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1. Introduction and terminologies

The concept of partial isometries, quasi-isometries and contractions in semi-Hilbertian spaces was

introduced by Arias et al. [7] and Suciu [9,10].

The class of m-isometric and in particular 2-isometric operators on a complex Hilbert space has

been the object of some intensive study, especially by Agler and Stankus [1], Patel [11] but also by

Richter, Shimorin and other authors (see [2,6]).

Our goal in this paper is to study the class of m-isometric with respect to a semi-norm ‖.‖A. An
operator in this class will be called A-m isometry. We show that many results from [1,11] remain true

if we consider an additional semi-inner product defined by a positive semi-definite operator A.

The contents of the paper are the following. In Section 1, we set up notation and terminology. In

Section 2, we introduce the concept of A-m isometries. Several properties are proved which result in a
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generalization of well known assertions of m-isometries . In Section 3, we shall specialize to the case

m = 2. We explore some properties of A-2-isometry.

Several spectral properties of A-m-isometries are obtained in Section 4, concerning the point

spectrum, the approximate spectrum and the spectrum. The spectral radius of T will be denoted by

r(T).
Throughout this paper N denotes the set of non-negative integers, K stands for a complex Hilbert

space with inner product 〈 | 〉 and L(K) is the Banach algebra of all bounded linear operators on K,

I = IK being the identity operator. L(K)+ is the cone of positive (semi-definite) operators, i.e.,

L(K)+ = {A ∈ L(K) : 〈Au, | u〉 � 0, ∀ u ∈ K }.
For every T ∈ L(K) its range is denoted by R(T), its null space by N(T) and its adjoint by T∗. If
M ⊂ K is a closed subspace, PM is the orthogonal projection onto M. The subspace M is invariant

for T if TM ⊂ M, and M reduces T it is invariant for T and T∗. We write ρ(T), σ(T), σp(T) and

σap(T), respectively, for the resolvent set, the spectrum, the point spectrum and the approximate

point spectrum of the operator T . Any A ∈ L(K)+ defines a positive semi-definite sesquilinear form:

〈 | 〉A : K × K −→ C, 〈u | v〉A = 〈Au | v〉.
By ‖.‖A we denote the semi-norm induced by 〈 | 〉A, i.e.,‖u‖A = 〈u | u〉

1
2

A . Observe that ‖u‖A = 0 if

and only if u ∈ N(A). Then ‖.‖A is a norm if and only if A is an injective operator, and the semi-normed

space (L(K), ‖.‖A) is complete if and only if R(A) is closed. Moreover 〈 | 〉A induced a semi-norm on

a certain subspace of L(K), namely, on the subset of all T ∈ L(K) for which there exists a constant

c > 0 such that ‖Tu‖A � c‖u‖A for every u ∈ L(K). For these operators it holds

‖T‖A = sup
u∈R(A),u /=0

‖Tu‖A

‖u‖A

< ∞.

It is straightforward that

‖T‖A = sup{|〈Tu | v〉A| : u, v ∈ K and ‖u‖A � 1, ‖v‖A � 1 }.
Given a subspace M of K its A-orthogonal subspace is the subspace

M⊥A = { v ∈ K; 〈v | u〉A = 0, ∀ u ∈ M }.
It easy to check that

M⊥A = (AM)⊥ = A−1(M⊥).

Moreover, since A(A−1(M) = M ∩ R(A), then

(M⊥A)⊥A =
(
M⊥ ∩ R(A)

)⊥
.

Theorem 1.1 (Douglas [4]). Let A, B ∈ L(K). The following conditions are equivalents.

