View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Elsevier - Publisher Connector

Linear Algebra and its Applications 436 (2012) 3930-3942

Contents lists available at ScienceDirect

Linear Algebra and its Applications Abpiications

journalhomepage: www.elsevier.com/locate/laa

A-m-Isometric operators in semi-Hilbertian spaces
Ould Ahmed Mahmoud Sid Ahmed #**, Adel Saddi

4 Department of Mathematics, College of Science, Aljouf University, Aljouf 2014, Saudi Arabia
b pepartment of Mathematics, College of Education for Girls in Sarat Ebeidah, 61914 Abha, King Khalid University, Saudi Arabia

ARTICLE INFO ABSTRACT

Article history: In this work, the concept of m-isometry on a Hilbert space are gen-
Received 9 May 2010 eralized when an additional semi-inner product is considered. This
Accepted 6 September 2010 new concept is described by means of oblique projections.
Available online 12 October 2010 © 2010 Elsevier Inc. All rights reserved.

Submitted by V. Mehrmann

AMS classification:
46C05
47A05
47A15

Keywords:
m-Isometry
Semi-inner product
Operator

Spectrum

1. Introduction and terminologies

The concept of partial isometries, quasi-isometries and contractions in semi-Hilbertian spaces was
introduced by Arias et al. [7] and Suciu [9,10].

The class of m-isometric and in particular 2-isometric operators on a complex Hilbert space has
been the object of some intensive study, especially by Agler and Stankus [1], Patel [11] but also by
Richter, Shimorin and other authors (see [2,6]).

Our goal in this paper is to study the class of m-isometric with respect to a semi-norm ||.||4. An
operator in this class will be called A-m isometry. We show that many results from [1,11] remain true
if we consider an additional semi-inner product defined by a positive semi-definite operator A.

The contents of the paper are the following. In Section 1, we set up notation and terminology. In
Section 2, we introduce the concept of A-m isometries. Several properties are proved which result in a
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generalization of well known assertions of m-isometries . In Section 3, we shall specialize to the case
m = 2. We explore some properties of A-2-isometry.

Several spectral properties of A-m-isometries are obtained in Section 4, concerning the point
spectrum, the approximate spectrum and the spectrum. The spectral radius of T will be denoted by
r(T).

Throughout this paper N denotes the set of non-negative integers, I stands for a complex Hilbert
space with inner product { | ) and £([K) is the Banach algebra of all bounded linear operators on [,
I = I being the identity operator. £(I€)T is the cone of positive (semi-definite) operators, i.e.,

LT ={Ac ) : (Ay, |u)>0, Yue K}

For every T € £(K) its range is denoted by R(T), its null space by N(T) and its adjoint by T*. If
M C K is a closed subspace, Py is the orthogonal projection onto M. The subspace M is invariant
for T if TM C M, and M reduces T it is invariant for T and T*. We write o(T), o (T), 0,(T) and
oqap(T), respectively, for the resolvent set, the spectrum, the point spectrum and the approximate
point spectrum of the operator T. Any A € £(K)* defines a positive semi-definite sesquilinear form:

(Ia:KxK— C, (u]v)a={(Au|v).
1
By ||.|la we denote the semi-norm induced by { | )4, i.e.|lulla = (u | u)5. Observe that ||ulls = O if
and only ifu € N(A). Then ||.||4 is a norm if and only if A is an injective operator, and the semi-normed
space (L£(IK), ||.|la) is complete if and only if R(A) is closed. Moreover ( | )4 induced a semi-norm on
a certain subspace of £([K), namely, on the subset of all T € £(IK) for which there exists a constant
¢ > 0 such that || Tu||4 < c||ul|4 for every u € £(IK). For these operators it holds

(I Tul|a
ITlla =

ueR@uo lUlla
It is straightforward that
[ITlla = sup{[{Tu | v)al s u,v € Kand flulla<1,llva<1}.
Given a subspace M of [K its A-orthogonal subspace is the subspace
M ={vel; (v|ua=0 YueM }.
It easy to check that
M = (aM)L = AT (v,
Moreover, since A(A~1 (M) = M N R(A), then

1
(Ma)La = (ML N R(A)) .
Theorem 1.1 (Douglas [4]). Let A, B € L£(IK). The following conditions are equivalents.

