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A pro-aflne algebraic group G, over the algebraically closed field k, is an 
inverse limit of affine algebraic groups over k [5, p. 11271. This paper 
studies the cohomology, in the category of rational modules, of prounipotent 
groups when k has characteristic zero (a finite-dimensional rational module 
V for a pro-affine group G is an abstract G-module such that the 
corresponding homomorphism G -P GL( v) is a morphism of pro-atfine 
groups and in general a rational G-module is a direct limit of finite- 
dimensional ones). This theory closely parallels that of the cohomology of 
pro-p groups [ 12, Chap. I]: the free prounipotent groups turn out to be 
precisely those of cohomological dimension ones, and the dimension of the 
first and second cohomology groups give numbers of generators and 
relations. In addition, one-relator groups turn out to have cohomological 
dimension two, parallel to the situation for discrete groups [9]. Finally, we 
apply our theory to the universal pro-affine hull A of a group r to conclude 
that if r has a free subgroup of finite index, then the prounipotent radical of 
A is a free prounipotent group. 

The paper is divided into five sections. The first contains preliminary 
material on: the pro-variety structure of prounipotent groups, the existence 
and description of injective rational modules and cohomology, and various 
technical results used in the rest of the paper. In the second section we define 
free prounipotent groups and characterize them as groups of cohomological 
dimension one. This allows us to show that pro-affine subgroups of free 
prounipotent groups are free prounipotent. In Section 3 we interpret the low- 
dimensional cohomology of a free prounipotent group with coefficients in the 
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trivial one-dimensional module in terms of generators and relations and show 
the one-relator groups have cohomological dimension two. Section 4 contains 
the application noted above to pro-affine hulls of groups. In Section 5, which 
is essentially independent of the rest of the paper, we show that any non-zero 
module endomorphism of the coordinate ring of a prounipotent group is 
onto. This result is used in our theorem in Section 3 that one-relator groups 
have cohomological dimension two. 

We adopt the following notation and conventions: k is a fixed algebrically 
closed field of characteristic zero. If G is a pro-affine algebraic group over k, 
k[G] is its coordinate Hopf algebra [5, p. 11271 and G* is the Zariski 
closure of its commutator subgroup (G, G). Iff E k[ G] and x E G, f . x and 
x . f in k[ G] are defined by df. x)(y) = f(xy) and (x . f)(y) = f(yx). We 
use k for the one-dimensional trivial module and G, for the one-dimensional 
unipotent group. If r is an abstract group, A(T) is the universal pro-afine 
hull of P, that is, k[A(r)] is the Hopf algebra of all representative functions 
on r [ 10, p. 31. For ease of exposition, we often drop the adjectives “pro- 
affine” and “rational” when dealing with subgroups, homomorphisms, and 
modules. When distinctions are necessary we add the adjective “abstract” to 
refer to non-pro-affine groups or non-rational modules. We depart from this 
convention and call abstract groups “discrete groups” when this is the 
customary usage. ( )’ and ( ) (‘) denote direct product and direct sum 
indexed by I. 

1. PRELIMINARIES 

In this section we introduce the basic properties of prounipotent groups 
and their cohomology. Many of the results recorded in this section are easy 
extensions of facts about unipotent groups to prounipotents, and so we may 
only supply a reference for the affme case. For the same reason, results in 
this section are only numbered and not labeled as theorems, propositions, 
etc. 

Let G be a pro&fine algebraic group over k, let {Ai ] i E 1) be the set of all 
finitely generated Hopf subalgebras of k[G] and for each i, let Gi be the 
affine algebraic group with k[ Gil = Ai. Since k[ G] = dir lim A i, G = 
proj lim(G,) and we refer to this description of G as the standard limit for G. 
Let Li = Lie(G,); then L = proj lim(L,) is the Lie algebra of G, denoted 
Lie(G) [ 11, p. 2211. As an inverse limit of finite-dimensional vector spaces, 
Lie(G) may be regarded as a linearly compact vector space in the sense of 
19, Definition 27.1, p. 781, and Lie( ) is a functor from pro-affine groups to 
linearly compact vector spaces. The exponential maps exp : Lie(Gi) -+ Gi give 
a map exp : Lie(G) + G. 
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(1.1) If G is a prounipotent group, exp : Lie(G) -+ G is an isomorphism of 
pro-aflne varieties [ 11, p. 2211. 

If G in (1.1) is abelian, exp is an isomorphism of prounipotent groups. 
Hence we have: 

(1.2) Lie( ) is an equivalence between the category of abelian 
prounipotent groups and the category of linearly compact k-vector spaces. 
Since every linearly compact k-vector space is of the form k’ for suitable I 
[8, 32.1, p. 831, every abelian prounipotent group is a suitable product of 
copies of G,. 

Exact sequences of linearly compact vector spaces split, so it follows from 
(1.1) that: 

(1.3) Let 1 -+ K + G + H + 1 be an exact sequence of prounipotent 
groups. Then there is a morphism H + G of pro-aflne varieties whose 
composite with G -+ H is the identity [ 11, p. 2221. 

(1.4) Let G be a prounipotent group and H a subgroup (not necessarily 
normal). Then there is a Zariski-closed subset X of G such that G = H X X 
as pro-affine varieties. In particular, k[G] is faithfully flat over k[H]. 

Proof. The inclusion Lie(H) -+ Lie(G) splits (in linearly compact k- 
spaces) so Lie(G) = Lie(H) @ Y, and X= exp(Y). 

We now establish some inverse limit results. 

(1.5) Let G be a pro-affine group and ,Y’ a family of normal subgroups 
of G such that: 

(a) IfH E Y, G/H is afine. 

(b) If H, H’ E ,Y, there is H” E .Y such that H” E H n H’. 

Let X = 0 {H ] H E ,Y }. Then G/X is isomorphic to proj lim({G/H ] H E 9 ). 

Proof. Let G’ be the projective limit. Then k[G’] = dir lim(k[G/H]) = 
dir lim(k[ G]“). We have a homomorphism f: G/X -+ G’ which is injective by 
definition of X. Let c be the image off. Then k(G’] -+ k[G] is onto, and 
k[C?] = k[G/X] = k[G]*. Since k[G]n+ k[GIX is into for each H, 
k[G’] = k[G] and f is an isomorphism. 

(1.6) Let G = proj lim(G,) be the standard limit for the pro-affine group 
G, let Ki be the kernel of G + Gi and let X be a closed subgroup of G. 

(a) X= 0 (XK,). 

