Linear Algebra and its Applications 436 (2012) 3930-3942

A-m-Isometric operators in semi-Hilbertian spaces

Ould Ahmed Mahmoud Sid Ahmed ^a,*, Adel Saddi ^b

^a Department of Mathematics, College of Science, Aljouf University, Aljouf 2014, Saudi Arabia b Department of Mathematics, College of Education for Girls in Sarat Ebeidah, 61914 Abha, King Khalid University, Saudi Arabia

ARTICLE INFO

Article history: Received 9 May 2010 Accepted 6 September 2010 Available online 12 October 2010

Submitted by V. Mehrmann

AMS classification: 46C05 47A05 47A15

Keywords: *m*-Isometry Semi-inner product Operator Spectrum

1. Introduction and terminologies

The concept of partial isometries, quasi-isometries and contractions in semi-Hilbertian spaces was introduced by Arias et al. [7] and Suciu [9,10].

The class of *m*-isometric and in particular 2-isometric operators on a complex Hilbert space has been the object of some intensive study, especially by Agler and Stankus [1], Patel [11] but also by Richter, Shimorin and other authors (see [2.6]).

Our goal in this paper is to study the class of *m*-isometric with respect to a semi-norm $\|.\|_A$. An operator in this class will be called A-m isometry. We show that many results from [1,11] remain true if we consider an additional semi-inner product defined by a positive semi-definite operator A.

The contents of the paper are the following. In Section 1, we set up notation and terminology. In Section 2, we introduce the concept of A-m isometries. Several properties are proved which result in a

Corresponding author. E-mail addresses: sidahmed@ju.edu.sa (O.A.M.S. Ahmed), adel.saddi@fsg.rnu.tn (A. Saddi).

0024-3795/\$ - see front matter © 2010 Elsevier Inc. All rights reserved. doi:10.1016/j.laa.2010.09.012

ABSTRACT

In this work, the concept of *m*-isometry on a Hilbert space are generalized when an additional semi-inner product is considered. This new concept is described by means of oblique projections. © 2010 Elsevier Inc. All rights reserved.

generalization of well known assertions of *m*-isometries . In Section 3, we shall specialize to the case m = 2. We explore some properties of *A*-2-isometry.

Several spectral properties of *A*-*m*-isometries are obtained in Section 4, concerning the point spectrum, the approximate spectrum and the spectrum. The spectral radius of *T* will be denoted by r(T).

Throughout this paper \mathbb{N} denotes the set of non-negative integers, \mathbb{K} stands for a complex Hilbert space with inner product $\langle | \rangle$ and $\mathcal{L}(\mathbb{K})$ is the Banach algebra of all bounded linear operators on \mathbb{K} , $I = I_{\mathbb{K}}$ being the identity operator. $\mathcal{L}(\mathbb{K})^+$ is the cone of positive (semi-definite) operators, i.e.,

$$\mathcal{L}(\mathbb{K})^+ = \{ A \in \mathcal{L}(\mathbb{K}) : \langle Au, \mid u \rangle \ge 0, \forall u \in \mathbb{K} \}.$$

For every $T \in \mathcal{L}(\mathbb{K})$ its range is denoted by R(T), its null space by N(T) and its adjoint by T^* . If $\mathbb{M} \subset \mathbb{K}$ is a closed subspace, $P_{\mathbb{M}}$ is the orthogonal projection onto \mathbb{M} . The subspace \mathbb{M} is invariant for T if $T\mathbb{M} \subset \mathbb{M}$, and \mathbb{M} reduces T it is invariant for T and T^* . We write $\rho(T)$, $\sigma(T)$, $\sigma_p(T)$ and $\sigma_{ap}(T)$, respectively, for the resolvent set, the spectrum, the point spectrum and the approximate point spectrum of the operator T. Any $A \in \mathcal{L}(\mathbb{K})^+$ defines a positive semi-definite sesquilinear form:

$$\langle | \rangle_A : \mathbb{K} \times \mathbb{K} \longrightarrow \mathbb{C}, \ \langle u | v \rangle_A = \langle Au | v \rangle_A$$

By $\|.\|_A$ we denote the semi-norm induced by $\langle | \rangle_A$, i.e., $\|u\|_A = \langle u | u \rangle_A^{\frac{1}{2}}$. Observe that $\|u\|_A = 0$ if and only if $u \in N(A)$. Then $\|.\|_A$ is a norm if and only if A is an injective operator, and the semi-normed space $(\mathcal{L}(\mathbb{K}), \|.\|_A)$ is complete if and only if R(A) is closed. Moreover $\langle | \rangle_A$ induced a semi-norm on a certain subspace of $\mathcal{L}(\mathbb{K})$, namely, on the subset of all $T \in \mathcal{L}(\mathbb{K})$ for which there exists a constant c > 0 such that $\|Tu\|_A \leq c \|u\|_A$ for every $u \in \mathcal{L}(\mathbb{K})$. For these operators it holds

$$||T||_A = \sup_{u \in \overline{R(A)}, u \neq 0} \frac{||Tu||_A}{||u||_A} < \infty.$$

It is straightforward that

$$||T||_A = \sup\{|\langle Tu \mid v \rangle_A| : u, v \in \mathbb{K} \text{ and } ||u||_A \leq 1, ||v||_A \leq 1\}.$$

Given a subspace \mathbb{M} of \mathbb{K} its *A*-orthogonal subspace is the subspace

$$\mathbb{M}^{\perp_A} = \{ v \in \mathbb{K}; \langle v \mid u \rangle_A = 0, \forall u \in \mathbb{M} \}.$$

It easy to check that

$$\mathbb{M}^{\perp_A} = (A\mathbb{M})^{\perp} = A^{-1}(\mathbb{M}^{\perp}).$$

Moreover, since $A(A^{-1}(\mathbb{M}) = \mathbb{M} \cap R(A)$, then

$$(\mathbb{M}^{\perp_A})^{\perp_A} = \left(\mathbb{M}^{\perp} \cap R(A)\right)^{\perp}$$

Theorem 1.1 (Douglas [4]). Let $A, B \in \mathcal{L}(\mathbb{K})$. The following conditions are equivalents.

