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Abstract

Retrenchment is a flexible model evolution formalism that arose as a reaction to the limitations imposed by refinement, and for
which the proof obligations feature additional predicates for accommodating design data. Composition mechanisms for retrenchment
are studied. Vertical, horizontal, dataflow, parallel and fusion compositions are described. Of particular note are the means by which
the additional predicates compose. It is argued that all of the compositions introduced are associative, and that they are mutually
coherent. Composition of retrenchment with refinement, so important for the smooth interworking of the two techniques, is discussed.
Decomposition, allowing finer grained retrenchments to be extracted from a single large grained retrenchment, is also investigated.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

As a design and development technique, specific incarnations of model based refinement (see e.g. [12] for a
survey) can sometimes fall short of what is desired, as regards treating individual requirements issues in an ideal way.
Retrenchment was introduced as a means for addressing such issues, in particular allowing them to be treated in a formal
manner whilst at the same time not interfering with a perhaps over-idealised refinement development. In [11] the authors
gave a comprehensive and broadly based overview of retrenchment. Background and context (such as what has just
been hinted at here) were extensively discussed, some key issues that arise with retrenchment were described, and some
case studies were explored. We will not repeat all that here. Instead, this paper is concerned with a key technical topic,
composition, and the objective of this paper is to set out definitive technical results on compositions of retrenchments,
treating retrenchment purely as a mathematical theory, and leaving aside for contemplation in other places (e.g. in [11]
and elsewhere), consideration of its fitness for purpose for any particular system development objective.

The heart of retrenchment is the operation proof obligation (PO), which demands that the relationship between
corresponding operations at adjacent levels of abstraction be put into a particular first order shape. The shape is
a judicious heuristic adaptation of commonly occurring shapes for (conventional model based) refinement, got by
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enriching the latter with additional relations, these being intended to permit additional design flexibility. The particular
choice of first order shape is also designed to allow some interworking between the refinement and retrenchment
techniques, based purely on their PO shapes.

Focusing on these additional relations, retrenchment becomes a particular data structure, being characterised by
four pieces of data: the retrieve relation G, and on a per-operation basis, the within, output and concedes relations,
POp, OOp, COp. This is in contrast with refinement, which can be characterised in terms of data principally by G,
(though a fairer comparison might be with I/O versions of refinement which have relations also for inputs and outputs;
see e.g. [13]). The richness of the retrenchment data structure, and the unrestricted nature of the various relations that
comprise it, give great scope for expressing non-trivial properties of the related systems by incorporating suitable facts
into these relations. Accordingly, there is considerable systems engineering interest in knowing how the information in
the G, POp, OOp, COp belonging to component retrenchments can combine to give properties of a larger development.
Thus we want to see how the various pieces of retrenchment data transform under different notions of composition,
raising questions of compatibility and associativity.

This paper defines a number of notions of composition and shows that the questions just posed can be answered
positively. Two things are worth emphasising here. The first is that notions of composition for retrenchment do not come
preordained, but are a matter for definition. Especially with retrenchment, even when one considers a fixed ‘kind’ of
composition, it is possible to come up with more than one definition, and different definitions enjoy different properties.
In this paper we will restrict attention to composition mechanisms that are based on straightforward propositional
considerations; these definitions give the easiest route to coherence and associativity. (Alternative definitions, relying
increasingly on semantic input, and giving more focused system descriptions, but being more challenging as regards
associativity, have been explored for vertical composition in [6].)

The second thing is that for every choice of composition mechanism, there are two tasks to attend to. One must
show that the mechanism is sound, i.e. it yields a retrenchment, assuming its ingredients were themselves valid
retrenchments, and, as already noted, one must show associativity, since a composition mechanism that does not
associate is a significantly different beast from one that does. (At minimum, when contemplating a composition of
several entities whose composition law is not associative, one must be very clear about what the different association
orders are saying about the whole, whether generically or on a case by case basis.)

The rest of this paper is as follows. In Section 2 we recall the retrenchment POs, and the corresponding simulation
relation (the latter being concerned with simulation properties between pairs of individual steps). The next few sections
are concerned with specific composition mechanisms. Here, the plan is the same for each style of composition; the
section starts with a statement of what the form of composition is about, then the principal result is given in outline
form, and some discussion of it follows, finally the result is restated in detail and proved. Section 3 covers vertical
composition, the composition of development stages; the main soundness proposition is proved in detail here, allowing
subsequent proofs to be sketched more briefly. Section 4 covers horizontal composition, the sequential composition
of entire operations. Section 5 covers dataflow composition, in which I/O rather than state plays the dominant role.
Section 6 covers synchronous parallel composition. Section 7 covers the asynchronous parallel case. Section 8 covers
fusion composition, allowing the combination of different retrenchments between the same pair of systems. Section
9 examines associativity and related issues of coherence. It is worth delaying a discussion of associativity to this
point in order to take advantage of common aspects of the preceding composition mechanisms. Section 10 covers the
composition of retrenchments with refinements, an essential ingredient in retrenchment/refinement interworking—
technically, this combines the features of a stronger composition and a degenerate vertical composition. Section 11
considers decomposition, not so much as a direct converse to the preceding material but as a way of extracting
more precise operation evolution information from more coarse grained retrenchment data; this is related to preceding
mechanisms as appropriate. Up to this point the paper concentrates on the technical details of the mechanisms involved.
Section 12 broadens the context and briefly indicates application areas in which these various techniques can be of
benefit. Section 13 concludes.

