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Abstract

We consider

P±u= 92t u−/u± F(u) = 0;

where F(u) = au+f(u) with a¿ 0 and f(0) = 0. For the Cauchy problem of P+ if a¿ 0, every nontrivial
solution oscillates for any initial data. On the other hand for the Cauchy problem of P− if a¿ 0, the solution
does not change its sign for some initial data, namely it has nonoscillation property.
c© 2003 Elsevier B.V. All rights reserved.

1. Introduction

We treat the following PDEs in this paper

P±u= 92t u−/u± F(u) = 0:

The semilinear term F is de:ned by

F(u) = a(x; t)u+ f(u);

where a(x; t)¿ 0, and f∈C1 and f(0) = 0.

Example. F(u) = au+ |u|p−1u with p¿ 1.
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We consider the following Cauchy problem:

P(±) =
{

P±u= 0 in Rn × I;

u(x; 0) = u0(x); 9tu(x; 0) = u1(x) in Rn;

where I = [0; T ) with T6∞.
We shall discuss the change of the signs(+;−) of a solution u(x; t), namely oscillation property.

Our aim is to show the following two facts:

1. Let a¿ 0. For any initial data every nontrivial strong solution u of P(+) is oscillatory in some
sense for the space dimension n¿ 1.

2. Let the space dimension n be n= 1; 2; 3. For some initial data a solution u of P(−) with a¿ 0
is nonoscillatory.

Up to this time the following three subjects have been investigated in Oscillation Problem for the
Cauchy problem or the initial-boundary value problem.

1. Global oscillation property (GOP). Let t0 be any :xed positive number. There is such a :nite
time interval J of which left-end point is t0 and its length |J| depends on a0 de:ned below that
meas:{(x; t)∈� × J=u(x; t)¿ 0}¿ 0 and meas:{(x; t)∈� × J=u(x; t)¡ 0}¿ 0,

2. Pointwise oscillation property (POP). For any :xed x0 ∈�, there exists {tn} ⊂ R such that tn → ∞
as n → ∞ and u(x0; tn)u(x0; tn+1)¡ 0,

3. Nonoscillation property (NOP). There exists some constant t0 ∈R such that u(x; t) does not change
its sign for any t ¿ t0 and any x∈�.

Refer to [2,4,11,12] for GOP, and to [4,12–14] for POP. In those papers oscillation problems have
been considered in a bounded �. For NOP refer to [15].
In this paper we shall discuss only GOP and NOP to the Cauchy problem P(±).

2. Global oscillation property

In this section we consider

P(+) =

{
P+u= 0 in Rn × R+;
u(x; 0) = u0(x); 9tu(x; 0) = u1(x) in Rn:

We shall show only GOP for P(+) with a(x; t)¿ 0. For that purpose we set some assumptions.

Assumption 2.1. The Cauchy problem P(+) in this section has a strong solution and the solution
exists globally in time.

On existence of strong and global solutions of P(+) see [4,6,7] and [9].

Assumption 2.2. (1) F(u) = a(x; t)u+ f(u); a(x; t)¿∃a0(const:)¿ 0.
(2) f(s)s¿ 0 and f(0) = 0 for ∀s∈R.
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Assumption 2.3. Let u be a solution of P(+). Let t0 be any :xed nonnegative number. If ((u(x; t0);
9t(u(x; t0)) ≡ 0, then u(x; t) ≡ 0.

We apply the function �(x) introduced in [2] to show GOP. They used �(x) to show GOP for
the Cauchy problem of a linear wave equation. We use it for the semilinear problem.
First the function  (x) is de:ned by

 (x) := (1 + |x|2)−�; �¿
n
2
; x∈Rn:

 has the following properties and these are proved by elementary calculation.

1.  ∈H 2 ∩ C∞,
2. / (x) = 1

1+r2 {2�(2�+ 2− n)− 4�(�+1)
1+r2 } (x); r = |x|,

3. ∃M ¿ 0 such that |/ (x)|6M (x).

Then we set

�(x) =  (
√

�=Mx): (2.1)

Thus we have

Lemma 2.1. Let � be any positive number. There exists �∈H 2∩C∞ and �¿ 0 such that −/�¿−
�� in Rn.

Theorem 2.1. Let J be any interval with |J|¿ �=
√
a0. Then for any nontrivial solution u of P(+)

GOP holds.