1. R(B) ⊂ R(A).
2. There exists a positive number λ such that BB∗ � λAA∗.
3. There exists C ∈ L(K) such that AC = B.

Definition 1.1. Let T ∈ L(K), an operator W ∈ L(K) is called an A-adjoint of T if

〈Tu | v〉A = 〈u | Wv〉A for every u, v ∈ K,

i.e.,

AW = T∗A;
T is called A-selfadjoint if

AT = T∗A.
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The existence of an A-adjoint operator is not guaranteed. Observe that a given T ∈ L(K) may admit

none, one or many A-adjoints: in fact, if W is an A-adjoint of T and AZ = 0for some Z ∈ L(K) then

W + Z is also an A-adjoint of T .

By Douglas theorem, T admits an A-adjoint if and only if R(T∗A) ⊂ R(A). From now on, LA(K)
denotes the set of all T ∈ L(K) which admit an A-adjoint, it is

LA(K) = { T ∈ L(K) : R(T∗A) ⊂ R(A) }.
LA(K) is a subalgebra of L(K) which is neither closed nor dense in L(K).

On the other hand if

‖u‖A = 〈Au | u〉 1
2 = ‖A 1

2 u‖,
the set of all ‖.‖A-bounded operators in L(K)is

L
A

1
2
(K) = { T ∈ L(K) : T∗R(A

1
2 ) ⊂ R(A

1
2 ) } = { T ∈ L(K) : R(A

1
2 T∗A

1
2 ) ⊂ R(A) }.

Note that LA(K) ⊂ L
A

1
2
(K), which shows that if T admits an A-adjoint then it is A-bounded.

1.1. The A-adjoint operator T�

If T ∈ L(K)admits an A-adjoint operator, i.e. if R(T∗A) ⊂ R(A), then there exists a distinguished A-

adjoint operator of T , namely, the reduced solution of the equation AX = T∗A, i.e. T� = A†T∗A,where

T† is the Moore–Penrose inverse of T and the A-adjoint operator T� verifies

AT� = T∗A, R(T�) ⊆ R(A) and N(T�) = N(T∗A).
In the next we add without proof some properties of T�, (for more details we refer the reader to [8]).

Proposition 1.1. Let A ∈ L(K)+ and T ∈ LA(K). Then

1. T�T and TT�are A-selfadjoint.

2. ‖T‖A = ‖T�‖A = ‖T�T‖
1
2

A .

3. ‖W‖A = ‖T�‖Afor every W ∈ L(K) which is an A-adjoint of T .
4. If W ∈ LA(K) then ‖TW‖A = ‖WT‖A.

5. ‖T�‖ � ‖W‖for every W ∈ L(K) which is an A-adjoint of T . Nevertheless, T� is not in general the

unique A-adjoint of T that realizes the minimal norm.

We work with the next A-operators classes.

Definition 1.2. Let T ∈ L(K).

1. T is an A-isometry if ‖Tu‖A = ‖u‖A for every u ∈ K.

2. T ∈ LA(K)is an A-normal operator if T�T = TT�.

2. The class of A-m-isometric operators

Recall that form ∈ N, an operator T ∈ L(K) is called an m-isometry if,

T∗mTm − (m
1

)
T∗m−1Tm−1 + (m

2

)
T∗m−2Tm−2 + . . . + (−1)m−1

(
m
m−1

)
T∗T + (−1)mI = 0.

Obviously, every m-isometry is injective. Moreover, T is an m-isometry if and only if

m∑
k=0

(−1)k(mk )‖Tm−ku‖2 = 0, ∀ u ∈ K.
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In this section we will introduce and prove some basic properties of an A-m-isometry for which we

give the following definition.

Definition 2.1. Form ∈ N and A ∈ L(K)+, an operator T ∈ L(K) is called an A-m-isometry if,

T∗mATm − (m
1

)
T∗m−1ATm−1 + (m

2

)
T∗m−2ATm−2 + . . . + (−1)m−1

(
m
m−1

)
T∗AT + (−1)mA = 0.

or equivalently

m∑
k=0

(−1)k(mk )‖Tm−ku‖2
A = 0, ∀ u ∈ K,

that is, T is an m-isometry relative to the semi-norm on K induced by A.