(b) If X is normal and G/X is affine, X contains some Ki. 
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Proof. (a) X is contained in n (Xxi) and both are Zariski closed. If 
f E k[G] and f(X) = 0, f E k[G]“’ f or some i, so f(XKi) = 0, and hence 
f(n (XK,)) = 0. It f0110wS that X= n (XK,). 

(b) By (a), X= n (XK,). Choose Ki such that XK,/X has minimal 
dimension and minimal number of components. If Ki contains Kj, then XKj 
must equal XK,, so XK, = X and K, G X. 

If G is a pro&fine group and H any subgroup of G, then k[GIH = 
(fEk[G]]f.x=f for all xEH}. Let H’=(xEG]f.x=f for all 

f E k[ GJN and call H observable in G if the inclusion H s H’ is equality. 

(1.7) A subgroup H of a prounipotent group G is observable. 

Proof. Let {Ki} be as in (1.6). Since H = n (HK,) by (1.6)(a), H’ = 
n (HK,)‘. Thus we may assume H = HK, contains some Ki. By [2, 
Lemma 4.2, p. 91, H/K, is observable in G/K,. Now k[G]” = k[G/K,]“‘ki, so 
x in G is in H’ if and only if xK, is in (H/K,)’ = K/K,. Since Ki G H’, this 
means H = H’. 

We say a subgroup H of prounipotent group G is of codimension n if 
kIG1 H is aftine of dimension n. 

(1.8) A subgroup H of a prounipotent group G is ofJnite codimension if 
and only tfH contains a normal subgroup K of G with G/K a@e. If H is of 
Jinite codimension, the coset space flG maps bijectively to the affine variety 
with coordinatte ring k[ G]“. 

Proof. If k[G] H is affme, k[GIH s k[G]“’ for some i, where {Ki} is as in 
(1.6). Then Ki = K; c H’ = H by (1.7). Conversely, if K s H is normal in G 
with G/K affine, by (1.6)(b) Ki E H. Thus k[GIH = k[G/Ki]H’Ki, and the 
latter is the coordinate ring of the affine variety (H/K,)\(G/K,) = H\G. 

Our next task is to define rational cohomology for pro-affine groups. We 
follow the procedure of [6]: let G be pro-afline group, let M be a G-module, 
and let E’ be the injective hull of the (abstract) G-module A4 in the category 
of abstract G-modules. The largest (rational) submodule E of E’ is then an 
injective (rational) G-module containing M, so the category of (rational) G- 
modules has enough injectives. 

(1.9) Let G be a pro-aflne group and let M be a G-module. Then 
H’(G, M) denotes the ith right derived functor of ( )” evaluated at M. 

(1.10) Let 1 -+ K + G + H -+ 1 be an exact sequence of pro-afine groups, 
and let M be a G-module. Then there is a spectral sequence HP(H, Hq(K, N)) 
with abutment H”(G, M). 

Proof If I is an injective G-module, IK is an injective H-module. The 
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fimctor ( )” can be regarded as the composite (( )K)H, so there is a spectral 
sequence of the composite functor by [3, Theorem 2.4.1, p. 1481 and we use 
definition (1.9) to describe the right derived fimctors which occur. We must 
see that an injective G-module Z is an injective K-module. It is sufficient to 
consider the case Z = k[ G]. Let W be a finite-dimensional K-module, V a K- 
submodule and f: V+ Z a K-module homomorphism. There is a normal 
subgroup H, of K of finite codimension such that H, is trivial on W, a 
normal subgroup H, of G of finite codimension such that H, n K c H, and 
a normal subgroup H, of G of finite codimension such that f( V) is contained 
in the H, invariants. Let L = H, n H,. L is normal in G of finite 
codimension, L n K is trivial on W and f(V) E k[GIL. Let G = G/L and 
K = L n K. Then W is a K-module and f(V) c k[G]. It follows from [ 2, 
Section 21 that k[G] is x-injective, sof extends to a K-map W -+ k[G]. Since 
k[G] s k[G], this is an extension off to W, and it follows that Z is K- 
injective. 

We can be more precise about the nature of injectives with a prounipotent 
group G. 

(1.11) Let G be a pro&potent group and let V be a G-module. Then 
k[ G] @ VG is an injective G-module containing V. Any injective G-module 
containing V contains a copy of k[G] @ V”. 

Proof. We first note that k[G] is an injective G-module, as in 12, p. 41. 
Next we observe that a G-module Z is injective if for any monomorphism of 
G-modules M-+ N with N finitely generated (hence finite dimensional), the 
map Horn&N, I) -+ Hom,(M, Z) is surjective, as in the usual arguments. 
Thus arbitrary direct sums of injectives are injective, so k[G] @ p is 
injective. The inclusion VG -+ k[G] @ VG by x + 10 x is a G-module 
homomorphism so it extends to a G-module homomorphism f: V-+ 
k[G] @ P by the injectivity of k[G] @ p. Since KerGfj’ = 0, Ker(f) = 0. 
Any inclusion V+ E with E injective extends to a homomorphism g: k[G] @ 
VG + E. Then Ker( g)” is contained in (k[G] @ v”)’ = VG; so Ker( g)” = 0 
and Ker( g) = 0. 

Because of (1.1 l), we define E,,(V) = k(G] @ VG to be the injective hull of 
the G-module V. We let E-,(V)= V and let d-,:E-l(V)+EEo(V) be 
inclusion. 

(1.12) Let G be a prounipotent group and let V be a G-module. Define 
E,(V) and di : E,(V)-+ E,+,(V) inductively by E,+,(V) = E,(Ei(V)/ 
di-l(Ei- l(v))) and di=E,(V)jEi(V)Idi-,(Ei-,(V))jEi+,. Then 
(Ei( V), di} is an injective resolution of V with H’(G, V) = Ei( V)“. 

ProoJ By construction, {Ei( V), di} is an injective resolution of V, and 
Ei( V) = E,(Ker(d,)) = k[ G] @ Ker(d,)‘, the last equality by (1.11). So 
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E,(qG = Ker(d,)’ and the complex {E,(V)“} has zero differentiation, so 
H’(G, V) = Ei( I’)“. 

We call {Ei( V), di} the minimal injective resolution of V [ 1, Section 2, 
p. 101. 

We say the pro&fine group G has cohomological dimension n, and write 
cd(G) = n, if for every G-module V and every i > n, H’(G, V) = 0 and 
H”(G, V) # 0. If G is prounipotent, cd(G) < n if and only if H”+‘(G, k) = 0, 
since k is the unique simple G-module. 