Proof. The proof on the linear case was written in [2].
We take � as a0¿�¿ 0. U (t) is de:ned by U (t)=

∫
Rn u(x; t)�(x) dx. Then by applying the Green

formula

U ′′(t) =
∫
Rn
92t u(x; t)�(x) dx =

∫
Rn
{/u− au− f(u)}� dx

=
∫
Rn
{u/�− au�− f(u)�} dx: (2.2)

If u¿ 0, from Lemma 2.1 − ∫
Rn u/� dx¿ − �

∫
Rn u� dx = −�U . We take some :nite interval

K = [t0; T ]. Without loss of generality we can put t0 = 0. Therefore K = [0; T ]. Assume u¿ 0 in
Rn×K and u(x; 0)¿ 0 in Rn. Then U (t)¿ 0 in K and

∫
Rn f(u)� dx¿ 0. Thus from

∫
Rn P+u� dx=0

and (2.2) we have

0¿U ′′ + (a0 − �)U: (2.3)
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We put !=
√
a0 − � and T = �=!. By elementary calculation we have

0¿
∫ T

0
(U ′′ + (a0 − �)U ) sin!t dt = !(U (T ) + U (0)): (2.4)

Because of U (0)¿ 0, U (T )6 0. This is contradiction. Hence there is a T06T such that U (T0)6 0.
Then the following two cases are considered:

1. P(+) has GOP in [0; T0],
or

2. u(x; T0) ≡ 0 and u(x; t)¿ 0 in the neighborhood of T0.

Let the case 2 come up. u(x; t) takes a minimum value 0 at t = T0 and so 9tu(x; T0) = 0. Hence
u(x; t) ≡ 0 and u is a trivial solution because of Assumption 2.3. Hence we have the case 1 only.
Because � is arbitrary, we can conclude the statement of the theorem.
When u¡ 0, we can repeat the same argument and get the theorem.

3. Nonoscillation property

We shall show the positivity of the nontrivial solution u(x; t) of P(−) with initial data imposed
on some conditions. Then we can maintain that NOP certainly holds. NOP of the Cauchy problem
has been proved for one space dimensional general semilinear wave equations including :rst order
derivatives in [15]. Here we show NOP for two or three space dimension case, mainly for two
dimension.
Now we treat P− in Rn × I , where I = [0; T ) with T6∞ and consider the problem

P(−) =
{

P−u= 0 in Rn × I;

u(x; 0) = u0(x); 9tu(x; 0) = u1(x) in Rn:
(3.1)

Assumption 3.1. Solutions in this section are suJciently smooth, i.e. C3-solutions. They may be
local solutions or global solutions. Initial data (u0; u1) ful:ll the requested regularity to assure the
regularity of the solutions.
Regarding existence of local or global solutions for P(-), refer to [1,3,5–7] and [9,10].

Assumption 3.2. The coeJcient a in F(u) = au + f(u) depends only on x∈Rn and a(x)¿ 0 for
∀x∈Rn,

Assumption 3.3. Let n= 2.

1. u0(x)¿ 0,
2. there exist a constant M ¿ 0 and a positive integer k ¿ 2 such that /u0(x)+F(u0(x))¿M=(1+

|x|)k for ∀x∈R2,
3. u1(x) = 0,
4. f(s) is C1-function and F ′(s) = a+ f′(s)¿ 0 for ∀s∈R.
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Theorem 3.1. Let n=2. Assume Assumption 3.1–3.3. Let u be a solution of P(-). Then u(x; t)¿ 0
and

1. 9tu(x; t)¿ M
(1+|x|)k

t
(1+t)k ,

2. u(x; t)¿ u0(x) + M
(1+|x|)k { 1

(k−2) (1− 1
(1+t)k−2 )− 1

(k−1) (1− 1
(1+t)k−1 )}.

Proof. Let x = (x1; x2); " = ("1; "2) and |x| =
√

x21 + x22. Dt(x) is the set {x∈R2=|x|¡t} in two
dimensional space.
Applying the well-known representation formula of a solution of the Cauchy problem for the

inhomogeneous wave equation, the suJciently smooth solution of P(-) satis:es

u(x; t) =
9
9t

1
2�

∫∫
Dt(")

u0(x + ")√
t2 − |"|2 d"1 d"2 +

1
2�

∫∫
Dt(")

u1(x + ")√
t2 − |"|2 d"1 d"2

+
1
2�

∫ t

0
d$

∫∫
Dt−$(")

F(u(x + "; $))√
(t − $)2 − |"|2 d"1 d"2: (3.2)

DiKerentiating P(-) by t, the solution u satis:es

9tu= F ′(u)9tu in R2 × I;

9tu(x; 0) = 0; 92t u(x; 0) = u2(x) in R2;
(3.3)

where u2(x) = /u0(x) + F(u0(x)). Noting u1(x) = 0, 9tu is given by

9tu(x; t) = I2(x; t) + I3(x; t); (3.4)

where

I2(x; t) =
1
2�

∫∫
Dt(")

u2(x + ")√
t2 − |"|2 d"1 d"2;

and

I3(x; t) =
1
2�

∫ t

0
d$

∫∫
Dt−$(")

