Contents lists available at ScienceDirect

A-m-Isometric operators in semi-Hilbertian spaces

Ould Ahmed Mahmoud Sid Ahmed ${ }^{\text {a,* }}$, Adel Saddi ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, College of Science, Aljouf University, Aljouf 2014, Saudi Arabia
${ }^{\text {b }}$ Department of Mathematics, College of Education for Girls in Sarat Ebeidah, 61914 Abha, King Khalid University, Saudi Arabia

A R T I C L E I N F O

Article history:

Received 9 May 2010
Accepted 6 September 2010
Available online 12 October 2010
Submitted by V. Mehrmann

AMS classification:

46C05
47A05
47A15

Keywords:
m-Isometry
Semi-inner product
Operator
Spectrum

A B S T R A C T

In this work, the concept of m-isometry on a Hilbert space are generalized when an additional semi-inner product is considered. This new concept is described by means of oblique projections.
© 2010 Elsevier Inc. All rights reserved.

1. Introduction and terminologies

The concept of partial isometries, quasi-isometries and contractions in semi-Hilbertian spaces was introduced by Arias et al. [7] and Suciu [9,10].

The class of m-isometric and in particular 2-isometric operators on a complex Hilbert space has been the object of some intensive study, especially by Agler and Stankus [1], Patel [11] but also by Richter, Shimorin and other authors (see [2,6]).

Our goal in this paper is to study the class of m-isometric with respect to a semi-norm $\|\cdot\|_{A}$. An operator in this class will be called $A-m$ isometry. We show that many results from [1,11] remain true if we consider an additional semi-inner product defined by a positive semi-definite operator A.

The contents of the paper are the following. In Section 1, we set up notation and terminology. In Section 2 , we introduce the concept of $A-m$ isometries. Several properties are proved which result in a

[^0]generalization of well known assertions of m-isometries. In Section 3, we shall specialize to the case $m=2$. We explore some properties of A-2-isometry.

Several spectral properties of A-m-isometries are obtained in Section 4, concerning the point spectrum, the approximate spectrum and the spectrum. The spectral radius of T will be denoted by $r(T)$.

Throughout this paper \mathbb{N} denotes the set of non-negative integers, \mathbb{K} stands for a complex Hilbert space with inner product $\langle\mid\rangle$ and $\mathcal{L}(\mathbb{K})$ is the Banach algebra of all bounded linear operators on \mathbb{K}, $I=I_{\mathbb{K}}$ being the identity operator. $\mathcal{L}(\mathbb{K})^{+}$is the cone of positive (semi-definite) operators, i.e.,

$$
\mathcal{L}(\mathbb{K})^{+}=\{A \in \mathcal{L}(\mathbb{K}):\langle A u, \mid u\rangle \geqslant 0, \forall u \in \mathbb{K}\} .
$$

For every $T \in \mathcal{L}(\mathbb{K})$ its range is denoted by $R(T)$, its null space by $N(T)$ and its adjoint by T^{*}. If $\mathbb{M} \subset \mathbb{K}$ is a closed subspace, $P_{\mathbb{M}}$ is the orthogonal projection onto \mathbb{M}. The subspace \mathbb{M} is invariant for T if $T \mathbb{M} \subset \mathbb{M}$, and \mathbb{M} reduces T it is invariant for T and T^{*}. We write $\rho(T), \sigma(T), \sigma_{p}(T)$ and $\sigma_{a p}(T)$, respectively, for the resolvent set, the spectrum, the point spectrum and the approximate point spectrum of the operator T. Any $A \in \mathcal{L}(\mathbb{K})^{+}$defines a positive semi-definite sesquilinear form:

$$
\langle\mid\rangle_{A}: \mathbb{K} \times \mathbb{K} \longrightarrow \mathbb{C},\langle u \mid v\rangle_{A}=\langle A u \mid v\rangle .
$$

By $\|\cdot\|_{A}$ we denote the semi-norm induced by $\langle\mid\rangle_{A}$, i.e., $\|u\|_{A}=\langle u \mid u\rangle_{A}^{\frac{1}{2}}$. Observe that $\|u\|_{A}=0$ if and only if $u \in N(A)$. Then $\|\cdot\|_{A}$ is a norm if and only if A is an injective operator, and the semi-normed space $\left(\mathcal{L}(\mathbb{K}),\|\cdot\|_{A}\right)$ is complete if and only if $R(A)$ is closed. Moreover $\langle\mid\rangle_{A}$ induced a semi-norm on a certain subspace of $\mathcal{L}(\mathbb{K})$, namely, on the subset of all $T \in \mathcal{L}(\mathbb{K})$ for which there exists a constant $c>0$ such that $\|T u\|_{A} \leqslant c\|u\|_{A}$ for every $u \in \mathcal{L}(\mathbb{K})$. For these operators it holds

$$
\|T\|_{A}=\sup _{u \in \overline{R(A), u \neq 0}} \frac{\|T u\|_{A}}{\|u\|_{A}}<\infty .
$$

It is straightforward that

$$
\|T\|_{A}=\sup \left\{\left|\langle T u \mid v\rangle_{A}\right|: u, v \in \mathbb{K} \text { and }\|u\|_{A} \leqslant 1,\|v\|_{A} \leqslant 1\right\} .
$$

Given a subspace \mathbb{M} of \mathbb{K} its A-orthogonal subspace is the subspace

$$
\mathbb{M}^{\perp_{A}}=\left\{v \in \mathbb{K} ;\langle v \mid u\rangle_{A}=0, \quad \forall u \in \mathbb{M}\right\} .
$$

It easy to check that

$$
\mathbb{M}^{\perp_{A}}=(A \mathbb{M})^{\perp}=A^{-1}\left(\mathbb{M}^{\perp}\right) .
$$

Moreover, since $A\left(A^{-1}(\mathbb{M})=\mathbb{M} \cap R(A)\right.$, then

$$
\left(\mathbb{M}^{\perp_{A}}\right)^{\perp_{A}}=\left(\mathbb{M}^{\perp} \cap R(A)\right)^{\perp}
$$

Theorem 1.1 (Douglas [4]). Let $A, B \in \mathcal{L}(\mathbb{K})$. The following conditions are equivalents.

1. $R(B) \subset R(A)$.
2. There exists a positive number λ such that $B B^{*} \leqslant \lambda A A^{*}$.
3. There exists $C \in \mathcal{L}(\mathbb{K})$ such that $A C=B$.