2. Retrenchment: POs and simulation

In this section we give our basic definitions and notations. We deal with a pair of systems in a development hierarchy,
an abstract system Abs and a concrete one Conc, to be related by a retrenchment. The abstract system has a set of
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operation names OpsA, with typical element OpA. An operation OpA works on the abstract state space U having
typical element u (the before-state), and on an input space IOpA with typical element i. OpA will produce an after-state
typically written u′ and once more in U, and an output o drawn from an output space OOpA . Initial states satisfy
the predicate InitA(u′). We work in a transition system framework, so an operation OpA is given by its transition
or step relation consisting of steps u �(i, OpA, o)−→u′. The set of these steps forms the relation stpOpA(u, i, u′, o).
Aggregating over all of OpsA, we obtain stpA = ⋃

OpA∈OpsAstpOpA, which is the complete transition relation for
the Abs system, and where the union is necessarily disjoint since the relevant OpA name is part of every execution
step.

An execution fragment of the Abs system is a finite or infinite sequence of contiguous steps, written [u0
�(i0, OpA,0, o1)−→u1 �(i1, OpA,1, o2)−→u2. . .], and drawn from stpA. An execution fragment such that InitA(u0)

holds is called an execution sequence. An abstract state u is reachable, iff it is the last state of some execution sequence.
At the concrete level we have a similar setup. The operation names are OpC ∈ OpsC. States are v ∈ V, inputs

j ∈ JOpC , outputs p ∈ POpC . Initial states satisfy InitC(v′). Transitions are v �(j, OpC, p)−→v′, elements of the step
relation stpOpC(v, j, v′, p).

2.1. Proof obligations

Given the above context, a(n output) retrenchment from Abs to Conc is defined by three facts. Firstly, OpsA ⊆ OpsC,
i.e. to each abstract operation there corresponds a concrete operation which we will assume has the same name. The
inclusion can be proper so the converse need not hold.1 Secondly, we have a collection of relations as follows: there
is a retrieve relation G(u, v) between abstract and concrete state spaces; and there is a family of within, output, and
concedes relations for each OpA ∈ OpsA : POp(i, j, u, v), OOp(o, p; u′, v′, i, j, u, v) and COp(u′, v′, o, p; i, j, u, v)

respectively. These relations are over the variables shown, i.e. the within relations involve the inputs and before-states,
while the output and concedes relations involve predominantly the outputs and after-states, though inputs and before-
states can also feature if required (the semicolon cosmetically separating these additional possibilities). The relations
are collectively referred to as the retrenchment data. Note that we suppress the ‘A’ and ‘C’ subscripts on Op in these
relations since they concern both levels of abstraction equally. Thirdly, a collection of properties (the proof obligations
or POs) must hold. The initial states must satisfy:

InitC(v′) ⇒ (∃ u′ • InitA(u′) ∧ G(u′, v′)) (2.1)

and for every corresponding operation pair OpA and OpC, the abstract and concrete step relations must satisfy the
operation PO:

G(u, v) ∧ POp(i, j, u, v) ∧ stpOpC(v, j, v′, p)

⇒ (∃ u′, o • stpOpA(u, i, u′, o) ∧ ((G(u′, v′) ∧ OOp(o, p; u′, v′, i, j, u, v)) ∨ COp(u′, v′, o, p; i, j, u, v)))

(2.2)

In [11] the contrast between primitive retrenchment (which has no output relations OOp) and output retrenchment
(which does, as here) was discussed at length, underlining the algebraic utility of the latter. In this paper, we will use
the output form, noting that all the results obtained, translate to the primitive form by folding in the universal relation
true for all occurrences of output relations OOp. Henceforth we will refer to output retrenchment as just retrenchment.

2.2. The simulation relation

For an OpA ∈ OpsA, an important counterfoil to the operation PO is the operation’s simulation relation. This holds
for an abstract step u �(i, OpA, o)−→u′ and a corresponding concrete step v �(j, OpC, p)−→v′, the two steps being in
simulation, iff:

G(u, v) ∧ POp(i, j, u, v) ∧ stpOpC(v, j, v′, p) ∧ stpOpA(u, i, u′, o)

∧ ((G(u′, v′) ∧ OOp(o, p; u′, v′, i, j, u, v)) ∨ COp(u′, v′, o, p; i, j, u, v)) (2.3)

1 This confirms that the ‘A’ and ‘C’ subscripts on operation names are meta level tags. We suppress them when it is convenient to do so and it
does not cause confusion.
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holds. We write this succinctly as (u �(i, OpA, o)−→u′)�1(v �(j, OpC, p)−→v′), where the retrenchment data, G, POp,

OOp, COp, are understood. Strict simulation, written (u �(i, OpA, o)−→u′)�S1(v �(j, OpC, p)−→v′), folds COp = false
into (2.3).

In the retrenchment context, the simulation relation is best approached as something to be calculated in an ad
hoc manner. In particular, since all the relations involved in (2.2) are in principle partial, and the consequents of the
operation POs contain COp disjunctively while the antecedents contain POp conjunctively, the prospects for sequentially
composing steps in simulation via a normal inductive technique are greatly reduced.