Remark 2.1

1. Let T ∈ LA(K), a simple computation shows that the following statements are equivalent:

(a) T is an A-m-isometry.

(b)
∑m

k=0(−1)k(mk )T�m−kTm−k = 0.

2. An A-1-isometry is an A-isometry and if A = I then an A-m-isometry is an m-isometry.

3. If T is an A-m-isometry then N(T) ⊂ N(A). In particular if A is injective, then T is injective.

Example 2.1. The following examples of A-m-isometries can be easily proved.

1. The identity operator and the orthogonal projection on R(A) are A-m-isometries for all m� 1.

Moreover, if T is an A-m-isometry then {T + S, R(S) ⊂ N(A) } is a set of A-m-isometries.

2. LetK = C2 be equippedwith the norm ‖(x, y)‖2 = |x|2 + |y|2, and consider the operators A =(
1 1

1 2

)
∈ L(K)+ , T =

(
1 1

0 1

)
∈ L(K). It is easy to check that T admits A-adjoint operators

and by direct computation, we see that

‖T3(x, y)‖2
A − 3‖T2(x, y)‖2

A + 3‖T(x, y)‖2
A − ‖(x, y)‖2

A = 0,

and

‖Tx‖2
A /= ‖x‖2

A.

Thus, T is an A-3-isometry but is not an A-isometry. In general an A-m-isometry is not an m-isometry

and vice versa, for example if K = C3 equipped with the canonical norm, A =
⎛
⎝0 0 0

0 1 1

0 1 1

⎞
⎠ and

T =
⎛
⎝0 0 −1

1 0 0

0 1 0

⎞
⎠, then T is a 2-isometry but it is not an A-isometry. On the other hand if B =

⎛
⎝1 1 0

1 1 0

0 0 0

⎞
⎠ and S =

⎛
⎝0 1 0

1 0 0

0 0 0

⎞
⎠, then S is a B-isometry but it is not a 3-isometry.

Under some additional conditions, we obtain the following result.

Proposition 2.1. Let A be a positive, injective bounded operator on K and T ∈ L(K). Then the following

statements hold:
1. If TA = AT, then T� = T∗. In particular T is an A-m-isometry if and only if T is an m-isometry.
2. If T is A-normal, then T is an A-m-isometry if and only if T� is an A-m-isometry.
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Proof

1. Note first that the conditions imposed on A and on T imply that R(A) = K and that T∗R(A) ⊂
R(A). So T� exists. Moreover

T� = A†T∗A = A†AT∗ = PR(A)T
∗ = T∗.

Thus the assertion follows.

2. Follows from the definition of an A-m-isometry and the Lemma 2.1, [7].

More generally, as it happens with A-isometries, A-m-isometries can be characterized in terms

ofm-isometries. �

Proposition 2.2. Let T ∈ L(K), then T ∈ L
A

1
2
(K) if and only if there exists S ∈ L(K) such that A

1
2 S =

T∗A 1
2 . In this case T is an A-m-isometry if and only if S∗|

R(A
1
2 )

is an m-isometry.

Proof. The first statement follows by applying Dauglas theorem. Now

A
1
2 S = T∗A

1
2 ⇐⇒ S∗A

1
2 = A

1
2 T .

This implies that R(A
1
2 ) is invariant for S∗. Moreover we have S∗kA 1

2 = A
1
2 Tk, for all positive integer k.

Thus for all u ∈ K,

m∑
k=0

(−1)k(mk )‖Tm−ku‖2
A =

m∑
k=0

(−1)k(mk )‖A 1
2 Tm−ku‖2 =

m∑
k=0

(−1)m(mk )‖S∗m−kA
1
2 u‖2

from which we can conclude. Not that if in Proposition 2.2 the positive operator A is injective then S∗
is an m-isometry. �

Proposition 2.3. Let T ∈ L(K)beanA-isometry andS ∈ L(K)with ST = TS, then ST is anA-m-isometry

if and only if S is also an A-m-isometry.