Definition 1.1. Let $T \in \mathcal{L}(\mathbb{K})$, an operator $W \in \mathcal{L}(\mathbb{K})$ is called an A-adjoint of T if
$\langle T u \mid v\rangle_{A}=\langle u \mid W v\rangle_{A}$ for every $u, v \in \mathbb{K}$,
i.e.,

$$
A W=T^{*} A ;
$$

T is called A-selfadjoint if

$$
A T=T^{*} A .
$$

The existence of an A-adjoint operator is not guaranteed. Observe that a given $T \in \mathcal{L}(\mathbb{K})$ may admit none, one or many A-adjoints: in fact, if W is an A-adjoint of T and $A Z=0$ for some $Z \in \mathcal{L}(\mathbb{K})$ then $W+Z$ is also an A-adjoint of T.

By Douglas theorem, T admits an A-adjoint if and only if $R\left(T^{*} A\right) \subset R(A)$. From now on, $\mathcal{L}_{A}(\mathbb{K})$ denotes the set of all $T \in \mathcal{L}(\mathbb{K})$ which admit an A-adjoint, it is

$$
\mathcal{L}_{A}(\mathbb{K})=\left\{T \in \mathcal{L}(\mathbb{K}): R\left(T^{*} A\right) \subset R(A)\right\} .
$$

$\mathcal{L}_{A}(\mathbb{K})$ is a subalgebra of $\mathcal{L}(\mathbb{K})$ which is neither closed nor dense in $\mathcal{L}(\mathbb{K})$.
On the other hand if

$$
\|u\|_{A}=\langle A u \mid u\rangle^{\frac{1}{2}}=\left\|A^{\frac{1}{2}} u\right\|,
$$

the set of all $\|\cdot\|_{A}$-bounded operators in $\mathcal{L}(\mathbb{K})$ is

$$
\mathcal{L}_{A^{\frac{1}{2}}}(\mathbb{K})=\left\{T \in \mathcal{L}(\mathbb{K}): T^{*} R\left(A^{\frac{1}{2}}\right) \subset R\left(A^{\frac{1}{2}}\right)\right\}=\left\{T \in \mathcal{L}(\mathbb{K}): R\left(A^{\frac{1}{2}} T^{*} A^{\frac{1}{2}}\right) \subset R(A)\right\} .
$$

Note that $\mathcal{L}_{A}(\mathbb{K}) \subset \mathcal{L}_{A^{\frac{1}{2}}}(\mathbb{K})$, which shows that if T admits an A-adjoint then it is A-bounded.

1.1. The A-adjoint operator T^{\sharp}

If $T \in \mathcal{L}(\mathbb{K})$ admits an A-adjoint operator, i.e. if $R\left(T^{*} A\right) \subset R(A)$, then there exists a distinguished A adjoint operator of T, namely, the reduced solution of the equation $A X=T^{*} A$, i.e. $T^{\sharp}=A^{\dagger} T^{*} A$, where T^{\dagger} is the Moore-Penrose inverse of T and the A-adjoint operator T^{\sharp} verifies

$$
A T^{\sharp}=T^{*} A, R\left(T^{\sharp}\right) \subseteq \overline{R(A)} \text { and } N\left(T^{\sharp}\right)=N\left(T^{*} A\right) .
$$

In the next we add without proof some properties of T^{\sharp}, (for more details we refer the reader to [8]).
Proposition 1.1. Let $A \in \mathcal{L}(\mathbb{K})^{+}$and $T \in \mathcal{L}_{A}(\mathbb{K})$. Then

1. $T^{\sharp} T$ and $T T^{\sharp}$ are A-selfadjoint.
2. $\|T\|_{A}=\left\|T^{\sharp}\right\|_{A}=\left\|T^{\sharp} T\right\|_{A}^{\frac{1}{2}}$.
3. $\|W\|_{A}=\left\|T^{\sharp}\right\|_{A}$ for every $W \in \mathcal{L}(\mathbb{K})$ which is an A-adjoint of T.
4. If $W \in \mathcal{L}_{A}(\mathbb{K})$ then $\|T W\|_{A}=\|W T\|_{A}$.
5. $\left\|T^{\sharp}\right\| \leqslant\|W\|$ for every $W \in \mathcal{L}(\mathbb{K})$ which is an A-adjoint of T. Nevertheless, T^{\sharp} is not in general the unique A-adjoint of T that realizes the minimal norm.

We work with the next A-operators classes.
Definition 1.2. Let $T \in \mathcal{L}(\mathbb{K})$.

1. T is an A-isometry if $\|T u\|_{A}=\|u\|_{A}$ for every $u \in \mathbb{K}$.
2. $T \in \mathcal{L}_{A}(\mathbb{K})$ is an A-normal operator if $T^{\sharp} T=T T^{\sharp}$.

2. The class of A-m-isometric operators

Recall that for $m \in \mathbb{N}$, an operator $T \in \mathcal{L}(\mathbb{K})$ is called an m-isometry if,

$$
T^{* m} T^{m}-\binom{m}{1} T^{* m-1} T^{m-1}+\binom{m}{2} T^{* m-2} T^{m-2}+\ldots+(-1)^{m-1}\binom{m}{m-1} T^{*} T+(-1)^{m} I=0
$$

Obviously, every m-isometry is injective. Moreover, T is an m-isometry if and only if

$$
\sum_{k=0}^{m}(-1)^{k}\binom{m}{k}\left\|T^{m-k} u\right\|^{2}=0, \quad \forall u \in \mathbb{K}
$$

In this section we will introduce and prove some basic properties of an A-m-isometry for which we give the following definition.

Definition 2.1. For $m \in \mathbb{N}$ and $A \in \mathcal{L}(\mathbb{K})^{+}$, an operator $T \in \mathcal{L}(\mathbb{K})$ is called an A-m-isometry if,

$$
T^{* m} A T^{m}-\binom{m}{1} T^{* m-1} A T^{m-1}+\binom{m}{2} T^{* m-2} A T^{m-2}+\ldots+(-1)^{m-1}\binom{m}{m-1} T^{*} A T+(-1)^{m} A=0
$$

or equivalently

$$
\sum_{k=0}^{m}(-1)^{k}\binom{m}{k}\left\|T^{m-k} u\right\|_{A}^{2}=0, \forall u \in \mathbb{K},
$$

that is, T is an m-isometry relative to the semi-norm on \mathbb{K} induced by A.