Thus, given a pair of steps s in Abs and t in Conc which satisfy (2.3), then s may or may not have a step s′ that
can immediately follow it. If it has, then such an s′ may or may not be simulable. And if there is such a simulable s′
simulated by t ′ say, there is no guarantee that any such t ′ can be concatenated with t to form an execution fragment.
One can just as well apply the same reasoning starting with t instead of s. And both arguments can be run backwards
for predecessors of s and t . Simulation clearly becomes a much more complex phenomenon than in refinement.

Evidently, deriving a stepwise simulation result, stating that each concrete execution sequence [v0 �(j0, OpC,0, p1)−→
v1 �(j1, OpC,1, p2)−→v2. . .] has an abstract execution sequence [u0 �(i0, OpA,0, o1)−→u1 �(i1, OpA,1, o2)−→u2. . .] with
each pair of corresponding steps in simulation, becomes impractical by conventional means. Proof techniques more
directly aimed at termination, such as finite inductions controlled by a decreasing variant function with values in a well
founded set, are more likely to yield positive results for those fragments of behaviour that are in simulation.

Note that (2.3) treats Abs and Conc symmetrically, in contrast with the asymmetric nature of the PO (2.2). For
systems Abs and Conc in retrenchment, the two formulations are equivalent in the sense that whenever the antecedents
of the PO are valid, then the corresponding simulation relation can be demonstrated (by definition); and conversely if
the simulation relation holds, then the antecedents of the PO obviously do also. As with refinement, the PO is mainly
a means of establishing the simulation relation, and the ‘don’t care’ interpretation, when the antecedents of the PO
implication are false, is of little interest.

3. Vertical composition

Suppose we have an abstract system Abs, which is transmuted via a retrenchment to a concrete system Conc, and
that Conc is in turn transmuted via a further retrenchment to a (say) implementation system Imp. If we assume the
granularity of the individual transitions in these models does not change, how are Abs and Imp related? On the tacit
(though by no means mandatory) assumption that a retrenchment is accompanied by a move towards implementability,
and depicting such moves vertically, the relationship between Abs and Imp is a retrenchment which is a composition of
the previous two, their vertical composition. If the retrenchment data for the first retrenchment are subscripted ‘1’ and
for the second ‘2’, we will subscript the composed data ‘(1,2)’. Fig. 1 illustrates this, for a more symmetric notation.

In outline, the vertically composed retrenchment data are as follows:

G(1,2) ≡ G1
o
9G2 (3.1)

POp,(1,2) ≡ (G1 ∧ POp,1)
o
9(G2 ∧ POp,2) (3.2)

OOp,(1,2) ≡ OOp,1
o
9OOp,2 (3.3)

Sys1

Sys2

Sys0

G1, {POp,1, OOp,1, COp,1}

G2, {POp,2, OOp,2, COp,2}

G(1,2), {POp,(1,2), OOp,(1,2), COp,(1,2)}

Fig. 1. Vertical composition.
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COp,(1,2) ≡ (G′
1∧OOp,1

o
9 COp,2) ∨ (COp,1

o
9 G′

2∧OOp,2) ∨ (COp,1
o
9 COp,2) (3.4)

In (3.1)–(3.4) the forward relational composition o
9 is via the relevant variables of the intermediate system. Thus the

composed retrieve relation is straightforwardly the composition of the two retrieves; likewise for the composed output
relation. The composed within relation is the composition of the two withins, but strengthened by the composed retrieve.
Lastly the composed concession has the most complex form: either the after-state retrieve and output relations for the
first retrenchment, composed with the concession for the second holds; or the converse holds; or the composition of
the two concessions holds.

If one regards the concession as somehow capturing ‘exceptional’ behaviour, then the composed concession has
a shape that we might expect: in the presence of two system development steps, either the first alone might have an
exception, or the second alone might, or both might. On the other hand, to have ‘non-exceptional’ behaviour, we would
need both steps to be non-exceptional, as the composed output relation demands. Next is a precise statement of the
composition.

Proposition 3.1. Let Sys0 (with variables u0, i0, o0) be retrenched to Sys1 (with variables u1, i1, o1) using G1,

{P Op,1,OOp,1,COp,1|Op ∈ Ops0}, and Sys1 be retrenched to Sys2 (with variables u2, i2, o2) using G2, {POp,2,

OOp,2, COp,2|Op ∈ Ops1}. Then Sys0 is retrenched to Sys2 using retrieve, within, and concedes relations G(1,2),

{POp,(1,2), OOp,(1,2), COp,(1,2)|Op ∈ Ops0}, where

G(1,2)(u0, u2) ≡ [∃ u1 • G1(u0, u1) ∧ G2(u1, u2)] (3.5)

POp,(1,2)(i0, i2, u0, u2)

≡ [∃ u1, i1 • G1(u0, u1) ∧ G2(u1, u2) ∧ POp,1(i0, i1, u0, u1) ∧ POp,2(i1, i2, u1, u2)] (3.6)

OOp,(1,2)(o0, o2; u′
0, u

′
2, i0, i2, u0, u2)

≡ [∃ u′
1, o1, u1, i1 • OOp,1(o0, o1; u′

0, u
′
1, i0, i1, u0, u1) ∧ OOp,2(o1, o2; u′

1, u
′
2, i1, i2, u1, u2)] (3.7)

COp,(1,2)(u
′
0, u

′
2, o0, o2; i0, i2, u0, u2)