1. $R(B) \subset R(A)$.

2. There exists a positive number λ such that $BB^* \leq \lambda AA^*$.

3. There exists $C \in \mathcal{L}(\mathbb{K})$ such that AC = B.

Definition 1.1. Let $T \in \mathcal{L}(\mathbb{K})$, an operator $W \in \mathcal{L}(\mathbb{K})$ is called an *A*-adjoint of *T* if

 $\langle Tu \mid v \rangle_A = \langle u \mid Wv \rangle_A$ for every $u, v \in \mathbb{K}$,

i.e.,

$$AW = T^*A;$$

T is called A-selfadjoint if

 $AT = T^*A.$

The existence of an *A*-adjoint operator is not guaranteed. Observe that a given $T \in \mathcal{L}(\mathbb{K})$ may admit none, one or many *A*-adjoints: in fact, if *W* is an *A*-adjoint of *T* and AZ = 0 for some $Z \in \mathcal{L}(\mathbb{K})$ then W + Z is also an *A*-adjoint of *T*.

By Douglas theorem, *T* admits an *A*-adjoint if and only if $R(T^*A) \subset R(A)$. From now on, $\mathcal{L}_A(\mathbb{K})$ denotes the set of all $T \in \mathcal{L}(\mathbb{K})$ which admit an *A*-adjoint, it is

$$\mathcal{L}_{A}(\mathbb{K}) = \{ T \in \mathcal{L}(\mathbb{K}) : R(T^{*}A) \subset R(A) \}.$$

 $\mathcal{L}_A(\mathbb{K})$ is a subalgebra of $\mathcal{L}(\mathbb{K})$ which is neither closed nor dense in $\mathcal{L}(\mathbb{K})$.

On the other hand if

 $||u||_A = \langle Au | u \rangle^{\frac{1}{2}} = ||A^{\frac{1}{2}}u||,$

the set of all $\|.\|_A$ -bounded operators in $\mathcal{L}(\mathbb{K})$ is

$$\mathcal{L}_{A^{\frac{1}{2}}}(\mathbb{K}) = \{ T \in \mathcal{L}(\mathbb{K}) : T^* R(A^{\frac{1}{2}}) \subset R(A^{\frac{1}{2}}) \} = \{ T \in \mathcal{L}(\mathbb{K}) : R(A^{\frac{1}{2}}T^* A^{\frac{1}{2}}) \subset R(A) \}.$$

Note that $\mathcal{L}_A(\mathbb{K}) \subset \mathcal{L}_{A^{\frac{1}{2}}}(\mathbb{K})$, which shows that if *T* admits an *A*-adjoint then it is *A*-bounded.

1.1. The A-adjoint operator T^{\sharp}

If $T \in \mathcal{L}(\mathbb{K})$ admits an *A*-adjoint operator, i.e. if $R(T^*A) \subset R(A)$, then there exists a distinguished *A*-adjoint operator of *T*, namely, the reduced solution of the equation $AX = T^*A$, i.e. $T^{\ddagger} = A^{\dagger}T^*A$, where T^{\dagger} is the Moore–Penrose inverse of *T* and the *A*-adjoint operator T^{\ddagger} verifies

 $AT^{\sharp} = T^*A, \ R(T^{\sharp}) \subseteq \overline{R(A)} \text{ and } N(T^{\sharp}) = N(T^*A).$

In the next we add without proof some properties of T^{\sharp} , (for more details we refer the reader to [8]).

Proposition 1.1. Let $A \in \mathcal{L}(\mathbb{K})^+$ and $T \in \mathcal{L}_A(\mathbb{K})$. Then

1. $T^{\sharp}T$ and $TT^{\sharp}are$ A-selfadjoint.

2. $||T||_A = ||T^{\sharp}||_A = ||T^{\sharp}T||_A^{\frac{1}{2}}$.

3. $||W||_A = ||T^{\sharp}||_A$ for every $W \in \mathcal{L}(\mathbb{K})$ which is an A-adjoint of T.

4. If $W \in \mathcal{L}_A(\mathbb{K})$ then $||TW||_A = ||WT||_A$.

5. $||T^{\sharp}|| \leq ||W||$ for every $W \in \mathcal{L}(\mathbb{K})$ which is an A-adjoint of T. Nevertheless, T^{\sharp} is not in general the unique A-adjoint of T that realizes the minimal norm.

We work with the next A-operators classes.

Definition 1.2. Let $T \in \mathcal{L}(\mathbb{K})$.

1. *T* is an *A*-isometry if $||Tu||_A = ||u||_A$ for every $u \in \mathbb{K}$.

2. $T \in \mathcal{L}_A(\mathbb{K})$ is an *A*-normal operator if $T^{\sharp}T = TT^{\sharp}$.

2. The class of A-m-isometric operators

Recall that for $m \in \mathbb{N}$, an operator $T \in \mathcal{L}(\mathbb{K})$ is called an *m*-isometry if,

$$T^{*m}T^m - \binom{m}{1}T^{*m-1}T^{m-1} + \binom{m}{2}T^{*m-2}T^{m-2} + \ldots + (-1)^{m-1}\binom{m}{m-1}T^*T + (-1)^mI = 0.$$

Obviously, every *m*-isometry is injective. Moreover, *T* is an *m*-isometry if and only if

$$\sum_{k=0}^{m} (-1)^{k} {m \choose k} \| T^{m-k} u \|^{2} = 0, \quad \forall \ u \in \mathbb{K}.$$

In this section we will introduce and prove some basic properties of an A-m-isometry for which we give the following definition.