We are next going to show that if H is a subgroup of the prounipotent 
group G, then cd(H) < cd(G), following the proof of [2, Theorem 4.3, p. 91. 
A necessary technical step is supplied by the following identity. 

(1.13) Let G be a prounipotent group, let H be a subgroup and let 
B = k[GIH. Then there is an isomorphism k[G] Q, k[G] -+ k[H] @ k[G]. 

Proof Let {Ki} be as in (1.6), let Hi = HK, and let Bi = k[GIHi. Then 
k[G] = dir lim(k[G]‘Q) and B = dir lim(B,). Also, k[G]“i= k[G/K,] and 
Bi = k[G/Ki]H”K’; so by [2, (**), p. 91, k[G/K,] Oe k[ G/K,] is naturally 
isomorphic to k[HJK,] @ k[G/K,]. By taking direct limits, we have 
k[ G] Og k[G] isomorphic to C @ k[G], where C = dir lim(k[H,/K,]). Now 
Hi/K, = H/H f7 K,, and the set 5“ = {H f7 Ki} of subgroups of H satisfies 
(1.5). Since n {HnK,} = {e}, by (1.5) H=proj lim(H/Hr‘lK,); so 
C = k[H]. 

Next we define induced modules as in [2, p. 21. Let G be a pro-afline 
group, let H be a subgroup and let V be an H-module. Then Map,(G, V) 
denotes the set of functions f: G -+ V such that f(G) spans a finite- 
dimensional subspace W of V with f: G--f W a morphism of pro-affine 
varieties and such that f(hg) = hf(g) for all h E H and g E G. Then 
Map,(G, V) is a G-module and there is a natural isomorphism 
Horn&Y, Map,(G, v)) -+ Horn&Y, V) for G-modules X 12, Proposition 1.4, 
p. 31. We call Map,(G, V) the G-module inducedfrom H by V. 

(1.14) Let G be a prounipotent group and H a subgroup. For any H- 
module V, H’(G, Map,(G, V)) = H’(H, V) for all i. In particular 
cd(H) < cd(G). 

Proof: Use the argument of [2, Theorem 4.3, p. 91, (a) 3 (b), with (1.13) 
replacing the identity (**). 

Finally, we make some elementary cohomological calculations. 

(1.15) Let U be a unipotent group of dimension n. Then cd(U) = n and 
H”(U, k) is one dimensional. 

Proof. We use induction on n. For the case n = 1, we have U = G,. 
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Choose t so that k[G,] is the polynomial ring k[t], and let d: k(t] -+ d(t] be 
derivative with respect to t. Then 1 + k + k[G,] -+d k[G,] + 1 is an exact 
sequence of G,-modules. By (1.1 l), this is an injective resolution of k as G,- 
module, and taking cohomology we see that H’(G,, k) = k and cd(G,) = 1. 
Now assume the result for n - 1. Then U has a normal subgroup U, of 
codimension one, and the spectral sequence (1.10) associated to the exact 
sequence 1 -+ V, + U+ G, + 1 is EP’(G,, ZP(U,, k)) - Hp+4(U, k). Since 
cd(G,) = 1 and cd(U,) = n - 1, we have cd(U) < n, and that 
H’(G,, H”-‘(U,, k)) = H”(U, k). N ow H”- ’ (U, , k) = k by induction and 
H’(G,, k) = k by the above; so H”(U, k) = k and cd(U) = n. 

(1.16) Let G be a prounipotent group. Then H’(G, k) = Hom(G, G,). 

Proof: By (1.12), H’(G, k) =E,(k)‘= (E,(k)/E_,(k))a = (k[G]/k)‘. 
Suppose a E k[G] is invariant modulo k. We can normalize a so that 
u(e) = 0. Define f: G + k byf( g) = g . (I - a. It follows that f is actually a 
homomorphism from G to G,. Conversely, given a homomorphism 
h: G -+ G,, we can regard h as an element of k[ G] and then the class of h 
modulo k is invariant. This correspondence gives the desired equality. 

(1.17) Let G be a prounipotent group. Then isomorphism classes of 
extensions 1 + G, -+x+ G -+ 1 correspond to elements of H’(G, k) with split 
extensions corresponding to zero. 

Proof Because of (1.3), the proof of [6, Theorem 6.1, p. 5 191 applies to 
the prounipotent case to establish a one-one correspondence between 
extensions and elements of H’(G, k) with the split extensions corresponding 
to zero. 

We restate (1.17) in a slightly different form we will use below. 

(1.18) Let G be a prounipotent group. Then H’(G, k) = 0 if and only if 
for every exact sequence 1 + G, -+ E 4 F + 1 of unipotent groups and every 
homomorphism f: G + F there is a homomorphism h: G + E with gh = J: 

Proof. Let X = {(a, b) E E x G 1 g(a) = f (b)}. The projection E X G + G 
induces a surjective homomorphism X-+ G with kernel G,, hence an 
extension 1 + G, + X-P G + 1. If there is an h with gh =f, b + (h(b), b) 
splits this extension, and conversely if h,: G-+X splits the extension, h, 
composed with projection of X to E gives a map h with gh =J: The result 
now follows from (1.17). 
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2. FREE PROUNIPOTENT GROUPS 

In this section we define free prounipotent groups and show that they are 
precisely the prounipotent groups of cohomological dimension one. 

Let Z be a set. We are going to construct a prounipotent group U(Z) and 
an injection 4: Z--t U(Z); U(Z) will be called the free prounipotent group on I. 
The justification for the term “free” will be explained by Theorem 2.4. Let 
L(Z) be the (discrete) free group on Z and let A = A@(Z)). Let R, be the 
prounipotent radical of A and let P be a pro-reductive subgroup of A such 
that A = R, . P. Let N be the minimal normal subgroup of A containing P 
(since the choices for P are conjugates, N depends only on A). Let 
U,(Z) = A/N. U,,(Z) is prounipotent, and we have a map w: I+ U,,(Z) given 
by the composition of the canonical maps I-+ L(Z) + A --t U,(Z). The pair 
(U,(Z), w) satisfies a universal mapping property: suppose B is a 
prounipotent group and f: Z-t B is a function. Then f induces a unique 
abstract group homomorphism L(Z) -+ B, which induces a unique 
homomorphism A -+ B which vanishes on N and hence induces a unique 
homomorphism f: U,(Z) -+ B characterized by the property that fi(x) = f(x) 
for all x E I. 