Proof. Let u ∈ K. The assumption T is A-isometry implies:

‖TjSju‖A = ‖Sju‖A, j = 0, 1, . . . , m.

Using this and ST = TS, we obtain

m∑
j=0

(−1)j(mj )‖(TS)m−ju‖2
A=

m∑
j=0

(−1)j(mj )‖Tm−jSm−ju‖2
A

=
m∑
j=0

(−1)j(mj )‖Sm−ju‖2
A,

which gives the desired result. �

Proposition 2.4. Let T ∈ L(K) be an A-m-isometry, then for all k � 0, T is an A-(m + k)-isometry.

Proof. It is enough to prove the result for k = 1; so we have

m+1∑
j=0

(−1)j(m+1
j )‖Tm+1−ju‖2

A=‖Tm+1u‖2
A +

m∑
j=1

(−1)j(m+1
j )‖Tm+1−ju‖2

A − (−1)m‖u‖2
A

=‖Tm+1u‖2
A +

m∑
j=1

(−1)j
(
(mj ) + (mj−1)

)
‖Tm+1−ju‖2

A − (−1)m‖u‖2
A

=‖Tm(Tu)‖2
A +

m∑
j=1

(−1)j(mj )‖Tm−jTu‖2
A
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+
m∑
j=1

(−1)j(mj−1)‖Tm+1−ju‖2
A − (−1)m‖u‖2

A

=0 −
m∑
j=0

(−1)j(mj )‖Tm−ju‖2
A = 0.

Hence T is an A-(m + 1)-isometry. �

Proposition 2.5. Let T ∈ L(K) be an invertible A-m-isometry, then T−1 is also an A-m-isometry.

Proof. Since
∑m

j=0(−1)j(mj )‖Tm−ju‖2
A = 0, ∀ u ∈ K. By using the identity

(mj ) = (mm−j), j = 0, 1, . . . , m, and replacing u by (T−1)mu, we deduce that

0 =
m∑
j=0

(−1)j(mj )‖Tm−j((T−1)mu)‖2
A=

m∑
j=0

(−1)j(mm−j)‖T−ju‖2
A

=
m∑

k=0

(−1)m−k(mk )‖(T−1)m−ku‖2
A

=(−1)m
m∑

k=0

(−1)k(mk )‖(T−1)m−ku‖2
A.

Hence, the result.

For n, k = 0, 1, 2, . . ., we denote

n(k) =
{
1, if , n = 0 or k = 0

n(n − 1) . . . (n − k + 1), otherwise

For T ∈ L(K) and k = 0, 1, 2 . . . , we consider the operator

βk(T) = 1

k!
k∑

j=0

(−1)k−j(kj )T
∗jATj.

Observe that if T is an A-m-isometry, then βk(T) = 0 for every k �m. The symbol ST (n) = T∗nATn of

T , can be written

ST (n) =
∞∑
k=0

n(k)βk(T).

Hence if T is an A-m-isometry then

ST (n) =
m−1∑
k=0

n(k)βk(T)

and consequently

‖Tnu‖2
A =

m−1∑
k=0

n(k)〈βk(T)u | u〉, for all u ∈ K.

Moreover, the A-covariance operator �T is defined by

�T := βm−1(T).

Note that the operator �T depends on T , m and also on A. The next results have been proved in

the special case A = I by Agler and Stankus [1]. Here we present a generalization in more general

context. �
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Theorem 2.1. Let T ∈ L(K). If T is an A-m-isometry, then the following properties hold.

1. �T is positive and for all u ∈ K,

〈�Tu | u〉 =
m−1∑
k=0

(−1)m−k−1 1

k!(m − k − 1)! ‖T
ku‖2

A.