Remark 2.1

1. Let $T \in \mathcal{L}_{A}(\mathbb{K})$, a simple computation shows that the following statements are equivalent:
(a) T is an A-m-isometry.
(b) $\sum_{k=0}^{m}(-1)^{k}\binom{m}{k} T^{\sharp m-k} T^{m-k}=0$.
2. An A-1-isometry is an A-isometry and if $A=I$ then an A - m-isometry is an m-isometry.
3. If T is an A - m-isometry then $N(T) \subset N(A)$. In particular if A is injective, then T is injective.

Example 2.1. The following examples of A-m-isometries can be easily proved.

1. The identity operator and the orthogonal projection on $\overline{R(A)}$ are A - m-isometries for all $m \geqslant 1$. Moreover, if T is an A-m-isometry then $\{T+S, R(S) \subset N(A)\}$ is a set of A - m-isometries.
2. Let $\mathbb{K}=\mathbb{C}^{2}$ be equipped with the norm $\|(x, y)\|^{2}=|x|^{2}+|y|^{2}$, and consider the operators $A=$ $\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right) \in \mathcal{L}(\mathbb{K})^{+}, T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \in \mathcal{L}(\mathbb{K})$. It is easy to check that T admits A-adjoint operators and by direct computation, we see that
$\left\|T^{3}(x, y)\right\|_{A}^{2}-3\left\|T^{2}(x, y)\right\|_{A}^{2}+3\|T(x, y)\|_{A}^{2}-\|(x, y)\|_{A}^{2}=0$,
and
$\|T x\|_{A}^{2} \neq\|x\|_{A}^{2}$.
Thus, T is an A-3-isometry but is not an A-isometry. In general an A - m-isometry is not an m-isometry and vice versa, for example if $\mathbb{K}=\mathbb{C}^{3}$ equipped with the canonical norm, $A=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1\end{array}\right)$ and $T=\left(\begin{array}{ccc}0 & 0 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$, then T is a 2-isometry but it is not an A-isometry. On the other hand if $B=$ $\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ and $S=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$, then S is a B-isometry but it is not a 3-isometry.

Under some additional conditions, we obtain the following result.
Proposition 2.1. Let A be a positive, injective bounded operator on \mathbb{K} and $T \in \mathcal{L}(\mathbb{K})$. Then the following statements hold:

1. If $T A=A T$, then $T^{\sharp}=T^{*}$. In particular T is an A-m-isometry if and only if T is an m-isometry.
2. If T is A-normal, then T is an A-m-isometry if and only if T^{\sharp} is an A-m-isometry.

Proof

1. Note first that the conditions imposed on A and on T imply that $\overline{R(A)}=\mathbb{K}$ and that $T^{*} R(A) \subset$ $R(A)$. So T^{\sharp} exists. Moreover

$$
T^{\sharp}=A^{\dagger} T^{*} A=A^{\dagger} A T^{*}=P_{\overline{R(A)}} T^{*}=T^{*} .
$$

Thus the assertion follows.
2. Follows from the definition of an A-m-isometry and the Lemma 2.1, [7].

More generally, as it happens with A-isometries, A - m-isometries can be characterized in terms of m-isometries.

Proposition 2.2. Let $T \in \mathcal{L}(\mathbb{K})$, then $T \in \mathcal{L}_{A^{\frac{1}{2}}}(\mathbb{K})$ if and only if there exists $S \in \mathcal{L}(\mathbb{K})$ such that $A^{\frac{1}{2}} S=$ $T^{*} A^{\frac{1}{2}}$. In this case T is an A-m-isometry if and only if $\left.S^{*}\right|_{R\left(A^{\frac{1}{2}}\right)}$ is an m-isometry.

Proof. The first statement follows by applying Dauglas theorem. Now

$$
A^{\frac{1}{2}} S=T^{*} A^{\frac{1}{2}} \Longleftrightarrow S^{*} A^{\frac{1}{2}}=A^{\frac{1}{2}} T
$$

This implies that $\overline{R\left(A^{\frac{1}{2}}\right)}$ is invariant for S^{*}. Moreover we have $S^{* k} A^{\frac{1}{2}}=A^{\frac{1}{2}} T^{k}$, for all positive integer k. Thus for all $u \in \mathbb{K}$,

$$
\sum_{k=0}^{m}(-1)^{k}\binom{m}{k}\left\|T^{m-k} u\right\|_{A}^{2}=\sum_{k=0}^{m}(-1)^{k}\binom{m}{k}\left\|A^{\frac{1}{2}} T^{m-k} u\right\|^{2}=\sum_{k=0}^{m}(-1)^{m}\binom{m}{k}\left\|S^{* m-k} A^{\frac{1}{2}} u\right\|^{2}
$$

from which we can conclude. Not that if in Proposition 2.2 the positive operator A is injective then S^{*} is an m-isometry.

Proposition 2.3. Let $T \in \mathcal{L}(\mathbb{K})$ be an A-isometry and $S \in \mathcal{L}(\mathbb{K})$ with $S T=T S$, then $S T$ is an A-m-isometry if and only if S is also an A-m-isometry.

Proof. Let $u \in \mathbb{K}$. The assumption T is A-isometry implies:

$$
\left\|T^{j} S^{j} u\right\|_{A}=\left\|S^{j} u\right\|_{A}, \quad j=0,1, \ldots, m .
$$