Definition 2.1. For $m \in \mathbb{N}$ and $A \in \mathcal{L}(\mathbb{K})^+$, an operator $T \in \mathcal{L}(\mathbb{K})$ is called an *A*-*m*-isometry if.

$$T^{*m}AT^{m} - \binom{m}{1}T^{*m-1}AT^{m-1} + \binom{m}{2}T^{*m-2}AT^{m-2} + \ldots + (-1)^{m-1}\binom{m}{m-1}T^{*}AT + (-1)^{m}A = 0.$$

or equivalently

$$\sum_{k=0}^{m} (-1)^{k} {m \choose k} \| T^{m-k} u \|_{A}^{2} = 0, \ \forall \ u \in \mathbb{K},$$

that is, *T* is an *m*-isometry relative to the semi-norm on \mathbb{K} induced by *A*.

Remark 2.1

- 1. Let $T \in \mathcal{L}_A(\mathbb{K})$, a simple computation shows that the following statements are equivalent: (a) *T* is an *A*-*m*-isometry. (b) $\sum_{k=0}^{m} (-1)^{k} {m \choose k} T^{\sharp m-k} T^{m-k} = 0.$
- 2. An A-1-isometry is an A-isometry and if A = I then an A-m-isometry is an m-isometry.
- 3. If T is an A-m-isometry then $N(T) \subset N(A)$. In particular if A is injective, then T is injective.

Example 2.1. The following examples of *A*-*m*-isometries can be easily proved.

- 1. The identity operator and the orthogonal projection on $\overline{R(A)}$ are A-m-isometries for all $m \ge 1$. Moreover, if *T* is an *A*-*m*-isometry then {T + S, $R(S) \subset N(A)$ } is a set of *A*-*m*-isometries.
- 2. Let $\mathbb{K} = \mathbb{C}^2$ be equipped with the norm $||(x, y)||^2 = |x|^2 + |y|^2$, and consider the operators A = $\begin{pmatrix} 1\\ 2 \end{pmatrix} \in \mathcal{L}(\mathbb{K})^+$, $T = \begin{pmatrix} 1 & 1\\ 0 & 1 \end{pmatrix} \in \mathcal{L}(\mathbb{K})$. It is easy to check that T admits A-adjoint operators and by direct computation, we see that

$$\|T^{3}(x,y)\|_{A}^{2} - 3\|T^{2}(x,y)\|_{A}^{2} + 3\|T(x,y)\|_{A}^{2} - \|(x,y)\|_{A}^{2} = 0$$

and
$$\|Tx\|_{A}^{2} \neq \|x\|_{A}^{2}.$$

Thus, T is an A-3-isometry but is not an A-isometry. In general an A-m-isometry is not an m-isometry and vice versa, for example if $\mathbb{K} = \mathbb{C}^3$ equipped with the canonical norm, $A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ and

 $T = \begin{pmatrix} 0 & 0 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$, then *T* is a 2-isometry but it is not an *A*-isometry. On the other hand if $B = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ and $S = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, then *S* is a *B*-isometry but it is not a 3-isometry. Under some additional conditions, we obtain the following result.

Proposition 2.1. Let A be a positive, injective bounded operator on \mathbb{K} and $T \in \mathcal{L}(\mathbb{K})$. Then the following statements hold:

- 1. If TA = AT, then $T^{\sharp} = T^*$. In particular T is an A-m-isometry if and only if T is an m-isometry.
- 2. If T is A-normal, then T is an A-m-isometry if and only if T^{\ddagger} is an A-m-isometry.

Proof

1. Note first that the conditions imposed on *A* and on *T* imply that $\overline{R(A)} = \mathbb{K}$ and that $T^*R(A) \subset R(A)$. So T^{\sharp} exists. Moreover

$$T^{\sharp} = A^{\dagger}T^*A = A^{\dagger}AT^* = P_{\overline{R(A)}}T^* = T^*.$$

Thus the assertion follows.

2. Follows from the definition of an *A*-*m*-isometry and the Lemma 2.1, [7]. More generally, as it happens with *A*-isometries, *A*-*m*-isometries can be characterized in terms of *m*-isometries. □

Proposition 2.2. Let $T \in \mathcal{L}(\mathbb{K})$, then $T \in \mathcal{L}_{A^{\frac{1}{2}}}(\mathbb{K})$ if and only if there exists $S \in \mathcal{L}(\mathbb{K})$ such that $A^{\frac{1}{2}}S = T^*A^{\frac{1}{2}}$. In this case T is an A-m-isometry if and only if $S^*|_{\overline{R(A^{\frac{1}{2}})}}$ is an m-isometry.

Proof. The first statement follows by applying Dauglas theorem. Now

$$A^{\frac{1}{2}}S = T^*A^{\frac{1}{2}} \Longleftrightarrow S^*A^{\frac{1}{2}} = A^{\frac{1}{2}}T.$$

This implies that $\overline{R(A^{\frac{1}{2}})}$ is invariant for S^* . Moreover we have $S^{*k}A^{\frac{1}{2}} = A^{\frac{1}{2}}T^k$, for all positive integer k. Thus for all $u \in \mathbb{K}$,

$$\sum_{k=0}^{m} (-1)^{k} {m \choose k} \|T^{m-k}u\|_{A}^{2} = \sum_{k=0}^{m} (-1)^{k} {m \choose k} \|A^{\frac{1}{2}}T^{m-k}u\|^{2} = \sum_{k=0}^{m} (-1)^{m} {m \choose k} \|S^{*m-k}A^{\frac{1}{2}}u\|^{2}$$

from which we can conclude. Not that if in Proposition 2.2 the positive operator A is injective then S^* is an *m*-isometry. \Box

Proposition 2.3. Let $T \in \mathcal{L}(\mathbb{K})$ be an A-isometry and $S \in \mathcal{L}(\mathbb{K})$ with ST = TS, then ST is an A-m-isometry if and only if S is also an A-m-isometry.

