

mum of two S. aureus isolates per week, excluding samples

that were taken for ‘screening’ purposes. Patient data on

demographics, reason for admission, history of prior hospi-

talization, outcome, site of S. aureus infection, and site of

sample collection, and information on healthcare risk factors

for MRSA infection, were collected using a standard case

report form. HA-MRSA and CA-MRSA infections were

defined as described previously [8]. This study was approved

by the Ethics Committee of the Vladivostok City Hospital.

S. aureus isolates were identified in accordance with offi-

cial Russian guidelines, using Gram staining, analysis of cata-

lase production, a tube coagulase test in 5% rabbit plasma,

and a lecithinase test performed on mannitol–salt agar. After

confirmation of the identity of the strains at the Division of

Bacteriology, Niigata University, Japan, using standard identifi-

cation procedures [9], and exclusion of duplicate isolates col-

lected from the same patient, 63 (of 170) S. aureus isolates

were eligible for study. Data on the basic demographics of

the patients and the clinical origin of S. aureus infection are

shown in Table 1.

Positive controls for PCR assays were kindly provided by

T. Yamamoto (Division of Bacteriology, Niigata University,

Japan). S. aureus ATCC 29213 was used as a quality control

strain in the MIC experiments.

Genotyping

Coagulase typing was performed using a coagulase typing kit

(Denka Seiken Co. Ltd, Tokyo, Japan), according to the man-

ufacturer’s instructions. Pulsed-field gel electrophoresis

(PFGE) was performed using a CHEF DR III apparatus (Nip-

pon, Bio-Rad Laboratories) after SmaI digestion (Takara Bio

Inc., Japan) to characterize all S. aureus isolates, as described

previously [10]. Multiplex PCR-based protocols for allotyping

the accessory gene regulator (agr) and SCCmecI–IV and for

SCCmecIV subtyping (IVa, IVb, IVc, and IVd) were performed

as previously described, using reference strains [11–13].

Staphylococcal protein A gene (spa) typing was performed

using the eGenomics software package (http://tools.egenomics.

com/) [14]. Multilocus sequence typing of all 30 MRSA isolates

and 19 selected MSSA isolates was performed as described

elsewhere [15].

Virulence gene analysis by PCR-based assays

PCR-based assays were performed as described elsewhere

[16] for the following genes: four haemolysin genes (hla,

hld, hlg, and hlg-v), two leukocidin genes (lukM and lukE),

18 staphylococcal enterotoxin (se) genes (sea–see and seg–

ser), toxin shock syndrome toxin 1 (tst), three exfoliative

toxin (et) genes (eta, etb and etd), and 11 adhesin genes

(icaA, icaD, cna, eno, fnbA, fnbB, ebpS, clfA, clfB, fib, and

bbp).

Susceptibility testing

Susceptibility testing of bacterial strains was performed

using the agar dilution method according to the CLSI

recommendations [17]. The tested antimicrobials included

penicillin G, oxacillin, ampicillin, cefazolin, ceftazidime,

cefotaxime, cefaclor, imipenem, meropenem, gentamicin,

kanamycin, rifampicin, ciprofloxacin, levofloxacin, norfloxa-

cin, trimethoprim, sulphamethoxazole, clindamycin, erythro-

mycin, clarithromycin, azithromycin, linezolid, vancomycin,

teicoplanin, chloramphenicol, doxycycline, minocycline, and

tetracycline. The results of the susceptibility testing for

streptomycin, fusidic acid and fosfomycin were interpreted

in accordance with the recommendations of the Antibiotic

Committee of the French Microbiological Society [18]. The

susceptibility testing results for mupirocin were interpreted

according to the manufacturer’s recommendations [19].

The antimicrobial agents were gifts from their manufactur-

ers. Inducible resistance to clindamycin was detected using

the D-test with erythromycin (15 lg) and azithromycin

(15 lg) disks [20].
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Drug resistance gene analysis

Genes conferring resistance to b-lactams (mecA), tetracycline

(tetK and tetM), aminoglycosides (aac6¢/aph2) and macrolides

and lincosamide (ermA, ermB, ermC, and msrA/B) were

detected using PCR assays [20–22]. For fluoroquinolone

resistance, mutations in gyrA (for DNA gyrase) and grlA

(for topoisomerase IV) were detected with the primer

set gyrA-F (5¢-CAGTGAAATGCGTGAATC-3¢) and gyrA-R

(5¢-CAATATCTTCCATTAACTCAGC-3¢), and the primer

set grlA-F (5¢-GTGCATTGCCAGATGTTC-3¢) and grlA-R

(5¢-TACCTTGAATAATACCACCAG-3¢), respectively. These
primer sets were designed on the basis on the gene

sequences of MSSA strain 476 (GenBank accession number

NC_002593). Screening for mutations in rpoB, which confer

resistance to rifampicin, was performed as previously

described [23].