≡ [∃ u′
1, o1, u1, i1 •

(G1(u
′
0, u

′
1) ∧ OOp,1(o0, o1; u′

0, u
′
1, i0, i1, u0, u1) ∧ COp,2(u

′
1, u

′
2, o1, o2; i1, i2, u1, u2))

∨ (COp,1(u
′
0, u

′
1, o0, o1; i0, i1, u0, u1) ∧ G2(u

′
1, u

′
2) ∧ OOp,2(o1, o2; u′

1, u
′
2, i1, i2, u1, u2))

∨ (COp,1(u
′
0, u

′
1, o0, o1; i0, i1, u0, u1) ∧ COp,2(u

′
1, u

′
2, o1, o2; i1, i2, u1, u2))] (3.8)

Proof. To show we have a retrenchment, we must show that the POs for the composed retrenchment follow from the
POs for the individual ones: the initialisation PO, Init (u′

2) ⇒ (∃ u′
0 • Init (u′

0) ∧ G(1,2)(u
′
0, u

′
2)), follows immediately

by composing the individual initialisation POs.
For the operation PO, let us assume (3.5), (3.6), and a step u2 �(i2, Op, o2)−→u′

2 for some operation Op of Sys2
such that Op ∈ Ops0. Now (3.5) and (3.6) imply there are u1, i1 such that G2(u1, u2) ∧ POp,2(i1, i2, u1, u2) holds,
so the second retrenchment implies that there are u′

1, o1 for which there is a Sys1 step u1 �(i1, Op, o1)−→u′
1, for which

(G2(u
′
1, u

′
2) ∧ OOp,2(o1, o2; . . .)) ∨ COp,2(u

′
1, u

′
2, o1, o2; . . .) holds. Using the u0, i0 from (3.5), (3.6), and the step

u1 �(i1, Op, o1)−→u′
1, we repeat the argument to deduce the existence of u′

0, o0 and a Sys0 step u0 �(i0, Op, o0)−→u′
0

for which (G1(u
′
0, u

′
1) ∧ OOp,1(o0, o1; . . .)) ∨ COp,1(u

′
0, u

′
1, o0, o1; . . .) holds. So from (3.5), (3.6), and the step

u2 �(i2, Op, o2)−→u′
2, we have deduced the u0 �(i0, Op, o0)−→u′

0 step such that (∃ u′
1, o1, u1, i1 • ((G′

1 ∧ OOp,1) ∨
COp,1) ∧ ((G′

2 ∧ OOp,2) ∨ COp,2)) holds. A little boolean algebra turns ((G′
1 ∧ OOp,1) ∨ COp,1) ∧ ((G′

2 ∧ OOp,2) ∨
COp,2) into ((G′

(1,2) ∧ OOp,(1,2)) ∨ COp,(1,2)), where G′
(1,2), OOp,(1,2) and COp,(1,2) are G′

(1,2), OOp,(1,2) and
COp,(1,2) without their existential quantifications. And since (∃ . . . • (A ♣ B)) ⇒ (∃ . . . • A) ♣ (∃ . . . • B) where
♣ ∈ {∧, ∨}, we infer that (∃ . . . • ((G′

(1,2) ∧ OOp,(1,2)) ∨ COp,(1,2))) implies ((G′
(1,2) ∧ OOp,(1,2)) ∨ COp,(1,2)). So

the operation PO is valid for the composed retrenchment with vertical composition defined by (3.5)–(3.8). �

4. Horizontal composition

Suppose we have abstract and concrete systems Abs and Conc, which are related by a retrenchment given by the
usual data. Suppose we have an abstract operation OpA,1 followed by another abstract operation OpA,2 (which is to
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u -(i1, OpA,1, o1)-› u -(i2, OpA,2, o2)-› u′

v -(j1, OpC,1, p1)-› v -(j2, OpC,2, p2)-› v′

Fig. 2. Horizontal composition.

say that their relational composition OpA,1; OpA,2 is non-empty). Suppose that OpA,1 is retrenched to OpC,1 and that
OpA,2 is retrenched to OpC,2. Under what conditions is OpA,1; OpA,2 retrenched to OpC,1; OpC,2, and in particular,
what are the appropriate retrenchment data for these compound operations? That is the problem addressed by the
horizontal composition of retrenchments.2 See Fig. 2.

The discussion in Section 2.2 argued that the retrenchment PO was closely related to the appropriate simulation
relation, and moreover, that the nature of retrenchment precluded the naive sequential composition of retrenchment
simulation squares. Therefore the reader should be alert to the possibility that the agenda of horizontal composition of
retrenchments is fraught with danger. In this section we give a composition law featuring a construction strong enough
to exclude the dangerous cases.

If the retrenchment data for the first retrenchment are subscripted ‘1’ and for the second ‘2’, we will subscript the
composed data ‘(Op,1;Op,2)’. In outline, the horizontally composed retrenchment data are as follows:

G(Op,1;Op,2) ≡ G (4.1)

P(Op,1;Op,2) ≡ POp,1 ∧ G ∧ wp(�1(Op1), (G ∧ POp,2)) (4.2)

O(Op,1;Op,2) ≡ OOp,1
o
9OOp,2 (4.3)

C(Op,1;Op,2) ≡ (G′
1∧OOp,1

o
9 COp,2) ∨ (COp,1

o
9 G′

2∧OOp,2) ∨ (COp,1
o
9 COp,2) (4.4)

In (4.1)–(4.4), we see that the output and concedes relations have the same form as in (3.1)–(3.4); however this time,
the forward relational composition o

9 concerns the intermediate abstract and concrete state variables shared between the
two consecutive operations (as the common after-state of the first and before-state of the second). The retrieve relation
is just the common one. The most complex ingredient of the composed retrenchment data is the within relation. This
asserts not only the within relation of the first operation (together with the retrieve relation), but also the weakest
precondition (on the before-states and inputs of the first operation) that guarantees that both the abstract and concrete
first operation yield results that are certain to fall into the within and retrieve relation for the second operation. The
detailed results now follow, including some further elaborations.