Proof. Let $u \in \mathbb{K}$. The assumption *T* is *A*-isometry implies:

 $||T^{j}S^{j}u||_{A} = ||S^{j}u||_{A}, \ j = 0, 1, \dots, m.$

Using this and ST = TS, we obtain

$$\sum_{j=0}^{m} (-1)^{j} {m \choose j} \| (TS)^{m-j} u \|_{A}^{2} = \sum_{j=0}^{m} (-1)^{j} {m \choose j} \| T^{m-j} S^{m-j} u \|_{A}^{2}$$
$$= \sum_{j=0}^{m} (-1)^{j} {m \choose j} \| S^{m-j} u \|_{A}^{2},$$

which gives the desired result. \Box

Proposition 2.4. Let $T \in \mathcal{L}(\mathbb{K})$ be an A-m-isometry, then for all $k \ge 0$, T is an A-(m + k)-isometry.

Proof. It is enough to prove the result for k = 1; so we have

$$\begin{split} \sum_{j=0}^{m+1} (-1)^{j} {\binom{m+1}{j}} \| T^{m+1-j} u \|_{A}^{2} &= \| T^{m+1} u \|_{A}^{2} + \sum_{j=1}^{m} (-1)^{j} {\binom{m+1}{j}} \| T^{m+1-j} u \|_{A}^{2} - (-1)^{m} \| u \|_{A}^{2} \\ &= \| T^{m+1} u \|_{A}^{2} + \sum_{j=1}^{m} (-1)^{j} \left({\binom{m}{j}} + {\binom{m}{j-1}} \right) \| T^{m+1-j} u \|_{A}^{2} - (-1)^{m} \| u \|_{A}^{2} \\ &= \| T^{m} (T u) \|_{A}^{2} + \sum_{j=1}^{m} (-1)^{j} {\binom{m}{j}} \| T^{m-j} T u \|_{A}^{2} \end{split}$$

$$+\sum_{j=1}^{m} (-1)^{j} {m \choose j-1} \|T^{m+1-j}u\|_{A}^{2} - (-1)^{m} \|u\|_{A}^{2}$$
$$= 0 - \sum_{j=0}^{m} (-1)^{j} {m \choose j} \|T^{m-j}u\|_{A}^{2} = 0.$$

Hence *T* is an A-(m + 1)-isometry. \Box

Proposition 2.5. Let $T \in \mathcal{L}(\mathbb{K})$ be an invertible A-m-isometry, then T^{-1} is also an A-m-isometry.

Proof. Since
$$\sum_{j=0}^{m} (-1)^{j} {m \choose j} \| T^{m-j} u \|_{A}^{2} = 0$$
, $\forall u \in \mathbb{K}$. By using the identity
 ${m \choose j} = {m \choose m-j}, j = 0, 1, ..., m$, and replacing u by $(T^{-1})^{m}u$, we deduce that
 $0 = \sum_{j=0}^{m} (-1)^{j} {m \choose j} \| T^{m-j} ((T^{-1})^{m}u) \|_{A}^{2} = \sum_{j=0}^{m} (-1)^{j} {m \choose m-j} \| T^{-j}u \|_{A}^{2}$
 $= \sum_{k=0}^{m} (-1)^{m-k} {m \choose k} \| (T^{-1})^{m-k}u \|_{A}^{2}$
 $= (-1)^{m} \sum_{k=0}^{m} (-1)^{k} {m \choose k} \| (T^{-1})^{m-k}u \|_{A}^{2}$

Hence, the result.

For n, k = 0, 1, 2, ..., we denote

$$n^{(k)} = \begin{cases} 1, & \text{if, } n = 0 \text{ or } k = 0\\ n(n-1)\dots(n-k+1), & \text{otherwise} \end{cases}$$

For $T \in \mathcal{L}(\mathbb{K})$ and k = 0, 1, 2..., we consider the operator

$$\beta_k(T) = \frac{1}{k!} \sum_{j=0}^k (-1)^{k-j} {k \choose j} T^{*j} A T^j.$$

Observe that if *T* is an *A*-*m*-isometry, then $\beta_k(T) = 0$ for every $k \ge m$. The symbol $S_T(n) = T^{*n}AT^n$ of *T*, can be written

$$S_T(n) = \sum_{k=0}^{\infty} n^{(k)} \beta_k(T).$$

Hence if *T* is an *A*-*m*-isometry then

$$S_T(n) = \sum_{k=0}^{m-1} n^{(k)} \beta_k(T)$$

and consequently

$$\|T^n u\|_A^2 = \sum_{k=0}^{m-1} n^{(k)} \langle \beta_k(T) u \mid u \rangle, \text{ for all } u \in \mathbb{K}.$$

Moreover, the *A*-covariance operator Δ_T is defined by

$$\Delta_T := \beta_{m-1}(T).$$

Note that the operator Δ_T depends on *T*, *m* and also on *A*. The next results have been proved in the special case A = I by Agler and Stankus [1]. Here we present a generalization in more general context. \Box

Theorem 2.1. Let $T \in \mathcal{L}(\mathbb{K})$. If T is an A-m-isometry, then the following properties hold.

1. Δ_T is positive and for all $u \in \mathbb{K}$,

$$\langle \Delta_T u \mid u \rangle = \sum_{k=0}^{m-1} (-1)^{m-k-1} \frac{1}{k!(m-k-1)!} \|T^k u\|_A^2$$

- 2. The null space $N(\Delta_T)$ of Δ_T is an invariant subspace for T. Moreover, if $N(\Delta_T)$ is invariant for A and $A_0 = A|_{N(\Delta_T)}$, then the restriction operator $T|_{N(\Delta_T)}$ is an A_0 -(m-1)-isometry.
- 3. If $\mathbb{M} \subset \mathbb{K}$ is an invariant subspace for T and A such that $T|_{\mathbb{M}}$ is an $A|_{\mathbb{M}}-(m-1)$ -isometry, then $\mathbb{M} \subset N(\Delta_T)$.