Statistical analysis

Relationships between categorical variables were analyzed by

the chi-square test or Fisher’s exact test if 20% of the

expected values were <5. A p-value of <0.05 was considered

to be statistically significant.

Results

Characterization of S. aureus isolates

Six coagulase types were detected among the 63 S. aureus

isolates: types IV, V, VII, VI, II, and III, representing 30 (48%),

16 (25%), seven (11%), five (8%), three (5%) and two (3%)

isolates, respectively (Fig. 1). Fourteen different PFGE types

(PFTs) were distinguished within the 63 S. aureus isolates

(Fig. 1). The 30 MRSA isolates fell into four PFTs (B, D, E,

and F). In contrast, the 33 MSSA isolates showed greater

diversity than the MRSA isolates. Ten different PFTs (A, C,

G, H, I, J, K, L, M, and N) were identified within the MSSA

group, and included three PFTs that were split into subtypes

(C, G, and I).

The agr typing allowed 42 (67%), 17 (27%) and four (6%)

of the 63 S. aureus isolates to be classified into agr groups 1,

4, and 3, respectively (Fig. 1). Nearly all of the MRSA isolates

(29/30) belonged to agr group 1. Two SCCmec types were

identified among the 30 mecA-positive isolates. Twenty-seven

(90%) of the S. aureus isolates were SCCmecIII and three

(10%) were SCCmecIVc (Table 2). Among the 63 isolates, 21

spa types were identified (Fig. 1). Twelve of the spa types

were already recorded in the spa database (http://tools.

egenomics.com/), and nine were novel types: 825, 826, 827,

828, 829, 830, 979, 980, and 981.

Finally, 11 ST types were identified, belonging to nine clo-

nal complexes. One MSSA isolate had a novel ST, ST1211

(Fig. 1).

Clonal characterization of MRSA isolates

On the basis of epidemiological characteristics, 28 HA-MRSA

and two CA-MRSA isolates were identified (Table 2). The

major MRSA clone was exclusively HA-MRSA and comprised

90% of the isolates (27/30). Although PFGE identified two

PFTs (D and E), both PFTs belonged to ST239, SCCmecIII.

PFTs D and E corresponded to spa type 3 (n = 16) and spa

type 351 (n = 11), respectively. Data on the virulence gene

profile and antimicrobial resistance are shown in Table 2.

TABLE 1. Basic demographics of

patients and clinical origin and site

of acquisition of 63 Staphylococcus

aureus infections in Vladivostok,

Russia, August 2006 to April 2007

Characteristics

Total no. (%)
of patients/
infections, n = 63

Value for group (%)

p-Value
MRSA,
n = 30 (48)

MSSA,
n = 33 (52)

Patients
Gender
Female 21 (33) 8 (27) 13 (39) 0.2845
Male 42 (67) 22 (73) 20 (61)

Age
Mean years ± SD (range) 34.70 ± 20.03 (0–68) 41.00 ± 2057 (0–68) 28.97 ± 17.96 (0–68)

Age group (years)
0–34 30 (48) 10 (33) 20 (61) 0.0304a

35–68 33 (52) 20 (67) 13 (39)
Clinical origin of infections
Wound infection 33 (52) 21 (70) 12 (36) 0.0076a

Abscess (skin and soft tissue) 16 (26) 3 (10) 13 (39) 0.0094a

Pneumonia 9 (14) 3b (10) 6b (18) 0.4788
Bacteraemia 2 (3) 1b (3) 1b (3) 1
Joint infection 2 (3) 1 (3) 1 (3) 1
Peritonitis 1 (2) 1b (3) 0 0.4762

SD, standard deviation. Among three methicillin-resistant S. aureus (MRSA) pneumonia cases, only one had a fatal out-
come; among six methicillin-susceptible S. aureus (MSSA) pneumonia cases, four were of community origin and all
four had fatal outcomes.
aSignificant differences.
bCases with a fatal outcome.
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Strains belonging to spa type 351 were characteristically resis-

tant to rifampicin and were isolated from all of the hospitals

participating in this study. The molecular characterization and

drug resistance profiles of the minor MRSA clones are shown

in Table 2.