Now let .Y be the set of all normal subgroups H of U,(Z) of finite 
codimension such that {x E 1) v(x) CS H} is finite. If H, H’ E 9, then 
Hn H’ E .Y. Let K = n (H 1 H E Y}, and let U(Z) = U,,(Z)/K. By (1.5), 
U(Z) = proj lim{ U,,(Z)/H 1 H E P}. Let 4: I-+ U(Z) be the composite of w 
with the canonical map U,(Z) + U(Z). 

We want to observe that 4 is an injection: let x E Z and let e,: I-+ G, be 
given by e,(y) = 0 if y # x and e,(x) = 1. Then e, induces a unique 
homomorphism e; : U,(Z) + G, such that e; w = e,. The kernel of e; is in 9, 
so FX induces a homomorphism E, : U(Z) -+ G, such that E,o = e,. So if 
4(x) = 4(y), we have x = y. 

We shall use the notation introduced in the preceding three paragraphs for 
the rest of the paper. 

DEFINITION 2.1. Let Z be a set. The group U(Z) is called the free 
prounipotent group on I. Z is regarded as a subset of U(Z) via 4. 

We will see below (2.8) that the group U,,(Z) is also free (in general, not 
on I). The following proposition gives a first explanation for the term “free” 
in (2.1). 

PROPOSITION 2.2. Let Z be a set and let U be a unipotent group. Then 
there is a bijection between homomorphisms U(Z)-+ U, and sets of elements 
of U {xi 1 i E Z} where {i 1 xi # e} is Jinite, such that the homomorphism f 
corresponds to the set {f(i) 1 i E Z}. 
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ProofI If f: U(Z) -+ U is a homomorphism, then since U(Z) = 
proj lim( { U,(Z)/H ] HE .i”)), it follows from (1.6) that Kerdf) contains an 
element of 9, so that {f(i) ] i E I} has the desired property. Conversely, 
given a set of elements {xi ( i E I} there is a homomorphism h : U,(Z) + U 
with hv(i) = xi, and since (i ] xi # e} is finite, Ker(h) E .io; so we get an 
induced homomorphism g : U(Z) -+ U with g(i) = xi. 

We will need the following property of free prounipotent groups in our 
characterization of free groups. 

LEMMA 2.3. Let Z be a set. Then the k-vector space Hom(U(Z), G,) has 
{E, 1 x E I) as basis. 

Proof. By Proposition 2.2, Hom(U(Z), G,) corresponds to sets of 
elements {xi ] i E Z} of G, = k with all but finitely many xi = 0. These sets of 
elements are the same as the elements of the k-vector space k”’ and 
{E, / x E Z} corresponds to the standard basis. 

It is a consequence of Proposition 2.2 that a free group U(Z) has the 
following lifting property: if 1 -+ G, + E -+g U + 1 is an exact sequence of 
unipotent groups and f : U(Z) -+ U is a homomorphism, then there is a 
homomorphism h : U(Z) + E such that gh = f: (We get a set of elements of E 
by choosing preimages of the elementsf(i) i E Z, choosing e as a preimage if 
f(i) = e.) This property turns out to be characteristic for free groups. To see 
this, we will need to see that the property is equivalent to an apparently 
stronger one. This result is based closely on the proof of 14, Proposition 1, 
p. 1571. 

THEOREM 2.4. Let G be a prounipotent group. The following conditions 
are equivalent: 

(a) Zf 1 -+ K -+ E +g F + 1 is any exact sequence of prounipotent 
groups and f : G --) F is a homomorphism, then there is a homomorphism 
h:G-+Esuch thatgh=J: 

(b) Zf 1 -+ G, --f E -+g F -+ 1 is any exact sequence of unipotent groups 
and f : G -+ F is a homomorphism, then there is a homomorphism h : G + E 
such that gh =J: 

Proof. To establish the non-trivial implication (b) =S (a) we begin by 
assuming E is unipotent and use induction on the dimension of K, the case 
where dim K = 1 being (b). For dim K > 1, we observe that the center 2 of 
K is a module for the unipotent group F acting via conjugation, and hence Z 
contains a one-dimensional subgroup L normalized by F, hence normal in E. 
Then we apply induction to the sequence 1 --f K/L -+ E/L + F--t 1 and the 
homomorphism G -+ F to obtain a homomorphism G-+E/L, and then use 
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(b) with this homomorphism and the sequence 1 -+ L -+ E -+ E/L -+ 1. This 
establishes (a) for E unipotent. 

Next we want to establish (a) with K unipotent (E can now be 
prounipotent). We claim that there is a normal subgroup H of E of linite 
codimension with H n K = {e}: we can choose a collection (H, 1 a E ~6’ } of 
normal subgroups of E of finite codimension with 0 (H, ) a E s?‘} = (e). 
Then (H, f? K 1 a E ,&‘} is a collection of closed connected subgroups of K 
whose intersection is {e); since K is finite dimensional some finite collection 
of these subgroups of K must intersect in (e}. Now we can apply (a) to the 
sequence 1 -+K-+E/H+F’-+ 1 (where F’ = F/g(H)) and the 
homomorphism G -+ F --t F’ since E/H is unipotent. This produces a 
homomorphism G + E/H which combines with the original homomorphism 
G -+ F to produce a homomorphism from G to the tibre product 
E/H xF, F = E. 

Finally, we establish (a) in general. We let .P be the set of pairs (P, s), 
where P is a normal subgroup of E contained in K and s : G + E/P solves 
(a) for the sequence 1 -+ K/P -+ E/P + F -+ 1. .P is partially ordered by the 
relation (P,, si) < (Pz, sJ if P, contains P, and s, is the composite of s2 and 
the map E/P, + E/P,. Chains in 3 have upper bounds so 9 has a maximal 
element (P, s). If P = (e), (a) holds. If not, we can choose a normal subgroup 
H of E of finite codimension with H n P # P: this is possible since otherwise 
P is in every normal subgroup of E of finite codimension and these intersect 
to (e). Let P’ = Pn H. Then P/P’ is unipotent and (a) applied to the 
sequence 1 + P/P’ -+ E/P’ + E/P-+ 1 and the homomorphism s : G + E/P 
gives s’ : G + E/P’ with (P’, s’) > (P, s). This contradiction shows that 
P= {e) and that (a) holds. 

We shall temporarily refer to groups satisfying the conditions of 
Theorem 2.4 as groups with the lifting property. (We see below 
Proposition 2.8 that they are actually free.) The remarks prior to 
Theorem 2.4 show that free groups have the lifting property. The universal 
mapping property of U,,(I) shows that it also has the lifting property. 