Proof

1. We have

$$\begin{split} \langle \Delta_T u \mid u \rangle &= \lim_{n \to \infty} \frac{1}{n^{(m-1)}} \langle S_T(n) u \mid u \rangle \\ &= \lim_{n \to \infty} \frac{1}{n^{(m-1)}} \| T^n u \|_A^2 \ge 0. \end{split}$$

- 2. A simple computation shows that if *T* is an *A*-*m*-isometry, then
 - $T^*\Delta_T T \Delta_T = 0.$

Let $u \in N(\Delta_T)$,

 $\langle \Delta_T Tu \mid Tu \rangle = \langle T^* \Delta_T Tu \mid u \rangle = \langle \Delta_T u \mid u \rangle = 0.$

The positivity of Δ_T implies that $\Delta_T T u = 0$, and so Δ_T is invariant for *T*. Furthermore, from 1., it follows that $T|_{N(\Delta_T)}$ is an A_0 -(m - 1)-isometry.

3. Let $u \in \mathbb{M}$, since $T|_{\mathbb{M}}$ is an $A|_{\mathbb{M}}$ -(m-1)-isometry, then for $u \in \mathbb{M}$, the statement 1. implies that $\langle \Delta_T u \mid u \rangle_A = 0$. Hence one conclude that $u \in N(\Delta_T)$.

The concept of *A*-reduced minimum modulus of an operator is a natural generalization of the reduced minimum modulus: recall that the reduced minimum modulus of an operator $T \in \mathcal{L}(\mathbb{K})$ is defined as

 $\gamma(T) = \inf\{\|Tu\| : u \in N(T)^{\perp} \text{ and } \|u\| = 1\}.$

Definition 2.2. Let $T \in \mathcal{L}(\mathbb{K})$. The *A*-reduced minimum modulus of *T* is defined as

$$\gamma_A(T) = \inf\{\|Tu\|_A : u \in N(A^{\frac{1}{2}}T)^{\perp_A} \text{ and } \|u\|_A = 1\}$$

Note that

$$||Tu||_A \ge \gamma_A(T)d_A\left(u, N(A^{\frac{1}{2}}T)\right), u \in \mathbb{K}$$

where $d_A(u, V) = \inf\{||u - v||_A : v \in V\}, V \subset \mathbb{K}$, and if $T \in \mathcal{L}_A(\mathbb{K})$, then

$$\gamma_A(T) = \inf\{\|Tu\|_A : u \in R(T^{\sharp}T) \text{ and } \|u\|_A = 1\}.$$

Proposition 2.6. Let $T \in \mathcal{L}_A(\mathbb{K})$. Then

 $\gamma_A(T^{\sharp}T) \ge \gamma_A(T)^2$.

Proof. Let $u \in \mathbb{K}$, we have,

$$\|T^{\sharp}Tu\|_{A}\|u\|_{A} \geq \langle T^{\sharp}Tu \mid u \rangle_{A} = \|Tu\|_{A}^{2} \geq \gamma_{A}(T)^{2}\|u\|_{A}^{2}$$

Hence,

 $||T^{\sharp}Tu||_{A} \geq \gamma_{A}(T)^{2} ||u||_{A}.$

Since $T^{\sharp}T \in \mathcal{L}_{A}(\mathbb{K})$ and $R((T^{\sharp}T)^{\sharp}(T^{\sharp}T)) \subset R(T^{\sharp}T)$, we deduce that $\gamma_{A}(T^{\sharp}T) \ge \gamma_{A}(T)^{2}$. \Box

Proposition 2.7. Let $T \in \mathcal{L}_A(\mathbb{K})$ be an *A*-*m*-isometry. Then

1. T is A-bounded below (i.e., $||Tu||_A \ge c ||u||_A$, for some c > 0).

2.
$$||T||_A \ge \gamma_A(T) \ge \frac{1}{\sqrt{m} \left(1 + ||T||_A^2\right)^{\frac{m-1}{2}}} > 0$$

Proof. Note first that if $T \in \mathcal{L}_A(\mathbb{K})$, then $N(A) \subset N(AT)$ and we have

$$||Tu||_A \leq ||T||_A ||u||_A, \forall u \in \mathbb{K}.$$

Since *T* is an *A*-*m*-isometry, then for $u \in \mathbb{K}$, it follows

1.
$$||u||_{A}^{2} \leq (||T^{m-1}||_{A}^{2} + {\binom{m}{1}}||T^{m-2}||_{A}^{2} + \ldots + {\binom{m}{m-1}}) ||Tu||_{A}^{2}$$

= $C(m, T) ||Tu||_{A}^{2}$.

2.
$$\|u\|_{A}^{2} \leq \|T^{m}u\|_{A}^{2} + \binom{m}{1}\|T^{m-1}u\|_{A}^{2} + \ldots + \binom{m}{m-1}\|Tu\|_{A}^{2}$$
$$\leq \|T^{m-1}\|_{A}^{2}\|Tu\|_{A}^{2} + \binom{m}{1}\|T^{m-2}\|_{A}^{2}\|Tu\|_{A}^{2} + \ldots + \binom{m}{m-1}\|T\|_{A}^{2}$$
$$\leq \left((\|T\|_{A}^{2})^{m-1} + \binom{m}{1}(\|T\|_{A}^{2})^{m-2} + \ldots + \binom{m}{m-1}\right)\|Tu\|_{A}^{2}$$
$$\leq m \sum_{j=0}^{m-1} \binom{m-1}{j} \left(\|T\|_{A}^{2}\right)^{m-1-j}\|Tu\|_{A}^{2}$$
$$\leq m \left(1 + \|T\|_{A}^{2}\right)^{m-1}\|Tu\|_{A}^{2}.$$