1. R(B) C R(A).
2. There exists a positive number A such that BB* < AAA*.
3. There exists C € £(IK) such that AC = B.
Definition 1.1. Let T € £([K), an operator W € £([K) is called an A-adjoint of T if
(Tu | v)a = (u | Wv)4 forevery u,v e K,

AW = T*A;
T is called A-selfadjoint if
AT = T*A.
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The existence of an A-adjoint operator is not guaranteed. Observe that a given T € £(IK) may admit
none, one or many A-adjoints: in fact, if W is an A-adjoint of T and AZ = Ofor some Z € £(IK) then
W + Z is also an A-adjoint of T.

By Douglas theorem, T admits an A-adjoint if and only if R(T*A) C R(A). From now on, £ (IK)
denotes the set of all T € £(IK) which admit an A-adjoint, it is

La(K) ={T e £(K): R(T*A) C R(A) }.

L4(IK) is a subalgebra of £(IK) which is neither closed nor dense in £(K).
On the other hand if

1 1
lulla = (Au [ u)2 = [|AZul,
the set of all ||.||s-bounded operators in £(K)is
£y (1) =(Te LK) : T*R(AZ) C R(A7) } = { T € £(K) : R(A2T*A?) C R(A) ).

Note that £4(K) C LA% (<), which shows that if T admits an A-adjoint then it is A-bounded.

1.1. The A-adjoint operator T*

IfT € £(IK)admits an A-adjoint operator, i.e. if R(T*A) C R(A), then there exists a distinguished A-
adjoint operator of T, namely, the reduced solution of the equation AX = T*A, i.e. T® = ATT*A, where
T is the Moore-Penrose inverse of T and the A-adjoint operator T? verifies

AT* = T*A, R(T*) C R(A) and N(T%) = N(T*A).
In the next we add without proof some properties of T4, (for more details we refer the reader to [8]).

Proposition 1.1. Let A € £(IK)T and T € £4(IK). Then

1. T*T and TT"are A-selfadjoint.

1
20Tl = IT%la = IT*TIZ.
3. |W|la = |IT?||afor every W € £(IK) which is an A-adjoint of T.
4. If W € L£a(K) then ||[TW||4 = ||WT||a.
5. ||T%|| < ||W\for every W € £(IK) which is an A-adjoint of T. Nevertheless, T* is not in general the
unique A-adjoint of T that realizes the minimal norm.

We work with the next A-operators classes.
Definition 1.2. Let T € £(K).

1. T is an A-isometry if || Tul|4 = ||u||4 for every u € K.
2. T € £a(I)is an A-normal operator if T°T = TTZ.

2. The class of A-m-isometric operators

Recall that for m € N, an operator T € £(KK) is called an m-isometry if,
MM _ (iln) rFm—1ym—1 + (gn) TH*M—2m—2 4.+ (_nm—] (nml—l) T*T + (_1)m1 —0.

Obviously, every m-isometry is injective. Moreover, T is an m-isometry if and only if

m
S (DR IT Fu? =0, Vuelk.
k=0
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In this section we will introduce and prove some basic properties of an A-m-isometry for which we
give the following definition.

Definition 2.1. Form € N and A € £(IK)™T, an operator T € £(IK) is called an A-m-isometry if,
TMAT™ — (I) T AT 4 (3) T 2AT™ 2 L (=)™ () T*AT + (—1)"A = 0.

or equivalently

m
S DRI U2 =0, Vu e K,
k=0

that is, T is an m-isometry relative to the semi-norm on K induced by A.
Remark 2.1

1. Let T € £4(K), a simple computation shows that the following statements are equivalent:
(a) T is an A-m-isometry.
(b) YRLo (=D GEHTFTm~k = 0.

2. An A-1-isometry is an A-isometry and if A = I then an A-m-isometry is an m-isometry.

3. If T is an A-m-isometry then N(T) C N(A). In particular if A is injective, then T is injective.

Example 2.1. The following examples of A-m-isometries can be easily proved.

1. The identity operator and the orthogonal projection on R(A) are A-m-isometries for all m > 1.
Moreover, if T is an A-m-isometry then {T + S, R(S) C N(A) } is a set of A-m-isometries.