We recall that if G is a prounipotent group G* denotes the closure of the 
commutator subgroup (G, G) of G. The next lemma shows that G* behaves 
like the Frattini subgroup of a finite group. 

LEMMA 2.5. Let f : G + H be a homomorphism of prounipotent groups 
such that the induced homomorphism G/G* --t H/H* is onto. Then f is onto. 

Proof: We can replace G by f(G) and assume that G is a subgroup of H 
and f is inclusion. If G # H, by (1.6) there is a finite-dimensional quotient H, 
of H such that the image G, of G in H, is distinct from H,. Since H/H* 
maps onto H,,/(H,, H,), we can replace G and H by G, and H,. By [ 7, 
Proposition 12.4, p. 1121 there is a subgroup of H, of codimension one 
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containing G, . But this subgroup must contain (H,, H,) and 
G,(H,, H,) = H,, by assumption. 

COROLLARY 2.6. Let f: G + H be a homomorphism of prounipotent 
groups such that the induced homomorphism G/G* --) HfH* is an 
isomorphism. Assume H has the lifting property. Then f is an isomorphism. 

Proof. By Lemma 2.5, f is onto. We can apply the lifting property to the 
sequence 1 -+ Ker(f) -+ G -+ H -+ 1 and the identity homomorphism H + H to 
obtain a homomorphism g : H -+ G such that fg = id. Then g is one-one, and 
the map H/H* -+ G/G* induced from g is onto; so by Lemma 2.5, g is onto 
and hence an isomorphism. 

To apply Lemma 2.5 and Corollary 2.6, we need criteria to tell when 
homomorphisms G/G* + H/H* are onto or isoorphisms. These are provided 
by the equivalence (1.2) between abelian prounipotent groups and linear 
compact k-vector spaces. 

LEMMA 2.1. Let f : G -+ H be a homomorphism of prounipotent groups 
and let f* : G/G* + H/H* and f * : Hom(H, G,) + Hom(G, G,) be the 
induced maps. Then f* is an isomorphism if and only if f * is an 
isomorphism. 

Proof We may assume G and H are abelian so f = f* . By (1.2), G and 
H correspond to the linearly compact vector spaces Lie(G) and Lie(H), and 
Hom(G, G,) and Hom(H, G,) are the continuous duals of these spaces, so 
the result follows from the duality between linearly compact and discrete 
vector spaces (8, Theorem 29.1, p. 811. 

PROPOSITION 2.8. Let G be a prounipotent group. Then there is a free 
prounipotent group U(I) and a subjection f: U(I) + G. Z and f can be chosen 
so that Hom(G, G,) has dimension equal to the cardinarlity of I. If J is any 
set and g : U(J) + G is onto, the cardinality of Z is less than or equal to that 
of J. If G has the lifting property, f is an isomorphism. 

Proox Choose a basis {fi ( i E I} of Hom(G, G,). Let U = U(Z) and let 
4 : Hom(G, G,) --t Hom(U, G,) be the linear isomorphism with 4(h) = Ei, 
Lemma 2.3. By duality for linearly compact vector spaces, r$ comes from an 
isomorphism F : U/U* + G/G*. Apply the lifting property, Theorem 2.4(a), 
to the sequence 1 -+ G* + G -+ G/G* --t 1 and the homomorphism U + G/G* 
factoring through F to obtain a homomorphism f: U + G such that, in the 
notation of Lemma 2.7, f* = F and f * = 4. By Lemma 2.7, f* is an 
isomorphism; so by Lemma 2.5, f is onto. If G has the lifting property, f is 
an isomorphism by Corollary 2.6. If g : U(J) + G is onto, Hom(G, G,) + 
Hom(U(J), G,) is one-one. By Lemma 2.3, dim(Hom(G, G,)) = 
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dim(Hom(U(Z), G,)) = card(Z) and dim(Hom(U(.Z), G,)) = card(J); so 
card(Z) < card(J). 

We can now characterize free groups cohomologically. 

THEOREM 2.9. Let G be a prounipotent group. Then G is free if and only 
if cd(G) < 1. 

Proof. If G is free, G satisfies Theorem 2.4(b); so H*(G, k) = 0 and 
cd(G) < 1. If cd(G) < 1, then G satisfies Theorem 2.4(b) and hence 
Theorem 2.4(a); so G has the lifting property and thus G is free by 
Proposition 2.8. (We are using 1.18). 

By Proposition 2.8, groups with the lifting property are free (and 
conversely, by Theorem 2.4.). In particular, the groups U,(Z) are free. 

The cohomological description of free groups gives us the following 
important result on subgroups. 

COROLLARY 2.10. Let G be a free pro&potent group and let H be a 
subgroup of G. Then H is free. 

ProoJ By (1.14), cd(H) < cd(G); so the corollary follows from 
Proposition 2.8. 

We also note that Theorem 2.9 shows that U({ 1 }) = G,: for G, has 
cohomological dimension one (1.15); so G, = U(Z) for some I, and 
H’(G,, k) = 1 (1.15), thus card(Z) = 1. 

We can also describe in part the free prounipotent groups on a finite set. 
We will use the prounipotent analogue of the lower central series. 

DEFINITION 2.11. Let G be a prounipotent group. Then G* ’ = G* and 
for i> 1, G*““’ is the Zariski closure of the abstract subgroup (G, G*‘). 

We write U(n) for U({ l,..., n}) and U(n, r) for U(n)/U(n)*r. Any 
unipotent homomorphic image of U(n, r) is generated by n elements and is 
nilpotent of class r, and conversely any such unipotent group is a 
homomorphic image of U(n, r). We can describe U(n, r) in terms of free Lie 
algebras [ 13, Definition 2.1, p. LA4.41: let L(n) denote the free k-Lie algebra 
on (l,..., n}, let L(n)m denote the subspace spanned by products of length m, 
let L(n), = u (L(n)’ ] i > m} and let L(n, r) = L(n)/L(n),+, . Then L(n, r) is 
finite dimensional [ 13, p. LA4.51 and if U’(n, r) is the unipotent group with 
Lie algebra L(n, r), every n-generated unipotent group which is nilpotent of 
class r is a homomorphic image of U’(n, r) and conversely. It follows that 
U(n, r) = U’(n, r) and, in particular, U(n, r) is finite dimensional of 
dimension equal to that of L(n, r) (the latter is given by [ 13, p. LA4.51). 
Thus the exact sequence 1 + U(n)*‘/U(n)*“+” -+ U(n, r + 1) + U(n, r) -+ 1 
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shows that U(u)V/U(n) *(r+l) has dimension equal to that of L(n)‘+*, 
namely, Z,(r + 2) = (r + 2)-l Cm,(r+2) p(m) nm”‘*, ,u the Moebius function. 