Using this and $S T=T S$, we obtain

$$
\begin{aligned}
\sum_{j=0}^{m}(-1)^{j}\binom{m}{j}\left\|(T S)^{m-j} u\right\|_{A}^{2} & =\sum_{j=0}^{m}(-1)^{j}\binom{m}{j}\left\|T^{m-j} S^{m-j} u\right\|_{A}^{2} \\
& =\sum_{j=0}^{m}(-1)^{j}\binom{m}{j}\left\|S^{m-j} u\right\|_{A}^{2}
\end{aligned}
$$

which gives the desired result.
Proposition 2.4. Let $T \in \mathcal{L}(\mathbb{K})$ be an A-m-isometry, then for all $k \geqslant 0, T$ is an $A-(m+k)$-isometry.
Proof. It is enough to prove the result for $k=1$; so we have

$$
\begin{aligned}
\sum_{j=0}^{m+1}(-1)^{j}\left(_{j}^{m+1}\right)\left\|T^{m+1-j} u\right\|_{A}^{2} & =\left\|T^{m+1} u\right\|_{A}^{2}+\sum_{j=1}^{m}(-1)^{j}\left(j_{j}^{m+1}\right)\left\|T^{m+1-j} u\right\|_{A}^{2}-(-1)^{m}\|u\|_{A}^{2} \\
& \left.=\left\|T^{m+1} u\right\|_{A}^{2}+\sum_{j=1}^{m}(-1)^{j}\left(l_{j}^{m}\right)+\binom{m}{j-1}\right)\left\|T^{m+1-j} u\right\|_{A}^{2}-(-1)^{m}\|u\|_{A}^{2} \\
& =\left\|T^{m}(T u)\right\|_{A}^{2}+\sum_{j=1}^{m}(-1)^{j}\left(j_{j}^{m}\right)\left\|T^{m-j} T u\right\|_{A}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{j=1}^{m}(-1)^{j}\binom{m}{j-1}\left\|T^{m+1-j} u\right\|_{A}^{2}-(-1)^{m}\|u\|_{A}^{2} \\
= & 0-\sum_{j=0}^{m}(-1)^{j}\left({ }_{j}^{m}\right)\left\|T^{m-j} u\right\|_{A}^{2}=0 .
\end{aligned}
$$

Hence T is an $A-(m+1)$-isometry.
Proposition 2.5. Let $T \in \mathcal{L}(\mathbb{K})$ be an invertible A-m-isometry, then T^{-1} is also an A-m-isometry.
Proof. Since $\sum_{j=0}^{m}(-1)^{j}\binom{m}{j}\left\|T^{m-j} u\right\|_{A}^{2}=0, \forall u \in \mathbb{K}$. By using the identity $\binom{m}{j}=\binom{m}{m-j}, j=0,1, \ldots, m$, and replacing u by $\left(T^{-1}\right)^{m} u$, we deduce that

$$
\begin{aligned}
0=\sum_{j=0}^{m}(-1)^{j}\binom{m}{j}\left\|T^{m-j}\left(\left(T^{-1}\right)^{m} u\right)\right\|_{A}^{2} & =\sum_{j=0}^{m}(-1)^{j}\binom{m-j}{m-j}\left\|T^{-j} u\right\|_{A}^{2} \\
& =\sum_{k=0}^{m}(-1)^{m-k}\binom{m}{k}\left\|\left(T^{-1}\right)^{m-k} u\right\|_{A}^{2} \\
& =(-1)^{m} \sum_{k=0}^{m}(-1)^{k}\binom{m}{k}\left\|\left(T^{-1}\right)^{m-k} u\right\|_{A}^{2} .
\end{aligned}
$$

Hence, the result.
For $n, k=0,1,2, \ldots$, we denote

$$
n^{(k)}= \begin{cases}1, & \text { if, } n=0 \text { or } k=0 \\ n(n-1) \ldots(n-k+1), & \text { otherwise }\end{cases}
$$

For $T \in \mathcal{L}(\mathbb{K})$ and $k=0,1,2 \ldots$, we consider the operator

$$
\beta_{k}(T)=\frac{1}{k!} \sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j} T^{* j} A T^{j} .
$$

Observe that if T is an A - m-isometry, then $\beta_{k}(T)=0$ for every $k \geqslant m$. The symbol $S_{T}(n)=T^{* n} A T^{n}$ of T, can be written

$$
S_{T}(n)=\sum_{k=0}^{\infty} n^{(k)} \beta_{k}(T) .
$$

Hence if T is an A-m-isometry then

$$
S_{T}(n)=\sum_{k=0}^{m-1} n^{(k)} \beta_{k}(T)
$$

and consequently

$$
\left\|T^{n} u\right\|_{A}^{2}=\sum_{k=0}^{m-1} n^{(k)}\left\langle\beta_{k}(T) u \mid u\right\rangle, \text { for all } u \in \mathbb{K} .
$$

Moreover, the A-covariance operator Δ_{T} is defined by

$$
\Delta_{T}:=\beta_{m-1}(T) .
$$

Note that the operator Δ_{T} depends on T, m and also on A. The next results have been proved in the special case $A=I$ by Agler and Stankus [1]. Here we present a generalization in more general context.

Theorem 2.1. Let $T \in \mathcal{L}(\mathbb{K})$. If T is an A-m-isometry, then the following properties hold.

1. Δ_{T} is positive and for all $u \in \mathbb{K}$,

$$
\left\langle\Delta_{T} u \mid u\right\rangle=\sum_{k=0}^{m-1}(-1)^{m-k-1} \frac{1}{k!(m-k-1)!}\left\|T^{k} u\right\|_{A}^{2}
$$

2. The null space $N\left(\Delta_{T}\right)$ of Δ_{T} is an invariant subspace for T. Moreover, if $N\left(\Delta_{T}\right)$ is invariant for A and $A_{0}=\left.A\right|_{N\left(\Delta_{T}\right)}$, then the restriction operator $\left.T\right|_{N\left(\Delta_{T}\right)}$ is an $A_{0}-(m-1)$-isometry.
3. If $\mathbb{M} \subset \mathbb{K}$ is an invariant subspace for T and A such that $\left.T\right|_{\mathbb{M}}$ is an $\left.A\right|_{\mathbb{M}}$ - $(m-1)$-isometry, then $\mathbb{M} \subset N\left(\Delta_{T}\right)$.

Proof

1. We have

$$
\begin{aligned}
\left\langle\Delta_{T} u \mid u\right\rangle & =\lim _{n \rightarrow \infty} \frac{1}{n^{(m-1)}}\left\langle S_{T}(n) u \mid u\right\rangle \\
& =\lim _{n \rightarrow \infty} \frac{1}{n^{(m-1)}}\left\|T^{n} u\right\|_{A}^{2} \geqslant 0 .
\end{aligned}
$$

2. A simple computation shows that if T is an A - m-isometry, then

$$
T^{*} \Delta_{T} T-\Delta_{T}=0
$$

Let $u \in N\left(\Delta_{T}\right)$,

$$
\left\langle\Delta_{T} T u \mid T u\right\rangle=\left\langle T^{*} \Delta_{T} T u \mid u\right\rangle=\left\langle\Delta_{T} u \mid u\right\rangle=0 .
$$

The positivity of Δ_{T} implies that $\Delta_{T} T u=0$, and so Δ_{T} is invariant for T.
Furthermore, from 1., it follows that $\left.T\right|_{N\left(\Delta_{T}\right)}$ is an A_{0} - $(m-1)$-isometry.
3. Let $u \in \mathbb{M}$, since $\left.T\right|_{\mathbb{M}}$ is an $\left.A\right|_{\mathbb{M}}-(m-1)$-isometry, then for $u \in \mathbb{M}$, the statement 1 . implies that $\left\langle\Delta_{T} u \mid u\right\rangle_{A}=0$. Hence one conclude that $u \in N\left(\Delta_{T}\right)$.