Proposition 4.1. Let OpA,1, (with variables u, i1, o1), be retrenched to OpC,1, (with variables v, j1, p1), via
G(u, v), POp,1(i1, j1, u, v), OOp,1(o1, p1; u′, v′, i1, j1, u, v), COp,1(u

′, v′, o1, p1; i1, j1, u, v), and let OpA,2, (with
variables u, i2, o2), be retrenched to OpC,2, (with variables v, j2, p2), via G(u, v), POp,2(i2, j2, u, v), OOp,2(o2, p2;
u′, v′, i2, j2, u, v), COp,2(u

′, v′, o2, p2; i2, j2, u, v).
Then OpA,1; OpA,2 (with variables u, [i1, i2], [o1, o2]), is retrenched to OpC,1; OpC,2 (with variables v, [j1, j2],

[p1, p2]), via G(u, v) and

P(Op,1;Op,2)([i1, i2], [j1, j2], u, v)

≡ [POp,1(i1, j1, u, v) ∧ G(u, v) ∧ wp(�1(Op1), (G(u, v) ∧ POp,2(i2, j2, u, v)))] (4.5)

where

wp(�1(Op1), (G(u, v) ∧ POp,2(i2, j2, u, v)))

≡ {(i1, j1, u, v)|(∀ u, o1, v, p1 •
(u �(i1, OpA,1, o1)−→u)�1(v �(j1, OpC,1, p1)−→v) ⇒ G(u, v) ∧ POp,2(i2, j2, u, v))} (4.6)

2 So unlike vertical composition, it does not directly build a third retrenchment between systems out of two existing retrenchments between
systems. Rather it is related to simulation, as we shall see. The two operations discussed could even come from two different retrenchments sharing
the same state spaces.
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O(Op,1;Op,2)([o1, o2], [p1, p2]; u′, v′, [i1, i2], [j1, j2], u, v)

≡ [∃ u, v • OOp,1(o1, p1; u, v, i1, j1, u, v) ∧ OOp,2(o2, p2; u′, v′, i2, j2, u, v)] (4.7)

C(Op,1;Op,2)(u
′, v′, [o1, o2], [p1, p2]; [i1, i2], [j1, j2], u, v)

≡ [∃ u, v • (G(u, v) ∧ OOp,1(o1, p1; u, v, i1, j1, u, v) ∧ COp,2(u
′, v′, o2, p2; i2, j2, u, v))

∨ (COp,1(u, v, o1, p1; i1, j1, u, v) ∧ G(u′, v′) ∧ OOp,2(o2, p2; u′, v′, i2, j2, u, v))

∨ (COp,1(u, v, o1, p1; i1, j1, u, v) ∧ COp,2(u
′, v′, o2, p2; i2, j2, u, v))] (4.8)

Proof sketch. We abbreviate P(Op,1;Op,2) to P(1;2) etc. Suppose we have a transition of OpC,1; OpC,2, v �(j1, OpC,1,

p1)−→v �(j2, OpC,2, p2)−→v′, and suppose that G(u, v) ∧ P(1;2)([i1, i2], [j1, j2], u, v) holds. Since P(1;2) implies
POp,1(i1, j1, u, v) ∧ G(u, v), we can use the operation PO for Op1 and v �(j1, OpC,1, p1)−→v in the usual way, and
get u �(i1, OpA,1, o1)−→u, for which (G(u, v) ∧ OOp,1(o1, p1; . . .)) ∨ COp,1(u, v, o1, p1; . . .) holds. But this means
that (u �(i1, OpA,1, o1)−→u)�1(v �(j1, OpC,1, p1)−→v) holds, so by (4.5) and (4.6), G(u, v) ∧ POp,2(i2, j2, u, v)

holds also. So the antecedents for the operation PO for Op2 and v �(j2, OpC,2, p2)−→v′ hold, which gives us
u�(i2, OpA,2, o2)−→u′, for which (G(u′, v′) ∧ OOp,2(o2, p2; . . .)) ∨ COp,2(u

′, v′, o2, p2; . . .) holds. We now combine
the consequents of the two POs, much as in Proposition 3.1. �

If we employ strict simulation �S1 instead of �1 in (4.6), which gives:

wp(�S1(Op1), (G(u, v) ∧ POp,2(i2, j2, u, v)))

≡ {(i1, j1, u, v)|(∀ u, o1, v, p1 •
(u �(i1, OpA,1, o1)−→u)�S1(v �(j1, OpC,1, p1)−→v) ⇒ G(u, v) ∧ POp,2(i2, j2, u, v))} (4.9)

then Proposition 4.1 simplifies.