We have surjections U(n, r + 1) -+ U(n, r) and in fact, U(n) = 
proj lim(U(n, r)). 

3. GENERATORS AND RELATIONS 

In this section we interpret the low-dimensional cohomology of a 
prounipotent group in terms of generators and relations and show that one- 
relator groups have cohomological dimension two. 

We know from Proposition 2.8 that every prounipotent group G is a 
quotient of a free prounipotent group U(Z) with card(Z) = dim(Hom(G, G,)). 
When Z is finite, this fact gives an interpretation of H’(G, G,) in terms of 
minimal number of generators of G. 

DEFINITION 3.1. A prounipotent group G is jinitely generated if there is 
a set of elements { gi,..., g,} of G such that the abstract subgroup of G 
generated by g, ,..., g, is Zariski-dense in G. In this case {g, ,..., g,} is a set 
of generators of G. If G is finitely generated, the rank of G is the cardinality 
of a set of generators of minimal cardinality. 

THEOREM 3.2. Let G be a prounipotent group. G is finitely generated if 
and only if H’(G, k) is finite dimensional. Zf G is j?nitely generated, the rank 
of G is the dimension of H’(G, k). 

Proof. As we observed in (1.16), H’(G, k) = Hom(G, G,). By 
Proposition 2.8, H’(G, k) finite dimensional implies that there is a surjection 
g : U(Z) + G with Z finite, so { g(i) ) i E I} is a finite set of generators of G. 
Conversely, if (gi,..., g, } generate G, there is an onto homomorphism 
g : U({ l,..., n})-+ G with g(i) = gi so by Proposition 2.8, H’(G, k) has 
dimension at most n. For G finitely generated the rank assertion follows 
similarly from Proposition 2.8. 

By Theorem 3.2 and Lemma 2.3 we can refer to U({ 1, 2,..., n}) as the free 
group of rank n. We next consider subgroups of free groups of finite rank. 

LEMMA 3.3. Let F be a free prounipotent group of rank e, and let F, be 
a normal subgroup of F of codimension one. Then H’(F,, k) is isomorphic to 
k[G,]@-‘) as a GO-module. 

Proof: F/F0 = G,, so H’(F,, k) is a G,-module. We apply the spectral 
sequence (1.10) to the extension 1 + F, --t F + I;, --t 1: we have 
HP(G,, Hq(FO, k)) + Hp+q(F, k). F, G,, and F, all have cohomological 
dimension one by Theorem 2.9 and Corollary 2.10; so 
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H’ (G, , Hi (F, , k)) = 0. This means H’ (F,, k) is injective as a G,-module; so 
by (l.ll), H’(F,,k))=k[G,] . (‘) To determine card(Z), we use the exact 
sequence of low degree from the spectral sequence: 0 + H’(G,, k) -+ 
H’(F, k) + H’ (FO, k)Ga -+ H*(G,, k) = 0. Since dim(H’(G,, k)) = 1 and 
dim(H’(F, k)) = e, Theorem 3.2, dim(H’(F,, k)‘~) = e - 1, so card(Z) = 
e- 1. 

We want to apply Lemma 3.3 to more general subgroups of free groups. 
This requires the following two technical lemmas. 

LEMMA 3.4. Let G be a prounipotent group, G # {e). Then G contains a 
subgroup isomorphic to G,. 

Proof Choose g E G, g # e. By Proposition 2.2 there is a 
homomorphism f : G, = U(( 1)) + G with f( 1) = g. Thus Ker(f) # G,, so 
Ker(f) = 0 and the image off is the desired subgroup. 

LEMMA 3.5. Let G be a prounipotent group and H a subgroup of G, 
H # G. If H is either normal in G or offinite codimension in G, G contains a 
subgroup G, with H normal in G, and GO/H = G,. 

Proof: If H is normal in G, let G, be the inverse image in G of a 
subgroup of G/H isomorphic to G,, which exists by Lemma 3.4. If H is of 
finite codimension in G, there is a normal subgroup H, of G of finite 
codimension contained in H, (1.8), so it will suffice to pass to the subgroup 
n = H/H, of the unipotent group G = G/H,. Then a normalizer N of Z? in G 
properly contains Z? (7, Lemma 17.4, p. 1121 so we may take G, to be the 
inverse image of a G, in N/n. 

PROPOSITION 3.6. Let F be a non-abelian free prounipotent group and let 
H be a proper subgroup. If H is either normal in F or of ftnite codimension 
in F, H is not finitely generated. 

Proof By Lemma 3.5 there is a subgroup F, of F such that H is normal 
in F, and F,/H = G,. By Corollary 2.10, F,, is also free and since H # {e}, 
F,, is non-abelian. Thus we can assume F = F,,. If H were finitely generated 
of rank n, then F would be finitely generated of rank n + 1. Then by 
Lemma 3.3, H’(H, k) = k[G,]‘“’ is infinite dimensional, contrary to 
Theorem 3.3. 

COROLLARY 3.7. Let F be a non-abelian free prounipotent group and let 
H be a finitely generated proper subgroup. Then H is its own normalizer, and 
tf k is any subgroup of F properly containing H, then H is of infinite 
codimension in K. 

Proof Let N be the normalizer of H. N is free by Corollary 2.10. If H is 
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a proper subgroup of N, Proposition 3.6 implies H is infinitely generated. 
Similarly K is free by Corollary 2.10; so if H were of finite codimension in 
K, Proposition 3.6 again yields a contradiction. 

Now any non-abelian free prounipotent group contains finitely generated 
proper subgroups (for example, by Lemma 3.4); hence Corollary 3.7 actually 
gives examples of self-normalizing proper subgroups of prounipotent groups. 
Such a situation cannot occur in unipotent groups [7, Proposition 17.4, 
p. 1121. 

We can also use Lemma 3.3 to give an example of a finitely generated 
prounipotent group of infinite cohomological dimension. 

EXAMPLE 3.8. Let F be a free prounipotent group of rank at least two 
and let G be a normal subgroup of F of codimension one. By 
Proposition 3.6, G is infinitely generated. Let F= F/G* and let G = G/G*. 
It follows from Lemma 3.3 and 2.3, Corollary 2.10, 2.3, and 1.2 that G is 
isomorphic to G’, with I countable. Then G has unipotent subgroups of 
arbitrary large dimension, so by (1.15), cd(c) = co. Since c is a subgroup of 
F, it follows from (1.14) that cd(F) = co. Thus F is a finitely generated 
prounipotent group of infinite cohomological dimension. 