Clonal characterization of MSSA isolates

There were 33 MSSA isolates, separated into 17 (52%) HA-

MSSA and 16 (48%) CA-MSSA strains (Table 3). The major

MSSA clone comprised 48% of the isolates (16/33); they

were primarily community-acquired (12 CA-MSSA and four

HA-MSSA), and shared two PFTs (G and H). This clone was

ST121, with six related spa types (828, 466, 287, 830, 829,

and 827), which exhibited deletion and/or insertion of some

repeats or point mutations in one of the repeats (Fig. 2).

Notably, 57% (4/7) of isolates of the PFT H spa type 287

were community-acquired and caused pneumonia in patients,

who had a mean age of 17.75 years. All of these community-

acquired pneumonia cases were fatal. In spite of the

difference in spa types, all isolates of this ST121 MSSA

clone shared the same virulence gene pattern, and were

PVL-positive. The molecular characterization of the minor

MSSA clones is shown in Table 3.

In terms of drug resistance, 85% (28/33) of the MSSA

isolates were resistant to penicillin and ampicillin. The

MSSA isolates of hospital origin exhibited more antibiotic

resistance than those of community origin. On the basis

of the double-disk diffusion test results, all erythromycin-

resistant and clindamycin-susceptible isolates showed an

inducible macrolide–lincosamide–streptogramin B pheno-

type.

Drug resistance genes and sequence analysis

All phenotypically oxacillin-resistant isolates carried the mecA

gene, and all of the gentamicin/kanamycin-resistant isolates

possessed the aacA/aphD gene (Tables 2 and 3). The constit-

utive macrolide–lincosamide–streptogramin B phenotype and

the erm(A) gene predominated among the erythromycin-

resistant MRSA isolates (27/29), whereas the inducible

phenotype and the erm(C) gene were found in all of the

erythromycin-resistant MSSA isolates (7/7).

DNA sequencing of the rifampicin resistance-determining

region of the rifampicin-resistant isolates revealed an H481N

amino acid substitution.

Discussion

Reported here are the molecular characterization and anti-

microbial susceptibilities of S. aureus isolates obtained from
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FIG. 1. SmaI macrorestriction patterns of 63 Staphylococcus aureus isolates from four hospital laboratories in Vladivostok, Russia and their genetic

types. The pulsed-field gel electrophoresis (PFGE) types (PFTs) were defined by ‡80% similarity (UPMAG, Dice). Isolates with PFGE patterns with simi-

larity greater than 95%were considered to belong to the same PFT. PFGE patterns of one representative isolate from each PFT are shown. The number

of isolates in each PFT cluster is shown on the left side of the dendogram. The molecular characteristics of each bacterial strain are listed in Tables 2

and 3. *The novel spa type. **The novel sequence type (ST). MRSA, methicillin-resistant Staphylococcus aureus; MSSA, methicillin-susceptible S. aureus.
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outpatients and inpatients at four hospital laboratories in

Vladivostok, Russia over an 8-month period in 2006–2007.

One major HA-MRSA ST239, SCCmecIII clone, resembling

the Brazilian/Hungarian clone, circulated in hospitals in

Russia. The Brazilian/Hungarian clone accounts for 70–80%

of the MRSA strains in the world, and its broad distribution

may be due to its advantageous properties with respect to

other clones, such as an enhanced ability to form biofilm and

a tendency to acquire genes that confer resistance to

different classes of antimicrobial agents [24].