We deduce that

$$\gamma_A(T) \ge \frac{1}{\sqrt{m} \left(1 + \|T\|_A^2\right)^{\frac{m-1}{2}}},$$

which is the desired result. \Box

3. A-2-Isometric operators

Lemma 3.1. Let $T \in \mathcal{L}(\mathbb{K})$ be an A-2-isometry then

1.
$$||Tu||_{A}^{2} \ge \frac{n-1}{n} ||u||_{A}^{2}$$
, $n \ge 1$, $u \in \mathbb{K}$.
2. $||Tu||_{A} \ge ||u||_{A}$, $u \in \mathbb{K}$.
3. $||T^{n}u||_{A}^{2} + (n-1)||u||_{A}^{2} = n||Tu||_{A}^{2}$, $u \in \mathbb{K}$, $n = 0, 1, 2, ...$
4. $\lim_{n \longrightarrow \infty} ||T^{n}u||_{A}^{\frac{1}{n}} = 1$, for $u \in \mathbb{K}$, $u \ne 0$.

Proof. Using the fact that *T* is an *A*-2-isometry, we get

$$||T^{2}u||_{A}^{2} - ||Tu||_{A}^{2} = ||Tu||_{A}^{2} - ||u||_{A}^{2}.$$

Replacing u by $T^k u$ leads to

$$||T^{k+2}u||_A^2 - ||T^{k+1}u||_A^2 = ||T^{k+1}u||_A^2 - ||T^ku||_A^2, \ k \ge 0.$$

Hence,

$$0 \le \|T^{n}u\|_{A}^{2} = \sum_{k=1}^{n} \left(\|T^{k}u\|_{A}^{2} - \|T^{k-1}u\|_{A}^{2}\right) + \|u\|_{A}^{2}$$
$$= n \left(\|Tu\|_{A}^{2} - \|u\|_{A}^{2}\right) + \|u\|_{A}^{2}$$
$$= n\|Tu\|_{A}^{2} + (1-n)\|u\|_{A}^{2}.$$

Which implies 1. and 3. Letting $n \rightarrow \infty$ in 1. yields to 2.

4. Take $u \in \mathbb{K}$, $u \neq 0$. It follows from 3. that

$$\limsup_{n\longrightarrow\infty}\|T^n u\|_A^{\frac{1}{n}}\leqslant 1.$$

However, according to 2., the sequence

$$(||T^n u||_A)_{n\in\mathbb{N}}$$

is monotonically increasing, so

$$\liminf_{n \to \infty} \|T^n u\|_A^{\frac{1}{n}} \ge \lim_{n \to \infty} \|u\|_A^{\frac{1}{n}} = 1,$$

which completes the proof. \Box

Remark 3.1. Assume that *T* is an *A*-2-isometry and using Lemma 3.1, we see that

$$\|T^{2n}u\|_{A}^{2} = n\|T^{n+1}u\|_{A}^{2} - n(n-1)\|Tu\|_{A}^{2} + (n-1)^{2}\|u\|_{A}^{2}, \ n \ge 1, \ u \in \mathbb{K}.$$

Theorem 3.1. Let $T, S \in \mathcal{L}(\mathbb{K})$ with TS = ST. If T is an A-2-isometry and S is an A-m-isometry, then the operator ST is an A-(m+1)-isometry,

Proof. Let $u \in \mathbb{K}$, by using Lemma 3.1, one have

$$\begin{split} &\sum_{j=0}^{m+1} (-1)^j {\binom{m+1}{j}} \| (TS)^{m+1-j} u \|_A^2 \\ &= \sum_{j=0}^{m+1} (-1)^j {\binom{m+1}{j}} \| T^{m+1-j} S^{m+1-j} u \|_A^2 \\ &= \left\{ \sum_{j=0}^{m+1} (-1)^j {\binom{m+1}{j}} \| (m+1-j) \| TS^{m+1-j} u \|_A^2 - \sum_{j=0}^{m+1} (-1)^j {\binom{m+1}{j}} \| (m-j)) \| (S^{m+1-j} u) \|_A^2 \right\} \\ &= (m+1) \sum_{j=0}^{m+1} (-1)^j {\binom{m+1}{j}} \| (S)^{m+1-j} Tu \|_A^2 - \sum_{j=1}^{m+1} (-1)^j {\binom{m+1}{j}} j \| S^{m+1-j} (Tu) \|_A^2 \\ &- m \sum_{j=0}^{m+1} (-1)^j {\binom{m+1}{j}} \| S^{m+1-j} u \|_A^2 - (m+1) \sum_{j=0}^m (-1)^j {\binom{m}{j}} \| S^{m-j} u \|_A^2 = 0. \end{split}$$

Hence, the result. \Box

Theorem 3.2. Let $T \in \mathcal{L}(\mathbb{K})$ be an A-2-isometry, then T^n is again a A-2-isometry for each $n \in \mathbb{N}$.

Proof. Use Lemma 3.1, to write

$$||T^{2n}u||_A^2 = 2n||Tu||_A^2 - (2n-1)||u||_A^2$$

and

$$-2\|T^{n}u\|_{A}^{2} = -2(n\|Tu\|_{A}^{2} - (n-1)\|u\|_{A}^{2})$$

Adding gives

$$\|T^{2n}u\|_{A}^{2} - 2\|T^{n}u\|_{A}^{2} + \|u\|_{A}^{2} = 0$$

as required.

Corollary 3.1. Let $T, S \in \mathcal{L}(\mathbb{K})$ with TS = ST. If T is an A-2-isometry and S is an A-m-isometry, then the operator T^kS is an A-(m+1)-isometry for all $k \ge 0$.