2. The null space N(�T ) of �T is an invariant subspace for T .Moreover, if N(�T ) is invariant for A and

A0 = A|N(�T ), then the restriction operator T|N(�T ) is an A0-(m − 1)-isometry.
3. If M ⊂ K is an invariant subspace for T and A such that T|M is an A|M-(m − 1)-isometry, then

M ⊂ N(�T ).

Proof

1. We have

〈�Tu | u〉= lim
n→∞

1

n(m−1)
〈ST (n)u | u〉

= lim
n→∞

1

n(m−1)
‖Tnu‖2

A � 0.

2. A simple computation shows that if T is an A-m-isometry, then

T∗�TT − �T = 0.

Let u ∈ N(�T ),

〈�TTu | Tu〉 = 〈T∗�TTu | u〉 = 〈�Tu | u〉 = 0.

The positivity of �T implies that �TTu = 0, and so �T is invariant for T .

Furthermore, from 1., it follows that T|N(�T ) is an A0-(m − 1)-isometry.

3. Let u ∈ M, since T|M is an A|M-(m − 1)-isometry, then for u ∈ M, the statement 1. implies that

〈�Tu | u〉A = 0. Hence one conclude that u ∈ N(�T ).

The concept of A-reducedminimummodulus of an operator is a natural generalization of the reduced

minimummodulus: recall that the reduced minimummodulus of an operator T ∈ L(K) is defined as

γ (T) = inf{‖Tu‖ : u ∈ N(T)⊥ and ‖u‖ = 1 }. �

Definition 2.2. Let T ∈ L(K). The A-reduced minimummodulus of T is defined as

γA(T) = inf{‖Tu‖A : u ∈ N(A
1
2 T)⊥A and ‖u‖A = 1}

Note that

‖Tu‖A � γA(T)dA

(
u, N(A

1
2 T)

)
, u ∈ K

where dA(u, V) = inf{‖u − v‖A : v ∈ V}, V ⊂ K,

and if T ∈ LA(K), then

γA(T) = inf{‖Tu‖A : u ∈ R(T�T) and ‖u‖A = 1 }.
Proposition 2.6. Let T ∈ LA(K). Then

γA(T
�T) � γA(T)

2.
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Proof. Let u ∈ K, we have,

‖T�Tu‖A‖u‖A �〈T�Tu | u〉A = ‖Tu‖2
A � γA(T)

2‖u‖2
A,

Hence,

‖T�Tu‖A � γA(T)
2‖u‖A.

Since T�T ∈ LA(K) and R((T�T)�(T�T)) ⊂ R(T�T), we deduce that

γA(T
�T) � γA(T)

2. �

Proposition 2.7. Let T ∈ LA(K) be an A-m-isometry. Then

1. T is A-bounded below (i.e., ‖Tu‖A � c‖u‖A, for some c > 0).

2. ‖T‖A � γA(T) �
1

√
m

(
1 + ‖T‖2

A

)m−1
2

> 0.

Proof. Note first that if T ∈ LA(K), then N(A) ⊂ N(AT) and we have

‖Tu‖A � ‖T‖A‖u‖A,∀u ∈ K.

Since T is an A-m-isometry, then for u ∈ K, it follows

1. ‖u‖2
A �

(
‖Tm−1‖2

A + (m1 )‖Tm−2‖2
A + . . . + (mm−1)

)
‖Tu‖2

A

=C(m, T)‖Tu‖2
A.

2. ‖u‖2
A �‖Tmu‖2

A + (m1 )‖Tm−1u‖2
A + . . . + (mm−1)‖Tu‖2

A

�‖Tm−1‖2
A‖Tu‖2

A + (m1 )‖Tm−2‖2
A‖Tu‖2

A + . . . . + (mm−1)‖T‖2
A

�
(
(‖T‖2

A)
m−1 + (m1 )(‖T‖2

A)
m−2 + . . . + (mm−1)

)
‖Tu‖2

A

�m

m−1∑
j=0

(m−1
j )

(
‖T‖2

A

)m−1−j ‖Tu‖2
A

�m
(
1 + ‖T‖2

A

)m−1 ‖Tu‖2
A.