Corollary 4.2. Let �1 be replaced by �S1 in Proposition 4.1. Then the composition reduces to (4.5) (with
wp(�S1(Op1), . . .) instead of wp(�1(Op1), . . .)), (4.7), and

C(Op,1;Op,2)(u
′, v′, [o1, o2], [p1, p2]; [i1, i2], [j1, j2], u, v)

≡ [∃ u, v • (G(u, v) ∧ OOp,1(o1, p1; u, v, i1, j1, u, v) ∧ COp,2(u
′, v′, o2, p2; i2, j2, u, v))] (4.10)

Proposition 4.1 can be viewed as yielding a small stepwise simulation result (cf. Section 2.2), except that in stepwise
simulation, one wants to assume at the outset the concrete execution fragment and attendant hypotheses, including in
particular a suitable within relation, while in Proposition 4.1, the composed within relation emerges as a joint property
calculated from the two retrenched operations via (4.5). So in Proposition 4.1 P(1;2) is not a part of the antecedent of
the main inference, but a part of the consequent.

Proposition 4.1 enforces some strong conditions via the (∀�S1 ⇒ G ∧ POp,2) structure in (4.6). If we seek to
weaken these, the prospects are limited. Looking to the operation PO structure, suppose we replace wp(�1(Op1), . . .)

in (4.5) by

PO(Op1, (G(u, v) ∧ POp,2(i2, j2, u, v)))

≡ {(i1, j1, u, v)|(∀ v, p1 • ∃ u, o1 •
(u �(i1, OpA,1, o1)−→u)�1(v �(j1, OpC,1, p1)−→v) ∧ G(u, v) ∧ POp,2(i2, j2, u, v))} (4.11)

The resulting law of horizontal composition can be proved sound, since the proof of Proposition 4.1 can be suitably
modified. However it is not associative, as illustrated in the following counterexample adapted from [16].

Counterexample 4.3. Let Abs be retrenched to Conc, where both state spaces are {a, b}, there is no I/O, and there
are three common operations, Op1, Op2, Op3. Consider Fig. 3. The transitions for Op1, Op2, Op3 are as shown. In
particular Op3 is a skip in both systems, Op2 is functional in both systems, and the only nondeterminism occurs in
the Abs Op1. The vertical lines show G which is the identity on {a, b}; and for all three operations, G = POpi

. The
only nontrivial concession is for Op2 on state b, where it says that the Abs transition can go to a, whereas the Conc
transition skips.
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Fig. 3. Weaker horizontal composition counterexample.

We now find the following. Firstly, P(2;3) is just {(a, a)} since the Abs and Conc transitions of Op2 from b do not
jointly land within POp,3; hence P(1;(2;3)) is empty since a is not in the range of the Conc Op1.

Secondly, P(1;2) is {(a, a), (b, b)} since (b, b) is in POp,2 and both Abs and Conc Op1 map both a and b to b; hence
(b, b) is in P((1;2);3) since (Op1; Op2) in both Abs and Conc skips on b, and (b, b) is in POp,3. Thus P(1;(2;3)) differs
from P((1;2);3).

If we weaken further by making the ∀ v, p1 in (4.11) existential too, then soundness itself fails, as the reader can
readily check.

5. Dataflow composition

Dataflow composition is an adaptation of horizontal composition in which the role of the state is eliminated. Instead
of identifying the after-state of the first operation with the before-state of the second operation, the output of the first
operation is identified with the input of the second operation, as in pipelining.

Thus in dataflow composition, the I/O plays the role of state. Abstract steps look like ∗ �(i, OpA, o)−→∗, where ∗ is
the only element of a dummy one-point state space, or even more simply (i, OpA, o). See Fig. 4. This obviates the need
for any retrieve relation G(u, v). Now a small subtlety emerges. In the output retrenchment operation PO, (2.2), it is
clear that G needs to default to true. However in the primitive retrenchment operation PO, given by setting the output
relation to true in (2.2), setting G to true also, makes the PO (close to) vacuous, since, aside from a joint reachability
criterion, the consequent of the PO is unable to assert anything. On the other hand defaulting G to false also trivialises
the PO since now the whole antecedent becomes false. Thus for primitive retrenchment, we have to default G to true
in conjunctive contexts, and to false in disjunctive ones. (Of course only the former occur in the output retrenchment
PO.)

If the retrenchment data for the first retrenchment are subscripted ‘1’ and for the second ‘2’, we will subscript the
composed data ‘(Op, 1>Op, 2)’. The absence of state also makes it convenient to assume that the outputs of the first
pair of operations fall into the within relation of the second pair, rather than to calculate sufficient conditions for that
to be the case – so that is the perspective from which the results on dataflow composition are designed. Taking care to
plug O into I as stated, we get a simplified form of Proposition 4.1.