We will show that the second cohomology group can be used to deter- 
mined numbers of relations. We need the concept of generators of a normal 
subgroup. 

DEFINITION 3.9. Let G be a prounipotent group and let N be a normal 
subgroup of G. N isfiniteZy generated (as a normal subgroup) if there is a set 
of elements {n, ,..., n,} of N such that the abstract subgroup of N generated 
by all G-conjugates of the ni is Zariski-dense. If m is minimal among all 
such sets, m is the minimum number of generators of N. 

DEFINITION 3.10. Let G be a prounipotent group. A proper presentation 
of G is an exact sequence 1 + R + F + G + 1 of prounipotent groups with F 
free such that H’(G, k) + H’(F, k) is an isomorphism. G isflnitely related if 
there is such an exact sequence with R finitely generated as a normal 
subgroup of F. 

THEOREM 3.11. Let G be a prounipotent group. G is finitely related if 
and only if H2(G, k) is finite dimensional. If G is finitely related, and if 
1 -+ R + F -+ G + 1 is any proper presentation of G, then R is finitely 
generated as a normal subgroup of F and its minimal number of generators 
is the dimension of H2(G, k). 

Proof. Suppose G has a proper presentation 1 -+ R + F + G -+ 1. The 
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spectral sequence (1. lo), HP(G, Hq(R, k)) * Hp+q(F, k), gives the sequence 
1 + H’(G, k) + H’(F, k) + H’(R, k)F -+ H’(G, k) -+ H2(F, k) = 1 as the 
exact sequence of low degree. Since the presentation is proper, we conclude 
H’(R, k)F = H2(G, k). F acts on R by conjugation. If we let F act trivially 
on G,, under the identification H’(R, k) = Hom(R, G,), H’(R, k)” 
corresponds to the set Hom,(R, G,) of F-equivariant homomorphisms. If R 
is generated by r, ,..., r,, as a normal subgroup of F, then an F-equivariant 
homomorphism f: R -+ G, is determined by f(r,),...,f(r,); so 
dim(H’(G, k)) = dim(H’(R, k)F) < n. Conversely, suppose 
dim(H’(G, k)) = n. By Corollary 2.10, R is free, and by Proposition 2.8 we 
can choose a set Z containing {l,..., n} such that R = U(Z) and, by 
Lemma 2.3, E, ,..., E, is a basis of Hom,(R, G,). Let ri denote the element of 
R corresponding to i E Z for i = l,..., n. We claim that {r, ,..., r,} generate R 
as a normal subgroup of F: for let N be the Zariski closure of the abstract 
subgroup of R generated by the conjugates under F of {r, ,..., r,}. N is 
normal in F. The inclusion N -+ R induces a homomorphism H’(R, k) + 
H’(N, k) and hence a homomorphism H’(R, k)F = Hom,(R, G,) + 
Hom,(N, G,). By construction, this last map is an injection. Now the kernel 
K of H’(R, k)-+ H’(N, k) is an F-module with Kr = 0; so K = 0. Thus 
Hom(R, G,) + Hom(N, G,) is an injection. If N # R, there is a non-trivial 
homomorphism R/N -+ G,, so the map could not be an injection. Thus 
N = R, and the theorem follows. (This proof is based on [ 12, Section 4.3 1.) 

DEFINITION 3.12. Let G be a prounipotent group. G is a n-relator group 
if in every proper presentation 1 + R + F --t G -+ 1 R is finitely generated as a 
normal subgroup of F with minimal number of generators n. 

COROLLARY 3.13. A prounipotent group G is n-relator if and only if 
H’(G, k) has dimension n. 

Discrete one-relator groups essentially have cohomological dimension two 
19, Corollary 11.2, p. 6631. We shall see (Corollary 3.15) that a similar 
statement holds for prounipotent groups. In fact, we have the following 
stronger result: 

THEOREM 3.14. Let G be a prounipotent group and assume that for 
some n > 1, H”(G, k) has dimension one. Then cd(G) = n. 

Proof. Let {Ei ] i = 0, I,... be the minimal injective resolution of k as a G- 
module, so H’(G, k) = Ey and Ei= H’(G, k) @ k[G] ((1.11) and (1.12)). In 
particular, E, = k[G]. Since E, is not zero, d,- 1 : E,-, + E, is not the zero 
map. By Theorem (3.2), it follows that d,- , is onto, so that E,, , = 0. Thus 
H”-‘(G, k) = 0; so cd(G) = n. 
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COROLLARY 3.15. A l-relator prounipotent group G has cohomological 
dimension two. 

Proof. Combine Theorem 3.14 and Corollary 3.13. 

COROLLARY 3.16. The only unipotent l-relator group is G, x G,. 

Proof. G, X G, is the only unipotent group of dimension two, so 
Corollary 3.15 and (1.15) supply the result. 

As an illustration of the results of this section, we compute numbers of 
relations for the groups U(n, r) introduced at the end of Section 2. 

LEMMA 3.17. Let 1 -+ R -+ F -+ G + 1 be an exact sequence of 
prounipotent groups, and let (F, R)* denote the Zariski closure of the 
abstract commutator subgroup (F, R). Then Hom,(R, G,) = 
Hom(R/(F, RI*, G,). 

Proof. + Iff : R + G, is a F-homomorphism,f(xrx- ‘) =f(r) for x E F and 
rE R; so f vanishes on xrx-‘rP1 and hence on (F, R). The converse is 
similar. 

Now in the notation of Section 2, 1 + U(n)*r -+ U(n) + U(n, r) -+ 1 is a 
proper presentation of U(n, r). From the proof of Theorem 3.1 I, we know 
that H2(U(n, r), k) = H’(U(n)*‘, k)“‘“’ = HomUc,,(V(N)*‘, G,). By 
Corollary 3.16 and Definition 2.11 this last group is Hom(U(n)*‘/ 
U(n)*“‘“, G,). In Section 2, we showed that U(n)*“/U(n)*“+ I) has 
dimension f,(r + 2). Since it is abelian, we conclude that Z-Z*(U(n, r), k) has 
dimension Z,(r + 2). By Theorem 3.1 I, we know that it has this many 
relations. 