Lemma 3.2. Let $T \in \mathcal{L}(\mathbb{K})$. If T is an A-2-isometry, then

 $T^{*p+1}AT^{p+1}-T^{*p}AT^p=\Delta_T, \forall p \ge 0.$

In particular the sequence of operators

$$(T^{*p+1}AT^{p+1} - T^{*p}AT^{p})_{p \ge 0}$$

is positive.

Proof. We prove the assertion by induction. Since *T* is an *A*-2-isometry the result is true for p = 0 and p = 1. Now assume that the result is true for *p*, i.e.,

$$(T^*)^p A T^p - (T^*)^{p-1} A T^{p-1} = \Delta_T.$$

Then

$$T^* \left((T^*)^p A T^p - (T^*)^{p-1} A T^{p-1} \right) T = T^* \Delta_T T = \Delta_T.$$

Hence, the result.

On the other hand, from Theorem 2.1, we have

 $\forall \ u \in \mathbb{K}, \quad \langle (T^*)^{k+1} A T^{k+1} - (T^*)^k A T^k) u \mid u \rangle = \langle \Delta_T u \mid u \rangle \ge 0. \quad \Box$

Lemma 3.3. Let $T \in \mathcal{L}(\mathbb{K})$ be an A-2-isometry, then

$$T^{*p}AT^p = pT^*AT - (p-1)A, \quad \forall \ p \ge 0.$$

Moreover if $T \in \mathcal{L}_A(\mathbb{K})$ *, we have*

 $T^{\sharp p}T^p = pT^{\sharp}T - (p-1)I, \quad \forall \ p \ge 0.$

Proof. We prove the assertion by induction. For p = 0, 1it is trivial. Since *T* is an *A*-2-isometry the result is true for p = 2. Now assume that the result is true for *p*, i.e.,

 $T^{*p}AT^p = pT^*AT - (p-1)A.$

Then

$$T^{*p+1}AT^{p+1} = T^*T^{*p}AT^{P}T$$

= $T^*(pT^*T - (p-1)A)T = pT^{*2}AT^2 - (p-1)T^*AT$
= $p(2T^*AT - A) - (p-1)T^*AT$
= $2pT^*AT - pA - (p-1)T^*AT = (p+1)T^*AT - pA.$

This finishes the proof. \Box

Definition 3.1. Let $T \in \mathcal{L}(\mathbb{K})$. T is said to be:

1. A-bounded, if $||T||_A < \infty$. 2. A-power bounded, if $\sup_n ||T^n||_A < \infty$.

The following result generalizes Theorem 2.4 proved in [11], for 2-isometries.

Theorem 3.3. Let $T \in \mathcal{L}(\mathbb{K})$. If T is an A-power bounded A-2-isometry, then T is an A-isometry.

Proof. Let *T* be an *A*-power bounded *A*-2-isometry. Then there exists a positive real number *C* such that

 $||T^n||_A \leq C$ for n = 1, 2, 3, ...

The definition of an A-2-isometry yields

 $||T^2||_A^2 + 1 = 2||T||_A^2$

Since T^n is also a A-2-isometry by Theorem 3.2, an induction argument shows that

 $||T^{2^n}||_A^2 = 2^n ||T||_A^2 - (2^n - 1)$ for every positive integern.

Thus we obtain

$$\frac{C^2}{2^n} \ge \|T\|_A^2 - 1 + \frac{1}{2^n} \ge 0:$$

Letting $n \longrightarrow \infty$, we find $||T||_A = 1$. In particular, $A \ge T^*AT$. Since from Theorem 2.1 $T^*AT \ge A$, by we conclude $T^*AT = A$. \Box

4. Spectral properties of A-m-isometry

We describe now the some spectral properties of an A-m-isometry.

Proposition 4.1. Assume that $0 \notin \sigma_{ap}(A)$. If *T* is an *A*-m-isometry, then the approximate point spectrum of *T* lies in the unit circle. Thus, either $\sigma(T) \subset \partial \mathbb{D}$ or $\sigma(T) = \overline{\mathbb{D}}$. In particular, *T* is injective and R(T) is closed.

Proof. If $\lambda \in \mathbb{C}$ is in the approximate point spectrum of *T*, then there exists a sequence $(x_j) \subset \mathbb{K}$ such that for all *j*, $||x_j|| = 1$, and $(T - \lambda)x_j \to 0$ as $j \to \infty$ (see [3]). Thus for each integer *k*, $\lim_{j\to\infty} (T^k - \lambda^k)x_j \to 0$. So

$$0 = \sum_{k=0}^{m} (-1)^{k} {m \choose k} \langle T^{*(m-k)} A T^{m-k} x_{j}, x_{j} \rangle$$

$$= \sum_{k=0}^{m} (-1)^{k} {m \choose k} \langle A T^{m-k} x_{j}, T^{(m-k)} x_{j} \rangle$$

$$= \sum_{k=0}^{m} (-1)^{k} {m \choose k} |\lambda|^{2(m-k)} \lim_{j \to +\infty} \langle A x_{j}, x_{j} \rangle$$

$$= (|\lambda|^{2} - 1)^{m} \lim_{i \to +\infty} \langle A x_{j}, x_{j} \rangle$$

and so $|\lambda| = 1$. Moreover $\partial \sigma(T) \subset \sigma_{ap}(T) \subset \partial \mathbb{D}$ and thus $\sigma(T) \subset \partial \mathbb{D}$ or $\sigma(T) = \overline{\mathbb{D}}$. In particular $0 \notin \sigma_{ap}(T)$, or *T* is bounded below that is equivalent to *T* is injective and it has a closed range. \Box

Corollary 4.1. Assume that $0 \notin \sigma_{ap}(A)$. If both T and T^{*} are A-m-isometries, then $\sigma(T) \subset \partial \mathbb{D}$.