Proposition 5.1. Let OpA,1, (with variables i1, o1), be retrenched to OpC,1, (with variables j1, p1), via POp,1(i1, j1),

OOp,1(o1, p1; i1, j1), COp,1(o1, p1; i1, j1), and let OpA,2, (with variables i2, o2), be retrenched to OpC,2, (with
variables j2, p2), via POp,2(i2, j2), OOp,2(o2, p2; i2, j2), COp,2(o2, p2; i2, j2). Suppose that

(OOp,1(o1, p1; i1, j1) ∨ COp,1(o1, p1; i1, j1)) ∧ (o1 = i2) ∧ (p1 = j2) ⇒ POp,2(i2, j2) (5.1)

∗ -(i1, OpA,1, o1)-› ∗ -(i2, OpA,2, o2)-› ∗

∗ -(j1, OpC,1, p1)-› ∗ -(j2, OpC,2, p2)-› ∗

Fig. 4. Dataflow composition.
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Then OpA,1; OpA,2 (with variables i1, o2), is retrenched to OpC,1; OpC,2 (with variables j1, p2), via

P(Op,1>Op,2)(i1, j1) ≡ [POp,1(i1, j1)] (5.2)

O(Op,1>Op,2)(o2, p2; i1, j1) ≡ [∃ a, c • OOp,1(a, c; i1, j1) ∧ OOp,2(o2, p2, a, c)] (5.3)

C(Op,1>Op,2)(o2, p2; i1, j1)

≡ [∃ a, c • (OOp,1(a, c; i1, j1) ∧ COp,2(o2, p2, a, c))

∨ (COp,1(a, c; i1, j1) ∧ OOp,2(o2, p2, a, c))

∨ (COp,1(a, c; i1, j1) ∧ COp,2(o2, p2, a, c))] (5.4)

Proof sketch. This follows very much the structure of Proposition 4.1; (5.1) ensures that a more complex composed
within relation like (4.5) is not needed, and reasoning about states is replaced by reasoning about I/O, and the one point
rule. �

Note that the primitive version of the above behaves well, in that when O is erased, (5.4) reduces to just COp,1 ∧
COp,2 by absorption.

6. Synchronous parallel composition

In synchronous parallel composition, two separate retrenchments between two separate pairs of systems, with some
identifiable operation name pairs (see Fig. 5), but with separate state and I/O spaces, are brought together in lockstep.
The state space is a cartesian product (as are the I/O spaces for identifiable pairs), and identically named operations
from the two systems each act in their own component of the product.

If the retrenchment data for the first retrenchment are subscripted ‘1’ and for the second ‘2’, we will subscript the
composed data ‘(1|2)’. In outline, the basic idea is simple. Operation names common to both systems are defined to
work in lockstep, while operation names exclusive to one or other system are defined to work in lockstep with the
identity on the other system. For the abstract systems we can thus write this as

Op(1|2),A ≡
⎧⎨
⎩

Op1,A ∧ Op2,A if Op ∈ Ops1,A ∩ Ops2,A
Op1,A ∧ id2,A if Op ∈ Ops1,A − Ops2,A
id1,A ∧ Op2,A if Op ∈ Ops2,A − Ops1,A

(6.1)

with a similar definition for the concrete case. Initialisation of the composition is just the joint initialisation of the two
components. In outline, the composed retrenchment data for the composition turns out to be:

G(1,2) ≡ G1 ∧ G2 (6.2)

POp,(1|2) ≡

⎧⎪⎨
⎪⎩

POp,1 ∧ POp,2 if Op ∈ Ops1,A ∩ Ops2,A

POp,1 if Op ∈ Ops1,A − Ops2,A

POp,2 if Op ∈ Ops2,A − Ops1,A

(6.3)

Ops2,AOps1,A

Ops2,COps1,C

Fig. 5. Synchronous parallel composition.
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OOp,(1|2) ≡

⎧⎪⎨
⎪⎩

OOp,1 ∧ OOp,2 if Op ∈ Ops1,A ∩ Ops2,A

OOp,1 if Op ∈ Ops1,A − Ops2,A

OOp,2 if Op ∈ Ops2,A − Ops1,A

(6.4)

COp,(1|2) ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(G′
1 ∧ OOp,1 ∧ COp,2) ∨ (COp,1 ∧ G′

2 ∧ OOp,2) ∨ (COp,1 ∧ COp,2)

if Op ∈ Ops1,A ∩ Ops2,A

COp,1 if Op ∈ Ops1,A − Ops2,A

COp,2 if Op ∈ Ops2,A − Ops1,A

(6.5)

The above is easy to understand. The composed retrieve relation is just the two component retrieve relations, each
acting in its own state space. For operation names common to both systems, the remaining retrenchment data have a
form that is by now familiar from previous compositions, while for exclusive operation names, the retrenchment data
is just that for the system in question, since retrenchments for identity operations need not be other than trivial. The
following detailed result is now easy to prove.

Proposition 6.1. Let Sys1,A (with variables u1, i1, o1) be retrenched to Sys1,C (with variables v1, j1, p1) using
G1, {POp,1, OOp,1, COp,1|Op ∈ Ops1,A}, and Sys2,A (with variables u2, i2, o2) be retrenched to Sys2,C (with vari-
ables v2, j2, p2) using G2, {POp,2, OOp,2, COp,2|Op ∈ Ops2,A}. Let Sys(1|2),A have state variable (u1, u2) valued in
the appropriate product space, initial states satisfying:

Init(1|2),A(u′
1, u

′
2) ≡ [Init1,A(u′

1) ∧ Init2,A(u′
2)] (6.6)

and let the operations of Sys(1|2),A be given by

(u1, u2) �((i1, i2), Op, (o1, o2))−→(u′
1, u

′
2) iff

u1 �(i1, Op, o1)−→u′
1 ∧ u2 �(i2, Op, o2)−→u′

2 ∧ Op ∈ Ops1,A ∩ Ops2,A (6.7)