The concept of A-reduced minimum modulus of an operator is a natural generalization of the reduced minimum modulus: recall that the reduced minimum modulus of an operator $T \in \mathcal{L}(\mathbb{K})$ is defined as

$$
\gamma(T)=\inf \left\{\|T u\|: u \in N(T)^{\perp} \text { and }\|u\|=1\right\}
$$

Definition 2.2. Let $T \in \mathcal{L}(\mathbb{K})$. The A-reduced minimum modulus of T is defined as

$$
\gamma_{A}(T)=\inf \left\{\|T u\|_{A}: u \in N\left(A^{\frac{1}{2}} T\right)^{\perp_{A}} \text { and }\|u\|_{A}=1\right\}
$$

Note that

$$
\|T u\|_{A} \geqslant \gamma_{A}(T) d_{A}\left(u, N\left(A^{\frac{1}{2}} T\right)\right), u \in \mathbb{K}
$$

where $d_{A}(u, V)=\inf \left\{\|u-v\|_{A}: v \in V\right\}, \quad V \subset \mathbb{K}$, and if $T \in \mathcal{L}_{A}(\mathbb{K})$, then

$$
\gamma_{A}(T)=\inf \left\{\|T u\|_{A}: u \in \overline{R\left(T^{\sharp} T\right)} \text { and }\|u\|_{A}=1\right\} .
$$

Proposition 2.6. Let $T \in \mathcal{L}_{A}(\mathbb{K})$. Then

$$
\gamma_{A}\left(T^{\sharp} T\right) \geqslant \gamma_{A}(T)^{2} .
$$

Proof. Let $u \in \mathbb{K}$, we have,
$\left\|T^{\sharp} T u\right\|_{A}\|u\|_{A} \geqslant\left\langle T^{\sharp} T u \mid u\right\rangle_{A}=\|T u\|_{A}^{2} \geqslant \gamma_{A}(T)^{2}\|u\|_{A}^{2}$,
Hence,

$$
\left\|T^{\sharp} T u\right\|_{A} \geqslant \gamma_{A}(T)^{2}\|u\|_{A} .
$$

Since $T^{\sharp} T \in \mathcal{L}_{A}(\mathbb{K})$ and $R\left(\left(T^{\sharp} T\right)^{\sharp}\left(T^{\sharp} T\right)\right) \subset R\left(T^{\sharp} T\right)$, we deduce that

$$
\gamma_{A}\left(T^{\sharp} T\right) \geqslant \gamma_{A}(T)^{2} .
$$

Proposition 2.7. Let $T \in \mathcal{L}_{A}(\mathbb{K})$ be an A-m-isometry. Then

1. T is A-bounded below (i.e., $\|T u\|_{A} \geqslant c\|u\|_{A}$, for some $c>0$).
2. $\|T\|_{A} \geqslant \gamma_{A}(T) \geqslant \frac{1}{\sqrt{m}\left(1+\|T\|_{A}^{2}\right)^{\frac{m-1}{2}}}>0$.

Proof. Note first that if $T \in \mathcal{L}_{A}(\mathbb{K})$, then $N(A) \subset N(A T)$ and we have $\|T u\|_{A} \leqslant\|T\|_{A}\|u\|_{A}, \forall u \in \mathbb{K}$.
Since T is an A-m-isometry, then for $u \in \mathbb{K}$, it follows

1. $\|u\|_{A}^{2} \leqslant\left(\left\|T^{m-1}\right\|_{A}^{2}+\binom{m}{1}\left\|T^{m-2}\right\|_{A}^{2}+\ldots+\binom{m}{m-1}\right)\|T u\|_{A}^{2}$

$$
=C(m, T)\|T u\|_{A}^{2} .
$$

2. $\|u\|_{A}^{2} \leqslant\left\|T^{m} u\right\|_{A}^{2}+\binom{m}{1}\left\|T^{m-1} u\right\|_{A}^{2}+\ldots+\left(\begin{array}{c}m-1\end{array}\right)\|T u\|_{A}^{2}$

$$
\begin{aligned}
& \leqslant\left\|T^{m-1}\right\|_{A}^{2}\|T u\|_{A}^{2}+\binom{m}{1}\left\|T^{m-2}\right\|_{A}^{2}\|T u\|_{A}^{2}+\ldots+\binom{m}{m-1}\|T\|_{A}^{2} \\
& \leqslant\left(\left(\|T\|_{A}^{2}\right)^{m-1}+\binom{m}{1}\left(\|T\|_{A}^{2}\right)^{m-2}+\ldots+\binom{m}{m-1}\right)\|T u\|_{A}^{2} \\
& \leqslant m \sum_{j=0}^{m-1}\left(\left(_{j}^{m-1}\right)\left(\|T\|_{A}^{2}\right)^{m-1-j}\|T u\|_{A}^{2}\right. \\
& \leqslant m\left(1+\|T\|_{A}^{2}\right)^{m-1}\|T u\|_{A}^{2} .
\end{aligned}
$$

We deduce that

$$
\gamma_{A}(T) \geqslant \frac{1}{\sqrt{m}\left(1+\|T\|_{A}^{2}\right)^{\frac{m-1}{2}}},
$$

which is the desired result.

3. A-2-Isometric operators

Lemma 3.1. Let $T \in \mathcal{L}(\mathbb{K})$ be an A-2-isometry then

1. $\|T u\|_{A}^{2} \geqslant \frac{n-1}{n}\|u\|_{A}^{2}, \quad n \geqslant 1, u \in \mathbb{K}$.
2. $\|T u\|_{A} \geqslant\|u\|_{A}, \quad u \in \mathbb{K}$.
3. $\left\|T^{n} u\right\|_{A}^{2}+(n-1)\|u\|_{A}^{2}=n\|T u\|_{A}^{2}, u \in \mathbb{K}, n=0,1,2, \ldots$
4. $\lim _{n \longrightarrow \infty}\left\|T^{n} u\right\|_{A}^{\frac{1}{n}}=1$, for $u \in \mathbb{K}, u \neq 0$.