Proof. We reason with contradiction. From the previous proposition, If $\sigma(T) \not\subseteq \partial \mathbb{D}$, then $\sigma(T) = \overline{\mathbb{D}}$. Since $0 \notin \sigma_{ap}(T)$, so $\overline{R(T)} = R(T) \neq \mathbb{K}$ and also $N(T^*) \neq \{0\}$. Hence $0 \in \sigma_p(T) \subset \sigma_{ap}(T)$, which contradicts the fact that T^* is an *A*-*m*-isometry. \Box

Remark 4.1. If $0 \notin \sigma_{ap}(A)$ and *T* is an *A*-*m*-isometry. Thus there two cases either *T* is invertible and $\sigma(T) \subset \partial \mathbb{D}$ or *T* is not invertible and $\sigma(T) = \overline{\mathbb{D}}$. Hence r(T) = 1 from [5].

In the rest of this article, we shall obtain additional spectral properties of 2-A-isometries.

Theorem 4.1. Assume that $0 \notin \sigma_{ap}(A)$. If T is an A-2-isometry. Then

- 1. $\lambda \in \sigma_{ap}(T)$ implies $\overline{\lambda} \in \sigma_{ap}(T^*)$.
- 2. $\lambda \in \sigma_p(T)$ implies $\overline{\lambda} \in \sigma_p(T^*)$.
- 3. Eigenvectors of T corresponding to distinct eigenvalues are A-orthogonal.

Proof

1. Let $\lambda \in \sigma_{ap}(T)$, Since $0 \notin \sigma_{ap}(A)$ we can choose a sequence $(x_n)_n$ of unit vectors satisfying $(T - \lambda I)x_n \to 0$ and such that $||Ax_n|| \ge \delta$ for some $\delta > 0$. Thus $T^*A(T - \lambda I)x_n \to 0$ and $T^{*2}A(T^2 - \lambda^2 I)x_n \to 0$. If *T* is an *A*-2-isometry then

$$0 = (T^{*2}AT^2 - 2T^*AT + A)x_n$$

= $(T^{*2}AT^2x_n - \lambda^2 T^{*2}Ax_n) - (2T^*ATx_n - 2\lambda T^*Ax_n) + (\lambda^2 T^{*2}x_n - 2\lambda T^*Ax_n + Ax_n).$

This implies that $(\lambda^2 T^{*2}Ax_n - 2\lambda T^*Ax_n + Ax_n) = (\lambda T^* - I)^2 Ax_n \to 0$. Since $\sigma_{ap}(T)$ is a subset of the unit circle $\partial \mathbb{D}$, this is equivalent to $(T^* - \overline{\lambda}I)^2 Ax_n \to 0$ and we deduce that $(T^* - \overline{\lambda}I)^2 \frac{Ax_n}{||Ax_n||} \to 0$. From which it follows that $\overline{\lambda} \in \sigma_{ap}(T^*)$.

- 2. We use a similar argument as in 1.
- 3. Let λ and μ be two distinct eigenvalues of T and suppose that $Tx = \lambda x$ and $Ty = \mu y$. Since T is an A-2-isomerty then $0 = \langle (T^{*2}AT^2 - 2T^*AT + A)x, y \rangle = \langle AT^2x, T^2y \rangle - 2\langle ATx, Ty \rangle + \langle Ax, y \rangle =$ $(\lambda^2 \overline{\mu}^2 - 2\lambda \overline{\mu} + 1)\langle Ax, y \rangle$. As $\lambda \neq \mu$ and $|\lambda| = |\mu| = 1$, we obtain $(\lambda^2 \overline{\mu}^2 - 2\lambda \overline{\mu} + 1) =$ $(\frac{\lambda}{\mu} - 1)^2 \neq 0$. This leads to $\langle Ax, y \rangle = 0$. which finishes the proof. The proof of Theorem 4.1 shows also that if $0 \notin \sigma_{ap}(A)$ and $T \in \mathcal{L}_A(\mathbb{K})$ is an A-2-isometry, then $\overline{\sigma_{ap}(T)} \subset \sigma_{ap}(T^{\sharp})$ and $\overline{\sigma_p(T)} \subset \sigma_P(T^{\sharp})$. Moreover our results improve most of those established in [11]. \Box

References

- [1] J. Agler, M. Stankus, m-Isometric transformations of Hilbert space I, Integral Equations Operator Theory 21 (1995) 383–429.
- [2] T. Bermúdez, Isabel Marrero, Antonio Martinón, On the orbit of an *m*-isometry, Integral Equations Operator Theory 64 (2009) 487–494.
- [3] J.B. Conway, A Course in Functional Analysis, second ed., Springer, 1994.
- [4] R.G. Douglas, On majorization, factorization and range inclusion of operators in Hilbert spaces, Proc. Amer. Math. Soc. 17 (1966) 413–416.
- [5] M.R. Embry, A connection between commutativity and separation of spectra of operators, Acta Sci. Math. 32 (1971) 235– 237.
- [6] J. Gleason, S. Richter, m-Isometries commuting tuples of operators on a Hilbert space, Integral Equations Operator Theory. 56 (2) (2006) 181–196.
- [7] M. Laura Arias, Gustavo Corach, M. Celeste Gonzalez, Partial isometries in semi-Hilbertian spaces, Linear Algebra Appl. 428 (2008) 1460–1475.

- [8] M. Laura Arias, Gustavo Corach, M. Celeste Gonzalez, Metric properties of projections in semi-Hilbertian spaces, Integral Equations Operator Theory 62 (2008) 11-28.
- [9] Laurian Suciu, Quasi-isometries in semi-Hilbertian spaces, Linear Algebra Appl. 430 (2009) 2474–2487.
- [10] Laurian Suciu, Some invariant subspaces for A-contractions and applications, Extracta Math. 21 (3) (2006) 221–247.
 [11] S.M. Patel, 2-Isometric operators, Glas. Mat. 37 (57) (2002) 143–147.