We deduce that

γA(T) �
1

√
m

(
1 + ‖T‖2

A

)m−1
2

,

which is the desired result. �

3. A-2-Isometric operators

Lemma 3.1. Let T ∈ L(K) be an A-2-isometry then

1. ‖Tu‖2
A � n−1

n
‖u‖2

A, n� 1, u ∈ K.
2. ‖Tu‖A � ‖u‖A, u ∈ K.
3. ‖Tnu‖2

A + (n − 1)‖u‖2
A = n‖Tu‖2

A, u ∈ K, n = 0, 1, 2, . . .

4. limn−→∞ ‖Tnu‖
1
n

A = 1, for u ∈ K, u /= 0.
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Proof. Using the fact that T is an A-2-isometry, we get

‖T2u‖2
A − ‖Tu‖2

A = ‖Tu‖2
A − ‖u‖2

A.

Replacing u by Tku leads to

‖Tk+2u‖2
A − ‖Tk+1u‖2

A = ‖Tk+1u‖2
A − ‖Tku‖2

A, k � 0.

Hence,

0� ‖Tnu‖2
A=

n∑
k=1

(
‖Tku‖2

A − ‖Tk−1u‖2
A

)
+ ‖u‖2

A

=n
(
‖Tu‖2

A − ‖u‖2
A

)
+ ‖u‖2

A

=n‖Tu‖2
A + (1 − n)‖u‖2

A.

Which implies 1. and 3. Letting n −→ ∞ in 1. yields to 2.

4. Take u ∈ K, u /= 0. It follows from 3. that

lim sup
n−→∞ ‖Tnu‖

1
n

A � 1.

However, according to 2., the sequence

(‖Tnu‖A)n∈N

is monotonically increasing, so

lim inf
n−→∞ ‖Tnu‖

1
n

A � lim
n−→∞ ‖u‖

1
n

A = 1,

which completes the proof. �

Remark 3.1. Assume that T is an A-2-isometry and using Lemma 3.1, we see that

‖T2nu‖2
A = n‖Tn+1u‖2

A − n(n − 1)‖Tu‖2
A + (n − 1)2‖u‖2

A, n� 1, u ∈ K.

Theorem 3.1. Let T, S ∈ L(K) with TS = ST . If T is an A-2-isometry and S is an A-m-isometry, then the

operator ST is an A-(m+1)-isometry,

Proof. Let u ∈ K, by using Lemma 3.1, one have

m+1∑
j=0

(−1)j(m+1
j )‖(TS)m+1−ju‖2

A

=
m+1∑
j=0

(−1)j(m+1
j )‖Tm+1−jSm+1−ju‖2

A

=
⎧⎨
⎩

m+1∑
j=0

(−1)j(m+1
j )(m + 1 − j)‖TSm+1−ju‖2

A −
m+1∑
j=0

(−1)j(m+1
j )(m − j))‖(Sm+1−ju)‖2

A

⎫⎬
⎭

= (m + 1)
m+1∑
j=0

(−1)j(m+1
j )‖(S)m+1−jTu‖2

A −
m+1∑
j=1

(−1)j(m+1
j )j‖Sm+1−j(Tu)‖2

A

−m

m+1∑
j=0

(−1)j(m+1
j )‖Sm+1−ju‖2

A − (m + 1)
m∑
j=0

(−1)j(mj )‖Sm−ju‖2
A = 0.

Hence, the result. �
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Theorem 3.2. Let T ∈ L(K) be an A-2-isometry, then Tn is again a A-2-isometry for each n ∈ N.

Proof. Use Lemma 3.1, to write

‖T2nu‖2
A = 2n‖Tu‖2

A − (2n − 1)‖u‖2
A

and

−2‖Tnu‖2
A = −2(n‖Tu‖2

A − (n − 1)‖u‖2
A).