Proof. Using the fact that T is an A-2-isometry, we get

$$
\left\|T^{2} u\right\|_{A}^{2}-\|T u\|_{A}^{2}=\|T u\|_{A}^{2}-\|u\|_{A}^{2} .
$$

Replacing u by $T^{k} u$ leads to

$$
\left\|T^{k+2} u\right\|_{A}^{2}-\left\|T^{k+1} u\right\|_{A}^{2}=\left\|T^{k+1} u\right\|_{A}^{2}-\left\|T^{k} u\right\|_{A}^{2}, k \geqslant 0
$$

Hence,

$$
\begin{aligned}
0 \leqslant\left\|T^{n} u\right\|_{A}^{2} & =\sum_{k=1}^{n}\left(\left\|T^{k} u\right\|_{A}^{2}-\left\|T^{k-1} u\right\|_{A}^{2}\right)+\|u\|_{A}^{2} \\
& =n\left(\|T u\|_{A}^{2}-\|u\|_{A}^{2}\right)+\|u\|_{A}^{2} \\
& =n\|T u\|_{A}^{2}+(1-n)\|u\|_{A}^{2} .
\end{aligned}
$$

Which implies 1 . and 3. Letting $n \longrightarrow \infty$ in 1 . yields to 2 .
4. Take $u \in \mathbb{K}, u \neq 0$. It follows from 3. that

$$
\limsup _{n \longrightarrow \infty}\left\|T^{n} u\right\|_{A}^{\frac{1}{n}} \leqslant 1
$$

However, according to 2 ., the sequence

$$
\left(\left\|T^{n} u\right\|_{A}\right)_{n \in \mathbb{N}}
$$

is monotonically increasing, so

$$
\liminf _{n \longrightarrow \infty}\left\|T^{n} u\right\|_{A}^{\frac{1}{n}} \geqslant \lim _{n \longrightarrow \infty}\|u\|_{A}^{\frac{1}{n}}=1
$$

which completes the proof.
Remark 3.1. Assume that T is an A-2-isometry and using Lemma 3.1, we see that

$$
\left\|T^{2 n} u\right\|_{A}^{2}=n\left\|T^{n+1} u\right\|_{A}^{2}-n(n-1)\|T u\|_{A}^{2}+(n-1)^{2}\|u\|_{A}^{2}, n \geqslant 1, u \in \mathbb{K} .
$$

Theorem 3.1. Let $T, S \in \mathcal{L}(\mathbb{K})$ with $T S=S T$. If T is an A-2-isometry and S is an A-m-isometry, then the operator ST is an A - $(m+1)$-isometry,

Proof. Let $u \in \mathbb{K}$, by using Lemma 3.1, one have

$$
\begin{aligned}
& \sum_{j=0}^{m+1}(-1)^{j}\left({ }_{j}^{m+1}\right)\left\|(T S)^{m+1-j} u\right\|_{A}^{2} \\
& =\sum_{j=0}^{m+1}(-1)^{j}\left(m_{j}^{m+1}\right)\left\|T^{m+1-j} S^{m+1-j} u\right\|_{A}^{2} \\
& \left.=\left\{\sum_{j=0}^{m+1}(-1)^{j}\left(l_{j}^{m+1}\right)(m+1-j)\left\|T S^{m+1-j} u\right\|_{A}^{2}-\sum_{j=0}^{m+1}(-1)^{j}\left(m_{j}^{m+1}\right)(m-j)\right)\left\|\left(S^{m+1-j} u\right)\right\|_{A}^{2}\right\} \\
& =(m+1) \sum_{j=0}^{m+1}(-1)^{j}\left({ }_{j}^{m+1}\right)\left\|(S)^{m+1-j} T u\right\|_{A}^{2}-\sum_{j=1}^{m+1}(-1)^{j}\left(c_{j}^{m+1}\right) j\left\|S^{m+1-j}(T u)\right\|_{A}^{2} \\
& \quad-m \sum_{j=0}^{m+1}(-1)^{j}\left(l_{j}^{m+1}\right)\left\|S^{m+1-j} u\right\|_{A}^{2}-(m+1) \sum_{j=0}^{m}(-1)^{j}\left(j_{j}^{m}\right)\left\|S^{m-j} u\right\|_{A}^{2}=0 .
\end{aligned}
$$

Hence, the result.

Theorem 3.2. Let $T \in \mathcal{L}(\mathbb{K})$ be an A-2-isometry, then T^{n} is again a A-2-isometry for each $n \in \mathbb{N}$.
Proof. Use Lemma 3.1, to write

$$
\left\|T^{2 n} u\right\|_{A}^{2}=2 n\|T u\|_{A}^{2}-(2 n-1)\|u\|_{A}^{2}
$$

and

$$
-2\left\|T^{n} u\right\|_{A}^{2}=-2\left(n\|T u\|_{A}^{2}-(n-1)\|u\|_{A}^{2}\right) .
$$

Adding gives

$$
\left\|T^{2 n} u\right\|_{A}^{2}-2\left\|T^{n} u\right\|_{A}^{2}+\|u\|_{A}^{2}=0
$$

as required.
Corollary 3.1. Let $T, S \in \mathcal{L}(\mathbb{K})$ with $T S=S T$. If T is an A-2-isometry and S is an A-m-isometry, then the operator $T^{k} S$ is an $A-(m+1)$-isometry for all $k \geqslant 0$.