2. Let K = C? be equipped with the norm || (x, y)|> = |x|2 + |y|?, and consider the operators A =
G ;) e (KT, T= ((1) }) € £(IK). It is easy to check that T admits A-adjoint operators
and by direct computation, we see that

I3 = 3IT2 A + 3T WIS — & WIIZ =0,
and

ITxI7 # I1x1i3.
Thus, T is an A-3-isometry but is not an A-isometry. In general an A-m-isometry is not an m-isometry
0 0 O
and vice versa, for example if K = c? equipped with the canonical norm, A = (0 1 1) and
0o 1 1

0 0 -1
T = (1 0o O ) then T is a 2-isometry but it is not an A-isometry. On the other hand if B =
0 1 0
1 1 0 0 1 0
1 1 O)JandS= |1 O O0],thenSisaB-isometry but it is not a 3-isometry.
0 0 O 0 0 O
Under some additional conditions, we obtain the following result.

Proposition 2.1. Let A be a positive, injective bounded operator on I and T € £([K). Then the following
statements hold:

1. IfTA = AT, then T* = T*. In particular T is an A-m-isometry if and only if T is an m-isometry.
2. If T is A-normal, then T is an A-m-isometry if and only ifT11 is an A-m-isometry.
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Proof

1. Note first that the conditions imposed on A and on T imply that R(A) = K and that T*R(A) C
R(A). So T* exists. Moreover
% = A'T*A = ATAT* = Py T* = T*.

Thus the assertion follows.

2. Follows from the definition of an A-m-isometry and the Lemma 2.1, [7].
More generally, as it happens with A-isometries, A-m-isometries can be characterized in terms
of m-isometries. [J

Proposition 2.2. Let T € £(K), thenT € EA% (K) if and only if there exists S € £(IK) such that A2S =

1
T*A2. In this case T is an A-m-isometry if and only if S*| is an m-isometry.

T
R(AZ)
Proof. The first statement follows by applying Dauglas theorem. Now

1 1 1 1
A2S = T*A7 < S*A7 = A2T.

1 1
This implies that R(A2) is invariant for S*. Moreover we have S*A7 = A3 T*, for all positive integer k.
Thus for all u € K,

m m ] m 1
S DR OIT™ R uld = Y (DR IAZ T )2 = Y (=DM IS * Az
k=0 k=0 k=0

from which we can conclude. Not that if in Proposition 2.2 the positive operator A is injective then $*
is an m-isometry. []

Proposition 2.3. LetT € £(K) beanA-isometryandS € £(IK) withST = TS, then ST is an A-m-isometry
if and only if S is also an A-m-isometry.

Proof. Let u € [K. The assumption T is A-isometry implies:
IPSulla = |ISulla, j=0,1,...,m.
Using this and ST = TS, we obtain

YIS ulli= D (=1 (HIIT™ IS |

j=0 j=0
m . .
=Y (1Y IS ull},
j=0

which gives the desired result. [
Proposition 2.4. Let T € £(IK) be an A-m-isometry, then forall k>0, T is an A-(m + k)-isometry.

Proof. It is enough to prove the result for k = 1; so we have

m+1 m

S Y EEHIT™ 3= T g 4 Y CTOIT™ ) — (D™ flull
j=0 j=1
m
=T w3+ 30 () + ) 1T )} = (=)™ ul}
j=1

m
=T™(Tw)1; + Y (=1 (IT™ Tul;
j=1
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m
A DIT™ T ) = (=)™ ull}
j=1

=0— Y (=1Y/(MIT"ull} = o.

j=0
Hence T is an A-(m + 1)-isometry. []
Proposition 2.5. Let T € £(IK) be an invertible A-m-isometry, then T~ is also an A-m-isometry.

Proof. Since Zj’lo(—l)j(}“)HTm_juH% =0, Y u € K. By using the identity
(]f”) = (m_j), j=0,1,...,m, and replacing u by (T~!)™u, we deduce that

0=y (=1/MIT" (T H™wllz= > (=Y G_pIT ull}
j=0 j=0
= > (D™ @ Hm )z
k=0
=(=D™ Y (=D EHIITH™ Ful3.

k=0
Hence, the result.
Forn, k=0,1,2,..., we denote
w _ |1 if, i=00rk=20
= nn—1)...(n—k+1), otherwise
ForT € £(KK)andk = 0,1,2..., we consider the operator
k

BT = Y (=D TIAT.

e
Observe that if T is an A-m-isometry, then B¢ (T) = 0 for every k > m. The symbol Sr(n) = T*"AT" of
T, can be written

sty = Y n®Bi(T).

k=0
Hence if T is an A-m-isometry then

m—1
sty = > n® (1)

k=0

and consequently

m—1
IT"ullz = > n®(Be(Tyu | u), forallu € K.
k=0

Moreover, the A-covariance operator Ar is defined by
At = Pm—1(D).