Adding gives

‖T2nu‖2
A − 2‖Tnu‖2

A + ‖u‖2
A = 0

as required. �

Corollary 3.1. Let T, S ∈ L(K) with TS = ST . If T is an A-2-isometry and S is an A-m-isometry, then the

operator TkS is an A-(m+1)-isometry for all k � 0.

Lemma 3.2. Let T ∈ L(K). If T is an A-2-isometry, then

T∗p+1ATp+1 − T∗pATp = �T , ∀ p� 0.

In particular the sequence of operators

(T∗p+1ATp+1 − T∗pATp)p� 0

is positive.

Proof. We prove the assertion by induction. Since T is an A-2-isometry the result is true for p = 0 and

p = 1. Now assume that the result is true for p, i.e.,

(T∗)pATp − (T∗)p−1ATp−1 = �T .

Then

T∗ (
(T∗)pATp − (T∗)p−1ATp−1

)
T = T∗�TT = �T .

Hence, the result.

On the other hand, from Theorem 2.1, we have

∀ u ∈ K, 〈(T∗)k+1ATk+1 − (T∗)kATk)u | u〉 = 〈�Tu | u〉 � 0. �

Lemma 3.3. Let T ∈ L(K) be an A-2-isometry, then

T∗pATp = pT∗AT − (p − 1)A, ∀ p� 0.

Moreover if T ∈ LA(K), we have

T�pTp = pT�T − (p − 1)I, ∀ p� 0.

Proof. We prove the assertion by induction. For p = 0, 1it is trivial. Since T is an A-2-isometry the

result is true for p = 2. Now assume that the result is true for p, i.e.,

T∗pATp = pT∗AT − (p − 1)A.

Then

T∗p+1ATp+1=T∗T∗pATPT

=T∗(pT∗T − (p − 1)A)T = pT∗2AT2 − (p − 1)T∗AT
=p(2T∗AT − A) − (p − 1)T∗AT
=2pT∗AT − pA − (p − 1)T∗AT = (p + 1)T∗AT − pA.

This finishes the proof. �
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Definition 3.1. Let T ∈ L(K). T is said to be:

1. A-bounded, if ‖T‖A < ∞.
2. A-power bounded, if supn ‖Tn‖A < ∞.

The following result generalizes Theorem 2.4 proved in [11], for 2-isometries.

Theorem 3.3. Let T ∈ L(K). If T is an A-power bounded A-2-isometry, then T is an A-isometry.

Proof. Let T be an A-power bounded A-2-isometry. Then there exists a positive real number C such

that

‖Tn‖A � C for n = 1, 2, 3, . . .

The definition of an A-2-isometry yields

‖T2‖2
A + 1 = 2‖T‖2

A

Since Tn is also a A-2-isometry by Theorem 3.2, an induction argument shows that

‖T2n‖2
A = 2n‖T‖2

A − (2n − 1) for every positive integern.

Thus we obtain

C2

2n
� ‖T‖2

A − 1 + 1

2n
� 0 :

Letting n −→ ∞,we find ‖T‖A = 1. In particular, A� T∗AT . Since from Theorem 2.1 T∗AT � A, by we

conclude T∗AT = A. �

4. Spectral properties of A-m-isometry

We describe now the some spectral properties of an A-m-isometry.

Proposition 4.1. Assume that 0 /∈ σap(A). If T is an A-m-isometry, then the approximate point spectrum

of T lies in the unit circle. Thus, either σ(T) ⊂ ∂D or σ(T) = D. In particular, T is injective and R(T) is
closed.

Proof. If λ ∈ C is in the approximate point spectrum of T , then there exists a sequence (xj) ⊂ K such

that for all j, ||xj|| = 1, and (T − λ)xj → 0 as j → ∞ (see [3]). Thus for each integer k, limj→∞(Tk −
λk)xj → 0.