Lemma 3.2. Let $T \in \mathcal{L}(\mathbb{K})$. If T is an $A-2$-isometry, then

$$
T^{* p+1} A T^{p+1}-T^{* p} A T^{p}=\Delta_{T}, \forall p \geqslant 0 .
$$

In particular the sequence of operators

$$
\left(T^{* p+1} A T^{p+1}-T^{* p} A T^{p}\right)_{p \geqslant 0}
$$

is positive.
Proof. We prove the assertion by induction. Since T is an A-2-isometry the result is true for $p=0$ and $p=1$. Now assume that the result is true for p, i.e.,

$$
\left(T^{*}\right)^{p} A T^{p}-\left(T^{*}\right)^{p-1} A T^{p-1}=\Delta_{T} .
$$

Then

$$
T^{*}\left(\left(T^{*}\right)^{p} A T^{p}-\left(T^{*}\right)^{p-1} A T^{p-1}\right) T=T^{*} \Delta_{T} T=\Delta_{T} .
$$

Hence, the result.
On the other hand, from Theorem 2.1, we have

$$
\forall u \in \mathbb{K}, \quad\left\langle\left(T^{*}\right)^{k+1} A T^{k+1}-\left(T^{*}\right)^{k} A T^{k}\right) u|u\rangle=\left\langle\Delta_{T} u \mid u\right\rangle \geqslant 0 .
$$

Lemma 3.3. Let $T \in \mathcal{L}(\mathbb{K})$ be an A-2-isometry, then

$$
T^{* p} A T^{p}=p T^{*} A T-(p-1) A, \quad \forall p \geqslant 0 .
$$

Moreover if $T \in \mathcal{L}_{A}(\mathbb{K})$, we have

$$
T^{\sharp p} T^{p}=p T^{\sharp} T-(p-1) I, \quad \forall p \geqslant 0 .
$$

Proof. We prove the assertion by induction. For $p=0$, 1 it is trivial. Since T is an A-2-isometry the result is true for $p=2$. Now assume that the result is true for p, i.e.,

$$
T^{* p} A T^{p}=p T^{*} A T-(p-1) A .
$$

Then

$$
\begin{aligned}
T^{* p+1} A T^{p+1} & =T^{*} T^{* p} A T^{P} T \\
& =T^{*}\left(p T^{*} T-(p-1) A\right) T=p T^{* 2} A T^{2}-(p-1) T^{*} A T \\
& =p\left(2 T^{*} A T-A\right)-(p-1) T^{*} A T \\
& =2 p T^{*} A T-p A-(p-1) T^{*} A T=(p+1) T^{*} A T-p A .
\end{aligned}
$$

This finishes the proof.

Definition 3.1. Let $T \in \mathcal{L}(\mathbb{K})$. T is said to be:

1. A-bounded, if $\|T\|_{A}<\infty$.
2. A-power bounded, if $\sup _{n}\left\|T^{n}\right\|_{A}<\infty$.

The following result generalizes Theorem 2.4 proved in [11], for 2-isometries.
Theorem 3.3. Let $T \in \mathcal{L}(\mathbb{K})$. If T is an A-power bounded A-2-isometry, then T is an A-isometry.
Proof. Let T be an A-power bounded A-2-isometry. Then there exists a positive real number C such that

$$
\left\|T^{n}\right\|_{A} \leqslant C \text { for } n=1,2,3, \ldots
$$

The definition of an A-2-isometry yields

$$
\left\|T^{2}\right\|_{A}^{2}+1=2\|T\|_{A}^{2}
$$

Since T^{n} is also a A-2-isometry by Theorem 3.2, an induction argument shows that $\left\|T^{2^{n}}\right\|_{A}^{2}=2^{n}\|T\|_{A}^{2}-\left(2^{n}-1\right)$ for every positive integern.
Thus we obtain

$$
\frac{C^{2}}{2^{n}} \geqslant\|T\|_{A}^{2}-1+\frac{1}{2^{n}} \geqslant 0:
$$

Letting $n \longrightarrow \infty$, we find $\|T\|_{A}=1$. In particular, $A \geqslant T^{*} A T$. Since from Theorem $2.1 T^{*} A T \geqslant A$, by we conclude $T^{*} A T=A$.

4. Spectral properties of \boldsymbol{A}-m-isometry

We describe now the some spectral properties of an A - m-isometry.
Proposition 4.1. Assume that $0 \notin \sigma_{a p}(A)$. If T is an A-m-isometry, then the approximate point spectrum of T lies in the unit circle. Thus, either $\sigma(T) \subset \partial \mathbb{D}$ or $\sigma(T)=\overline{\mathbb{D}}$. In particular, T is injective and $R(T)$ is closed.

Proof. If $\lambda \in \mathbb{C}$ is in the approximate point spectrum of T, then there exists a sequence $\left(x_{j}\right) \subset \mathbb{K}$ such that for all $j,\left\|x_{j}\right\|=1$, and $(T-\lambda) x_{j} \rightarrow 0$ as $j \rightarrow \infty$ (see[3]). Thus for each integer $k, \lim _{j \rightarrow \infty}\left(T^{k}-\right.$ $\left.\lambda^{k}\right) x_{j} \rightarrow 0$.

So

$$
\begin{aligned}
0 & =\sum_{k=0}^{m}(-1)^{k}\binom{m}{k}\left\langle T^{*(m-k)} A T^{m-k} x_{j}, x_{j}\right\rangle \\
& =\sum_{k=0}^{m}(-1)^{k}\binom{m}{k}\left\langle A T^{m-k} x_{j}, T^{(m-k)} x_{j}\right\rangle \\
& =\sum_{k=0}^{m}(-1)^{k}\binom{m}{k}|\lambda|^{2(m-k)} \lim _{j \rightarrow+\infty}\left\langle A x_{j}, x_{j}\right\rangle \\
& =\left(|\lambda|^{2}-1\right)^{m} \lim _{j \rightarrow+\infty}\left\langle A x_{j}, x_{j}\right\rangle
\end{aligned}
$$

and so $|\lambda|=1$. Moreover $\partial \sigma(T) \subset \sigma_{a p}(T) \subset \partial \mathbb{D}$ and thus $\sigma(T) \subset \partial \mathbb{D}$ or $\sigma(T)=\overline{\mathbb{D}}$. In particular $0 \notin \sigma_{a p}(T)$, or T is bounded below that is equivalent to T is injective and it has a closed range.

Corollary 4.1. Assume that $0 \notin \sigma_{\text {ap }}(A)$. If both T and T^{*} are A-m-isometries, then $\sigma(T) \subset \partial \mathbb{D}$.
Proof. We reason with contradiction. From the previous proposition, If $\sigma(T) \nsubseteq \partial \mathbb{D}$, then $\sigma(T)=$ $\overline{\mathbb{D}}$. Since $0 \notin \sigma_{a p}(T)$, so $\overline{R(T)}=R(T) \neq \mathbb{K}$ and also $N\left(T^{*}\right) \neq\{0\}$. Hence $0 \in \sigma_{p}(T) \subset \sigma_{a p}(T)$, which contradicts the fact that T^{*} is an A-m-isometry.