Note that the operator At depends on T, m and also on A. The next results have been proved in
the special case A = I by Agler and Stankus [1]. Here we present a generalization in more general
context. [
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Theorem 2.1. Let T € £(K). If T is an A-m-isometry, then the following properties hold.

1. Ay is positive andfor allu € K,
1
A u Ll m —k—1 ku 2'
TU | E ( Wom—k—1)! 1),|| A

2. The null space N(AT) of At is an invariant subspace for T. Moreover, if N(Ar) is invariant for A and
Ao = A|n(ay), then the restriction operator T|n(a,) is an Ap-(m — 1)-isometry.

3. If M C K is an invariant subspace for T and A such that T|y is an A|y-(m — 1)-isometry, then
M C N(A7).

Proof

1. We have

(Aru )= Jim sy | )

: n, 2
— >
Jim ) IT"ullz >0.

2. A simple computation shows that if T is an A-m-isometry, then
T*ArT — A7 = 0.
Letu € N(Ar),
(ArTu | Tu) = (T*A7Tu | u) = (Atu | u) = 0.

The positivity of Ap implies that A7Tu = 0, and so Ay is invariant for T.
Furthermore, from 1., it follows that T|y(a,) is an Ag-(m — 1)-isometry.

3. Letu € M, since Ty is an A|y-(m — 1)-isometry, then for u € M), the statement 1. implies that
(Atu | u)4 = 0. Hence one conclude thatu € N(Ar).

The concept of A-reduced minimum modulus of an operator is a natural generalization of the reduced
minimum modulus: recall that the reduced minimum modulus of an operator T € £([K) is defined as

y(T) = inf{||Tu] : u € N(T)J‘ and Ju|l=1}. 0O

Definition 2.2. Let T € £(IK). The A-reduced minimum modulus of T is defined as
ya(T) = inf{[|Tulla : u € N(AZT)** and ulls = 1)

Note that
ITulla > ya(Mda (. NAHT) ) u € B¢

where da(u, V) = inf{llu —v|a:ve V), VCK,
and if T € £4(K), then

ya(T) = inf{||Tulls : u € R(T*T) and lufla =1}.

Proposition 2.6. Let T € £4([K). Then
Ya(T*T) = ya(T)2.
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Proof. Let u € K, we have,
IT*Tullallulla >(T*Tu | u)a = [Tul; > ya(D)>*[lull},
Hence,
IT*Tulla > ya(T)? [[ul]a.
Since T*T € £4(IK) and R((T*T)*(T*T)) C R(T*T), we deduce that
ya(T*T) > ya(0?. O
Proposition 2.7. Let T € £4(IK) be an A-m-isometry. Then
1. T is A-bounded below (i.e., || Tu||a > c||u|| 4, for some ¢ > 0).
1
2. ITlla=ya(T) > — > 0.

Jm (1+1T13) *

Proof. Note first that if T € £4(K), then N(A) C N(AT) and we have

ITulla < IITallulla Vo € K.
Since T is an A-m-isometry, then for u € [ it follows
Lo ul < (T3 4 EOIT™ 213 + .+ Gioy)) ITull}
=C(m, T)||Tul3.
20 JulF<IT™ullz + OIT™  ully + ..o 4 G IITully
<™ MENTul; 4+ EONT™ 2 RN Tull; + - 4+ G DT
<(ATID™ "+ OATID™ 2 + ..+ () ITull}

m—1 .
_ m—1—j
<m Y (ITIZ)" Tl
j=0
m—1
<m (1T 1TI3)" ITul.

We deduce that

1
ya(T) > —,

Jm(1+|TI3) *

which is the desired result. []

3. A-2-Isometric operators
Lemma 3.1. Let T € £(K) be an A-2-isometry then

LTl > =2 ullf, n>1, ue K.

2. | Tulla = llulla, u € K.

3T + (n = Dlullf = nllTull;, ue K, n=0,1,2,...
1

4. limp— o0 |T"ullj =1, for u € I, u # 0.

3937
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Proof. Using the fact that T is an A-2-isometry, we get
IT2ullz — ITull; = (Tul} — llull3.

Replacing u by T*u leads to
T 2u) — (T w2 = 1T )3 — IT*ul3, k>o.