4. APPLICATIONS TO PRO-AFFINE HULLS OF DISCRETE GROUPS 

If A is any pro&fine algebraic group over k, A contains a normal 
prounipotent subgroup R,(A) such that the quotient A/R,(A) is an inverse 
limit of reductive algebraic groups [ 10, (2.9), p. 71. We call R,(A) the 
prounipotent radical of A. If r is a discrete group and A = A(P), we also 
write U(T) for R,(A) [ 10, p. 71. 

LEMMA 4.1. Let A be a pro-afine group. Then cd(A) = cd(R,(A)). 

Proof. Let Q = A/R,(A). Then cd(Q) = 0, so the spectral sequence (1.10) 
arising from the exact sequence I+ R,,(A) -+ A -+ Q + 1 collapses and we get 
isomorphisms H”(Q, H’(R,(A), P’)) --) H’(A, V) for every A-module I’. Thus 
cd(A) < cd(R,(A)). Since by [ 10, (2.9), p. 71, R,(A) is a normal semi-direct 
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factor of A, the proof of [2, Theorem 4.3, p. 91 shows that induction from 
R,(A)-modules to A-modules is exact, so that, as in (1.14), 
cW,(A 1) < cd@ 1. 

PROPOSITION 4.2. Let r be an abstract free group on the set X. Then 
cd@(T)) < 1. 

ProoJ Let 1 +K-+ GJA(T) + 1 be any exact sequence of pro&fine 
groups. Since r is free, there is an abstract homomorphism h,: r--+ G such 
that fh, is the identity on lY Then h, induces a homomorphism h : A(T) --t G 
with j?z the identity on A(r). If we apply this in the case K is a linite- 
dimensional A(T)-module V, we see that H’@(T), V) = 0. Thus 
cd@(r)) < 1. 

THEOREM 4.3. Let r be a finitely generated discrete group and suppose 
r contains a free subgroup r, of finite index. Then U(T) is a free 
prounipotent group. 

Proof. We may assume r,, is normal. Then since [L’: rO] < co, 
U(L’,,) = U(T); so we may assume r is free. By Proposition 4.2, 
cd@(r)) < 1; so by Lemma 4.1 we have cd(U(T)) < 1. Now by 
Corollary 2.10 we conclude U(r) is free. 

It follows from Theorem 4.3 that if r is a non-abelian free group, then 
U(T) is infinite dimensional: for example, A(T) (and hence U(T)) has the 
group U(2,2) of Section 2 as a homomorphic image, so U(T) # G,. 

In particular, we see that U(SL,(H)) is infinite dimensional. This should 
be compared with the result [ 10, p. 21 that U(SL,(Z)) = 1 for n > 3. 

5. MODULE ENDOMORPHISMS OFTHE COORDINATE RING 

In this section we establish the result, used in the proof of Theorem 3.14, 
that any non-zero G-module endomorphism of the coordinate ring of te 
prounipotent group G is surjective. It turns out to be sufficient to treat the 
case where G is unipotent, and here the result is essentially independent of 
the rest of the paper. 

We begin with some preliminary observations: fix a unipotent group U, 
and let L = Lie(U). We can regard L as the set of all k-algebra derivations of 
k[ U] with D(f - x) = D(f) . x for all f in k[ U] and x E U. If we regard k[ U] 
as a left U-module (where x in U acts on f in k[ U] to give x . f ), then the 
corresponding left L-module structure on k[U] makes the (derivation) D in L 
act on f in k[ U] by D(f). In particular, a U-module endomorphism T of 
k[ U] is also an L-module endomorphism, so XT = TX (as k-module 
endomorphisms of k[ U]) for all X in L. If D EL is a U-module 
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endomorphism, then D commutes with all U-module endomorphisms 
of k[ U]. 

Now let 2 be a one-dimensional normal subgroup of U. As in the proof of 
(1.15), we have an exact sequence 1 + k-r k[Z] +d k[Z] -+ 1, where d is the 
derivative with respect to the parameter of Z. By [2, Theorem 4.3, p. 91 
induction from Z-modules to U-modules is exact, so we get an exact 
sequence 1 -+ Map,(U, k) + Map,(U, k[Z]) -tD Map,(U, k[Z]) + 1. It is easy 
to check that Map,(U, k) = k[U/Z] and Map,@ k[Z]) = k[ U]. If we regard 
d E Lie(Z), then is the image of d in Lie(U). Thus we have an exact 
sequence 0 -+ k[ U/Z] -+ k[ U] -+D k[ U] + 0, where D is a central surjective 
endomorphism of k[ U]. 

THEOREM 5.1. Let U be a unipotent group and T a non-zero U-module 
endomorphism of k[ U]. Then T is onto. 

Proof. We use induction on dim(U), the case dim(U) = 0 being clear. 
Choose a one-dimensional normal subgroup Z of U and let E = k[U] and let 
E, = k[U/Z]. The discussion preceding the theorem shows that there is a 
central, surjective U-module endomorphism D of E with kernel E,. Let 
Ei = Ker(D’) for i > 1. Since D is locally nilpotent (D E Lie(U)), we have 
E = (J Ei and since D is onto, DEi+, = E,; so DiEi+, = E,. Since D is 
central, every U-module endomorphism X of E sends Ei to Ei. Let X be a U- 
module endormophism of E, Xf 0, and assume X(E,) = 0, X(Ei+ ,) # 0. 
Now D’ induces a U-module isomorphism D’ : E/E, + E and X induces a U- 
module homomorphism X: E/E, -+ E. If we let Y=X(3)-‘, then YD’=X. 
Now Y(E,) = Y(D’E,+ r) = X(E,+ r) # 0. The restriction of Y to E, is a U/Z- 
module endomorphism of k[ U/Z] an d non-zero; so by induction Y(E 1) = E 1 . 
Now the commutative diagram 

O+E,+Ej+,+Ej+O 

11 1 
O+E,+Ej+,+Ej-,O 

where the vertical maps are all Y, and Ej+, -+ Ej is D, has exact rows, so 
from the fact that Y(E,) = E, we conclude inductively that Y(E,) = E,. Thus 
Y is surjective. Since D is surjective and YD’ =X, X is surjective. 

COROLLARY 5.2. Let G be a prounipotent group and T a non-zero G- 
module endomorphism of k[G]. Then T is onto. 

Proof. If H is any normal subgroup of G, then T(k[G]“) c k[GIH and T 
is a G/H-module endomorphism of k[G/H] = k[GIH. If T # 0, there is such 
an H of finite codimension with T(k[GIH) # 0; so for every normal K of 
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finite codimension contained in H, T is a non-zero endomorphism of k[G]“, 
and hence onto by Theorem 5.1. Since k[G] = u k[GIK for such K, T is 
onto. 
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