In this study, the Brazilian/Hungarian clone was multidrug-

resistant, which is in agreement with previous reports. More-

over, all of the HA-MRSA ST239-III, spa type 351 strains

isolated in this study were also resistant to rifampicin. All

rifampicin-resistant HA-MRSA ST239 isolates had the same

H481N substitution in the rifampicin resistance-determining

region. These observations suggest that it is the rifampicin-

resistant Brazilian/Hungarian MRSA clone that is spreading

through hospitals in Russia. Rifampicin is inexpensive, has a

broad spectrum of antimicrobial activity, and is used in clini-

cal practice in Russia when the aetiological agent of an infec-

tion is not yet confirmed and/or when Mycobacterium

tuberculosis is suspected [25]. However, when rifampicin is

used as monotherapy, S. aureus quickly develops resistance

by selection for a point mutation that causes structural mod-

ifications in the cellular target of the drug. Therefore, rifam-

picin should be retained for the treatment of life-threatening

S. aureus infections, e.g. necrotizing fasciitis, meningitis, or

infections of bone and orthopaedic implants, but should not

be used in monotherapy.

All HA-MRSA ST239 isolates belonging to the major

MRSA clone were resistant to sulphamethoxazole, in con-

trast to the other MRSA clones (ST8 and ST30) and all of

the MSSA clones isolated in this study. This result suggests

that sulphamethoxazole might serve as a phenotypic marker

with which to screen for the major HA-MRSA ST239 clone

in Russia.

Also isolated from both community-acquired and hospital-

acquired infections was the PVL-negative ST8 MRSA clone.

The molecular characteristics of this clone were similar to

those of the Lyon clone (ST8, SCCmecIV), which is present

throughout hospitals in France, where it replaced the previ-

ously dominant gentamicin-resistant Iberian clone (ST247,

SCCmecI) [26]. Although the prevalence of this clone is cur-

rently low in Russia, the tendency of this clone to replace other

clones warrants its continuous monitoring in the coming years.

PVL is considered to be a marker of CA-MRSA infections

in some countries. In this study, only one CA-MRSA isolate

was PVL-positive. In contrast to PVL-positive MRSA, an

exceptionally high prevalence (55%) of PVL-positive MSSAT
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isolates were found. These were represented by a dominant

ST121 clone with high diversity in their spa types. These

observations suggest that PVL-positive ST121 MSSA strains

have the potential for epidemic spread in Russia.

Furthermore, in this study, the ST121, spa type 287 MSSA

clone caused community-acquired pneumonia in young

patients, resulting in 100% mortality. This clone contains sev-

eral genes that mediate adhesion (e.g. cna and bbp) and toxin

genes (PVL and egc, which encodes at least five superantigens,

including staphylococcal enterotoxins G, I, M, N, and O).

Sequence analysis of ST121, spa type 287 MSSA isolates

revealed an R176H substitution in the PVL gene (the ‘H vari-

ant’ PVL) (data not shown). Recent reports suggested that

the ‘H variant’ of PVL was associated with high virulence and

mortality in a murine pneumonia model [27]. In contrast,

Bubeck Wardenburg et al. [28] failed to observe a significant

difference in virulence in a mouse pneumonia model that

examined the ‘R variant’ PVL strains. Further studies are

needed to clarify the pathogenesis of S. aureus pneumonia,

but clinicians should take PVL production into account in the

therapeutic management of community-acquired S. aureus

pneumonia in Russia.

Some of the MSSA isolates had genetic backgrounds that

were identical to those found in pandemic MRSA clones.

Some examples of this include the following: ST45 MSSA

(PFT I), which shared the same ST as the MRSA Berlin clone;

ST1 MSSA (PFT J and PFT N), which had a genetic back-

ground identical to the Western Australian MRSA-1 clone;

ST5 MSSA (PFT L), which corresponded to the New York/

Japan clone; and clone ST30 MSSA (PFT A), which was a sin-

gle-locus variant of the MRSA Southwest Pacific clone. These

observations strongly suggest that MSSA strains are impor-

tant both as causative agents of infections and as a potential

reservoir of epidemic MRSA clones.

In conclusion, the Brazilian/Hungarian MRSA clone, which

was resistant to nine groups of antimicrobials, including

rifampicin, was found to be dominant in the hospital settings

in Russia. Routine detection of this clone in clinical laborato-

ries can be easily performed by detection of its resistance to

sulphamethoxazole. Among the MSSA strains collected for

this study, there was a high prevalence of the PVL gene in

community isolates, which was a predictor of poor prognosis

in patients with CA-MSSA pneumonia. These clones should

be closely monitored, because of their apparently enhanced

virulence, which makes them a substantial public health

threat.
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