Hence,

n

2 k., 12 k—1.,112 2

o< IITull3=>" (IT*ull} — 0T "ul3) + flulz
k=1

2 2 2

=n (ITull — lul?) + llul}
2 2
=nl|Tull} + (1 — mljul}.

Which implies 1. and 3. Letting n — o0 in 1. yields to 2.
4. Take u € K, u # 0. It follows from 3. that

1
limsup || T"ul|f <1.
n—-oo
However, according to 2., the sequence

U ullA)nen

is monotonically increasing, so
a1 1
. TR n
liminf |T7ullz > lim flull =1,
which completes the proof. [
Remark 3.1. Assume that T is an A-2-isometry and using Lemma 3.1, we see that

IT>"u)l3 = nl|T" ul3 — n(n — D||Tul3 + (0 — D2 |ul?, n>1, ue K.

Theorem 3.1. Let T, S € £(IK) with TS = ST. If T is an A-2-isometry and S is an A-m-isometry, then the
operator ST is an A-(m+1)-isometry,

Proof. Let u € [K, by using Lemma 3.1, one have

m+1 ) )
Y= YIS ™ Tl
j=0

m-+1
— Z (—l)j(}n'H)||Tm+1_j5m+1_ju||i
j=0
m+1 ) ) m-+1 ) )
=1 2 YT m+1=HITS™ Fulf — D YD m =)™ w3
j=0 j=0
m+1 ) ) m—+1 ) )
=m+1 Y YEOHIE™ Tl — Y (=1 FHHiIs™ T (w13
j=0 j=1
—m Y (=1 EHIS™ T Tu)F — (m+ 1) Y (=1 (OIS Tul; =o.
j=0 j=0

Hence, the result. [
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Theorem 3.2. Let T € £(K) be an A-2-isometry, then T" is again a A-2-isometry for eachn € N.

Proof. Use Lemma 3.1, to write
IT*"ull = 2n[|Tull3 — 2n — 1)||ull}
and
n 2 2 2
=2|IT"ullz = —2(nlITullZ — (n — Dull}).
Adding gives
(T2 ullz — 21T ullz + llull; =0

as required. [

Corollary 3.1. Let T, S € £(IK) with TS = ST. If T is an A-2-isometry and S is an A-m-isometry, then the
operator TS is an A-(m+1)-isometry for all k > 0.

Lemma 3.2. Let T € £(K). If T is an A-2-isometry, then
TPHIATPH _ T*PATP = A, V p>0.

In particular the sequence of operators
(T*P+1ATP+1 _ T*pATp)p >0

is positive.

Proof. We prove the assertion by induction. Since T is an A-2-isometry the result is true for p = 0 and
p = 1. Now assume that the result is true for p, i.e.,

(T*)PATP — (T*)P71ATP~! = A7,
Then
T* ((T*)PATP - (T*)p_]ATp_l) T = T*ArT = Ar.
Hence, the result.
On the other hand, from Theorem 2.1, we have
Vuelk, ((THAT — (%A | u) = (Aru |u)=>0. O

Lemma 3.3. Let T € £(K) be an A-2-isometry, then
T*PATP = pT*AT — (p — 1)A, ¥V p=>0.
Moreover if T € L£4([K), we have
TPTP = pT*T — (p — 1)I, VY p=0.

Proof. We prove the assertion by induction. For p = 0, 1it is trivial. Since T is an A-2-isometry the
result is true for p = 2. Now assume that the result is true for p, i.e.,

T*PATP = pT*AT — (p — 1)A.
Then
TPTIATPH = T*T*PATPT
=T*(pT*T — (p — DA)T = pT*?AT?> — (p — 1)T*AT
=pQ2T*AT — A) — (p — 1)T*AT
=2pT*AT — pA — (p — 1)T*AT = (p + 1)T*AT — pA.

This finishes the proof. []
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Definition 3.1. Let T € £(K). Tis said to be:

1. A-bounded, if ||T||4 < oo.
2. A-power bounded, if sup, || T"||4 < oo.

The following result generalizes Theorem 2.4 proved in [11], for 2-isometries.
Theorem 3.3. Let T € L£(K). If T is an A-power bounded A-2-isometry, then T is an A-isometry.