So

0=
m∑

k=0

(−1)k
(m
k

) 〈T∗(m−k)ATm−kxj, xj〉

=
m∑

k=0

(−1)k
(m
k

) 〈ATm−kxj, T
(m−k)xj〉

=
m∑

k=0

(−1)k
(m
k

) |λ|2(m−k) lim
j→+∞〈Axj, xj〉

=(|λ|2 − 1)m lim
j→+∞〈Axj, xj〉

and so |λ| = 1. Moreover ∂σ(T) ⊂ σap(T) ⊂ ∂D and thus σ(T) ⊂ ∂D or σ(T) = D. In particular

0 /∈ σap(T), or T is bounded below that is equivalent to T is injective and it has a closed range. �



O.A. Mahmoud Sid Ahmed, A. Saddi / Linear Algebra and its Applications 436 (2012) 3930–3942 3941

Corollary 4.1. Assume that 0 /∈ σap(A). If both T and T∗ are A-m-isometries, then σ(T) ⊂ ∂D.

Proof. We reason with contradiction. From the previous proposition, If σ(T)�∂D, then σ(T) =
D. Since 0 /∈ σap(T), so R(T) = R(T) /= K and also N(T∗) /= {0}. Hence 0 ∈ σp(T) ⊂ σap(T), which

contradicts the fact that T∗ is an A-m-isometry. �

Remark 4.1. If 0 /∈ σap(A) and T is an A-m-isometry. Thus there two cases either T is invertible and

σ(T) ⊂ ∂D or T is not invertible and σ(T) = D. Hence r(T) = 1 from [5].

In the rest of this article, we shall obtain additional spectral properties of 2-A-isometries.

Theorem 4.1. Assume that 0 /∈ σap(A). If T is an A-2-isometry. Then

1. λ ∈ σap(T) implies λ ∈ σap(T
∗).

2. λ ∈ σp(T) implies λ ∈ σp(T
∗).

3. Eigenvectors of T corresponding to distinct eigenvalues are A-orthogonal.

Proof

1. Let λ ∈ σap(T), Since 0 /∈ σap(A) we can choose a sequence (xn)n of unit vectors satisfying (T −
λI)xn → 0 and such that ||Axn|| � δ for some δ > 0. Thus T∗A(T − λI)xn → 0 and T∗2A(T2 −
λ2I)xn → 0. If T is an A-2-isometry then

0=(T∗2AT2 − 2T∗AT + A)xn

=(T∗2AT2xn − λ2T∗2Axn) − (2T∗ATxn − 2λT∗Axn) + (λ2T∗2xn − 2λT∗Axn + Axn).

This implies that (λ2T∗2Axn − 2λT∗Axn + Axn) = (λT∗ − I)2Axn → 0. Since σap(T) is a sub-

set of the unit circle ∂D, this is equivalent to (T∗ − λI)2Axn → 0 and we deduce that (T∗ −
λI)2 Axn||Axn|| → 0. From which it follows that λ ∈ σap(T

∗).
2. We use a similar argument as in 1.

3. Let λ and μ be two distinct eigenvalues of T and suppose that Tx = λx and Ty = μy. Since T is

anA-2-isomerty then 0 = 〈(T∗2AT2 − 2T∗AT + A)x, y〉 = 〈AT2x, T2y〉 − 2〈ATx, Ty〉 + 〈Ax, y〉 =
(λ2μ2 − 2λμ + 1)〈Ax, y〉. As λ /= μ and |λ| = |μ| = 1, we obtain (λ2μ2 − 2λμ + 1) =(

λ
μ

− 1
)2

/= 0. This leads to 〈Ax, y〉 = 0. which finishes the proof. The proof of Theorem 4.1

shows also that if 0 /∈ σap(A) and T ∈ LA(K) is an A-2-isometry, then σap(T) ⊂ σap(T
�) and

σp(T) ⊂ σP(T
�). Moreover our results improve most of those established in [11]. �
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