Remark 4.1. If $0 \notin \sigma_{a p}(A)$ and T is an A-m-isometry. Thus there two cases either T is invertible and $\sigma(T) \subset \partial \mathbb{D}$ or T is not invertible and $\sigma(T)=\overline{\mathbb{D}}$. Hence $r(T)=1$ from [5].

In the rest of this article, we shall obtain additional spectral properties of 2-A-isometries.
Theorem 4.1. Assume that $0 \notin \sigma_{a p}(A)$. If T is an A-2-isometry. Then

1. $\lambda \in \sigma_{\text {ap }}(T)$ implies $\bar{\lambda} \in \sigma_{a p}\left(T^{*}\right)$.
2. $\lambda \in \sigma_{p}(T)$ implies $\bar{\lambda} \in \sigma_{p}\left(T^{*}\right)$.
3. Eigenvectors of T corresponding to distinct eigenvalues are A-orthogonal.

Proof

1. Let $\lambda \in \sigma_{a p}(T)$, Since $0 \notin \sigma_{a p}(A)$ we can choose a sequence $\left(x_{n}\right)_{n}$ of unit vectors satisfying ($T-$ $\lambda I) x_{n} \rightarrow 0$ and such that $\left\|A x_{n}\right\| \geqslant \delta$ for some $\delta>0$. Thus $T^{*} A(T-\lambda I) x_{n} \rightarrow 0$ and $T^{* 2} A\left(T^{2}-\right.$ $\left.\lambda^{2} I\right) x_{n} \rightarrow 0$. If T is an A-2-isometry then

$$
\begin{aligned}
0 & =\left(T^{* 2} A T^{2}-2 T^{*} A T+A\right) x_{n} \\
& =\left(T^{* 2} A T^{2} x_{n}-\lambda^{2} T^{* 2} A x_{n}\right)-\left(2 T^{*} A T x_{n}-2 \lambda T^{*} A x_{n}\right)+\left(\lambda^{2} T^{* 2} x_{n}-2 \lambda T^{*} A x_{n}+A x_{n}\right) .
\end{aligned}
$$

This implies that $\left(\lambda^{2} T^{* 2} A x_{n}-2 \lambda T^{*} A x_{n}+A x_{n}\right)=\left(\lambda T^{*}-I\right)^{2} A x_{n} \rightarrow 0$. Since $\sigma_{a p}(T)$ is a subset of the unit circle $\partial \mathbb{D}$, this is equivalent to $\left(T^{*}-\bar{\lambda} I\right)^{2} A x_{n} \rightarrow 0$ and we deduce that ($T^{*}-$ $\bar{\lambda} I)^{2} \frac{A x_{n}}{\left\|A x_{n}\right\|} \rightarrow 0$. From which it follows that $\bar{\lambda} \in \sigma_{a p}\left(T^{*}\right)$.
2. We use a similar argument as in 1.
3. Let λ and μ be two distinct eigenvalues of T and suppose that $T x=\lambda x$ and $T y=\mu y$. Since T is an A-2-isomerty then $0=\left\langle\left(T^{* 2} A T^{2}-2 T^{*} A T+A\right) x, y\right\rangle=\left\langle A T^{2} x, T^{2} y\right\rangle-2\langle A T x, T y\rangle+\langle A x, y\rangle=$ $\left(\lambda^{2} \bar{\mu}^{2}-2 \lambda \bar{\mu}+1\right)\langle A x, y\rangle$. As $\lambda \neq \mu$ and $|\lambda|=|\mu|=1$, we obtain $\left(\lambda^{2} \bar{\mu}^{2}-2 \lambda \bar{\mu}+1\right)=$ $\left(\frac{\lambda}{\mu}-1\right)^{2} \neq 0$. This leads to $\langle A x, y\rangle=0$. which finishes the proof. The proof of Theorem 4.1 shows also that if $0 \notin \sigma_{a p}(A)$ and $T \in \mathcal{L}_{A}(\mathbb{K})$ is an A-2-isometry, then $\overline{\sigma_{a p}(T)} \subset \sigma_{a p}\left(T^{\sharp}\right)$ and $\overline{\sigma_{p}(T)} \subset \sigma_{P}\left(T^{\sharp}\right)$. Moreover our results improve most of those established in [11].

References

[1] J. Agler, M. Stankus, m-Isometric transformations of Hilbert space I,Integral Equations Operator Theory 21 (1995) 383-429.
[2] T. Bermúdez, Isabel Marrero, Antonio Martinón, On the orbit of an m-isometry, Integral Equations Operator Theory 64 (2009) 487-494.
[3] J.B. Conway, A Course in Functional Analysis, second ed., Springer, 1994.
[4] R.G. Douglas, On majorization, factorization and range inclusion of operators in Hilbert spaces, Proc. Amer. Math. Soc. 17 (1966) 413-416.
[5] M.R. Embry, A connection between commutativity and separation of spectra of operators, Acta Sci. Math. 32 (1971) 235237.
[6] J. Gleason, S. Richter, m-Isometries commuting tuples of operators on a Hilbert space, Integral Equations Operator Theory. 56 (2) (2006) 181-196.
[7] M. Laura Arias, Gustavo Corach, M. Celeste Gonzalez, Partial isometries in semi-Hilbertian spaces, Linear Algebra Appl. 428 (2008) 1460-1475.
[8] M. Laura Arias, Gustavo Corach, M. Celeste Gonzalez, Metric properties of projections in semi-Hilbertian spaces, Integral Equations Operator Theory 62 (2008) 11-28.
[9] Laurian Suciu, Quasi-isometries in semi-Hilbertian spaces, Linear Algebra Appl. 430 (2009) 2474-2487.
[10] Laurian Suciu, Some invariant subspaces for A-contractions and applications, Extracta Math. 21 (3) (2006) 221-247.
[11] S.M. Patel, 2-Isometric operators, Glas. Mat. 37 (57) (2002) 143-147.

[^0]: * Corresponding author.

 E-mail addresses: sidahmed@ju.edu.sa (O.A.M.S. Ahmed), adel.saddi@fsg.rnu.tn (A. Saddi).