Proof. Let T be an A-power bounded A-2-isometry. Then there exists a positive real number C such
that

IT"|a<Cfor n=1,23,...
The definition of an A-2-isometry yields
T3 + 1= 2Tl
Since T" is also a A-2-isometry by Theorem 3.2, an induction argument shows that
| I3 =2"|T[3 — (2" — 1) for every positive integern.
Thus we obtain
ComE -1+ Lso.
on A n”
Lettingn —> oo, we find ||T||4 = 1. In particular, A > T*AT. Since from Theorem 2.1 T*AT > A, by we
conclude T*AT = A. [

4. Spectral properties of A-m-isometry

We describe now the some spectral properties of an A-m-isometry.

Proposition 4.1. Assume that 0 ¢ o4, (A). If T is an A-m-isometry, then the approximate point spectrum

of T lies in the unit circle. Thus, either o (T) C 0D or o (T) = D. In particular, T is injective and R(T) is
closed.

Proof. If . € Cis in the approximate point spectrum of T, then there exists a sequence (x;) C [ such
thatforallj, [|xj|| = 1,and (T — A)x; — Oasj — oo (see|[3]). Thus for each integer k, limj_mo(Tk —

)»k)Xj — 0.
So

m
0= Z(—])k (,T) (T*(m_k)ATm_ka, Xj)

k=0
m

= (=D () (AT R, TR
k=0
= k (m—k)

=Y (=D IAP™R lim (Ax;, x;
kg(:)( )" () 1A j_)+oo( G, Xj)

=A% =DM lim (Ax;,x;)

Jj—>+00

and so |A| = 1. Moreover 30 (T) C 0qp(T) C 9D and thus o(T) C dD or o (T) = D. In particular
0 ¢ 04(T), or T is bounded below that is equivalent to T is injective and it has a closed range. [
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Corollary 4.1. Assume that 0 ¢ oqp(A). If both T and T* are A-m-isometries, then o (T) C 0D.

Proof. We reason with contradiction. From the previous proposition, If o(T)ga D, then o(T) =
D. Since 0 ¢ 04p(T), so R(T) = R(T) # [K and also N(T*) # {0}. Hence 0 € 0,,(T) C 0qp(T), which
contradicts the fact that T* is an A-m-isometry. [

Remark 4.1. If 0 ¢ 04,(A) and T is an A-m-isometry. Thus there two cases either T is invertible and
o (T) C 0D or T is not invertible and ¢ (T) = D. Hence r(T) = 1 from [5].

In the rest of this article, we shall obtain additional spectral properties of 2-A-isometries.

Theorem 4.1. Assume that 0 ¢ oqp(A). If T is an A-2-isometry. Then

1. & € 0qp(T) implies A € ogp(T*).
2. ) € 0p(T) implies A € op(T*).
3. Eigenvectors of T corresponding to distinct eigenvalues are A-orthogonal.

Proof

1. Let A € ogp(T), Since 0 ¢ oy (A) we can choose a sequence (x;), of unit vectors satisfying (T —

ADx, — 0 and such that ||Ax,|| > & for some § > 0. Thus T*A(T — A)x, — 0 and T*?A(T? —
A2D)x, — 0.If T is an A-2-isometry then

0= (T*2AT? — 2T*AT + A)x,
= (T*AT?xp, — A2T*?Axy) — QT*ATxy — 20T Axp) + (AT %x, — 20T Axy + Axy).

This implies that (A2T*2Ax, — 2AT*Axy + Axy) = (AT* — I)?Ax, — 0. Since oqy(T) is a sub-
set of the unit circle 3D, this is equivalent to (T* — AI)2Ax, — 0 and we deduce that (T* —

G Hgi:\\ — 0. From which it follows that A € ogp(T*).

2. We use a similar argument as in 1.

3. Let A and p be two distinct eigenvalues of T and suppose that Tx = Ax and Ty = uy. Since T is
anA-2-isomerty then 0 = ((T*2AT? — 2T*AT + A)x,y) = (AT?x, T?y) — 2(ATx, Ty) + (Ax,y) =
(W22 — 200 + 1)(Ax,y). As A # o and |A| = || =1, we obtain (A2@? —2A;+1) =

2
<% — l) % 0. This leads to (Ax,y) = 0. which finishes the proof. The proof of Theorem 4.1
shows also that if 0 ¢ oqp(A) and T € £4([K) is an A-2-isometry, then o, (T) C aap(Tﬁ) and

op(T) C op (T*). Moreover our results improve most of those established in [11]. [
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