F ′(u(x + "; $))9tu(x + "; $)√
(t − $)2 − |"|2 d"1 d"2:

Applying the polar coordinate ("1; "2) = rn with n = (cos %; sin %) to I2 and moreover putting
t2 − r2 = s2 with s¿ 0 , we get

I2(x; t) =
1
2�

∫ 2�

0
d%

∫ t

0
u2(x +

√
t2 − s2n) ds: (3.5)

By Assumption 3.3 we have∫ t

0
u2 ds¿

∫ t

0

M

(1 + |x +√
t2 − s2n|)k ds:
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Applying the elementary inequality

1
(1 + |x + y|)k ¿

1
(1 + |x|)k

1
(1 + |y|)k

to the above integral, we get∫ t

0
u2(x +

√
t2 − s2n) ds

¿
M

(1 + |x|)k
∫ t

0

ds

(1 +
√
t2 − s2)k

=
M

(1 + |x|)k
∫ �=2

0

t cos %
(1 + t cos %)k

d%

¿
M

(1 + |x|)k
∫ �=2

0

t cos %
(1 + t)k

d%=
M

(1 + |x|)k
t

(1 + t)k
:

Then we have

9tu(x; t)¿
M

(1 + |x|)k
t

(1 + t)k
+ I3(x; t): (3.6)

We use the similar argument to that in [8]. Let x be any :xed point in R2. We set

Z(x) = {t ∈ (0;∞)=9tu(x; t) = 0}:
We assume that Z(x) �= ∅. Let t0 = inf Z(x). Then t0¿ 0 and 9tu(x; t)¿ 0 for 06 t ¡ t0. Becasue if
t0=0, there exists a sequence {tn}↘0 such that 9tu(x; tn)=0. Hence there exists a sequence {t′n}↘0
such that 92t u(x; t′n) =/u(x; t′n) + F(u(x; t′n)) = 0. Thus u2(x) = 0, which contradicts 2 of Assumption
3.3. C(x; t0) denotes the characteristic cone of which vertex is (x; t0) and its bottom lies in t = 0.
Then there exists (x′; t′)∈C(x; t0) such that 9tu(x′; t′)=0 and 9tu(x; t)¿ 0 for (x; t)∈C(x′; t′); t ¡ t′.
We have the same expression for 9tu(x′; t′) as (3.4) and therefore

0 = 9tu(x′; t′)¿
M

(1 + |x′|)k
t′

(1 + t′)k
+ I3(x′; t′); (3.7)

where

I3(x′; t′) =
1
2�

∫ t′

0
d$

∫∫
Dt′−$(")

F ′(u(x′ + "; $))9tu(x′ + "; $)√
(t′ − $)2 − |"|2 d"1 d"2:

Noting that 9tu(x′+"; $)¿ 0 for (x′+"; $)∈C(x′; t′); $¡ t′, we can lead a contradiction from (3.7).
Thus we can insist that there is no such (x′; t′) in C(x′; t′). By the same argument we can show that
Z(x) = ∅ for any x∈R2, whence I3(x; t)¿ 0. Thus we get for any (x; t)∈R2 × I

9tu(x; t)¿
M

(1 + |x|)k
t

(1 + t)k
: (3.8)

Integrating (3.8) from 0 to t, we can get u(x; t)¿ 0 and the desired results of the theorem.
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Assumption 3.4. (1) F(u)¿ 0 if u¿ 0,
(2) u0 ≡ 0,
(3) u1¿ 0 and u1 �≡ 0.

Theorem 3.2. Let n=2. Assume Assumptions 3.1 and 3.4. Then the solution u(x; t) of P(-) satis8es
u(x; t)¿ 0.

Proof. We use the expression (3.2) and have

u(x; t) =
1
2�

∫∫
Dt(")

u1(x + ")√
t2 − |"|2 d"1 d"2

+
1
2�

∫ t

0
d$

∫∫
Dt−$(")

F(u(x + "; $))√
(t − $)2 − |"|2 d"1 d"2: (3.9)

The way of the proof is almost the same as in Theorem 3.1 and therefore we omit rest of the
proof.

In three space dimension we can show almost the same results as the above with the similar argument
to two dimensional cases. We show only the result and omit the proof.

Assumption 3.5. Let n= 3.

1. u1¿ 0,
2. There exists some positive constants M1; M2 such that |∇u1(x)|6M1 and u2(x)=/u0+F(u0)¿M2,
and M2 −M1¿ 0,

3. F ′(u)¿ 0.

Theorem 3.3. Let n = 3. Assume Assumptions 3.1–3.2 and 3.5. Then any nontrivial solution u
satis8es

1. 9tu(x; t)¿ (M2 −M1)t,
2. u(x; t)¿ u0(x) + 1

2(M2 −M1)t2.
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