(u1, u2) �(i1, Op, o1)−→(u′
1, u

′
2) iff

u1 �(i1, Op, o1)−→u′
1 ∧ u2 = u′

2 ∧ Op ∈ Ops1,A − Ops2,A (6.8)

(u1, u2) �(i2, Op, o2)−→(u′
1, u

′
2) iff

u1 = u′
1 ∧ u2 �(i2, Op, o2)−→u′

2 ∧ Op ∈ Ops2,A − Ops1,A (6.9)

Likewise let Sys(1|2),C have state variable (v1, v2), with initial states satisfying:
Init(1|2),C(v′

1, v
′
2) ≡ [Init1,C(v′

1) ∧ Init2,C(v′
2)] (6.10)

and operations given by

(v1, v2) �((j1, j2), Op, (p1, p2))−→(v′
1, v

′
2) iff

v1 �(j1, Op, p1)−→v′
1 ∧ v2 �(j2, Op, p2)−→v′

2 ∧ Op ∈ Ops1,C ∩ Ops2,C (6.11)

(v1, v2) �(j1, Op, p1)−→(v′
1, v

′
2) iff

v1 �(j1, Op, p1)−→v′
1 ∧ v2 = v′

2 ∧ Op ∈ Ops1,C − Ops2,C (6.12)

(v1, v2) �(j2, Op, p2)−→(v′
1, v

′
2) iff

v1 = v′
1 ∧ v2 �(j2, Op, p2)−→v′

2 ∧ Op ∈ Ops2,C − Ops1,C (6.13)

Then Sys(1|2),A is retrenched to Sys(1|2),C using retrieve, within, output and concedes relations G(1|2), {POp,(1|2),

OOp,(1|2), COp,(1|2)|Op ∈ Ops1,A ∪ Ops2,A}, where

G(1|2)((u1, u2), (v1, v2)) ≡ [G1(u1, v1) ∧ G2(u2, v2)] (6.14)

and if Op ∈ Ops1,A ∩ Ops2,A then

POp,(1|2)((i1, i2), (j1, j2), (u1, u2), (v1, v2)) ≡ [POp,1(i1, j1, u1, v1) ∧ POp,2(i2, j2, u2, v2)] (6.15)
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OOp,(1|2)((o1, o2), (p1, p2); (u′
1, u

′
2), (v

′
1, v

′
2), (i1, i2), (j1, j2), (u1, u2), (v1, v2))

≡ [OOp,1(o1, p1; u′
1, v

′
1, i1, j1, u1, v1) ∧ OOp,2(o2, p2; u′

2, v
′
2, i2, j2, u2, v2)] (6.16)

COp,(1|2)((u
′
1, u

′
2), (v

′
1, v

′
2), (o1, o2), (p1, p2); (i1, i2), (j1, j2), (u1, u2), (v1, v2))

≡ [(G1(u
′
1, v

′
1) ∧ OOp,1(o1, p1; u′

1, v
′
1, i1, j1, u1, v1) ∧ COp,2(u

′
2, v

′
2, o2, p2; i2, j2, u2, v2))

∨ (COp,1(u
′
1, v

′
1, o1, p1; i1, j1, u1, v1) ∧ G2(u

′
2, v

′
2) ∧ OOp,2(o2, p2; u′

2, v
′
2, i2, j2, u2, v2))

∨ (COp,1(u
′
1, v

′
1, o1, p1; i1, j1, u1, v1) ∧ COp,2(u

′
2, v

′
2, o2, p2; i2, j2, u2, v2))] (6.17)

and if Op ∈ (Ops1,A − Ops2,A) then

POp,(1|2)(i1, j1, (u1, u2), (v1, v2)) ≡ [POp,1(i1, j1, u1, v1)] (6.18)

OOp,(1|2)(o1, p1; (u′
1, u

′
2), (v

′
1, v

′
2), i1, j1, (u1, u2), (v1, v2)) ≡ [OOp,1(o1, p1; u′

1, v
′
1, i1, j1, u1, v1)] (6.19)

COp,(1|2)((u
′
1, u

′
2), (v

′
1, v

′
2), o1, p1; i1, j1, (u1, u2), (v1, v2)) ≡ [COp,1(u

′
1, v

′
1, o1, p1; i1, j1, u1, v1)] (6.20)

and if Op ∈ (Ops2,A − Ops1,A) then

POp,(1|2)(i2, j2, (u1, u2), (v1, v2)) ≡ [POp,2(i2, j2, u2, v2)] (6.21)

OOp,(1|2)(o2, p2; (u′
1, u

′
2), (v

′
1, v

′
2), i2, j2, (u1, u2), (v1, v2)) ≡ [OOp,2(o2, p2; u′

2, v
′
2, i2, j2, u2, v2)] (6.22)

COp,(1|2)((u
′
1, u

′
2), (v

′
1, v

′
2), o2, p2; i2, j2, (u1, u2), (v1, v2)) ≡ [COp,2(u

′
2, v

′
2, o2, p2; i2, j2, u2, v2)] (6.23)

Proof sketch. The initialisation PO is trivial. Besides that, the cases covered by (6.18)–(6.23) are just the individual
retrenchments with some superfluous variables. The lockstep case given by (6.15)–(6.17), has algebra much the same
as that in Proposition 3.1: in Proposition 3.1 conjunction is used to combine the consequents at the two levels of the
composition, while here, conjunction is used to combine the consequents for the two components in lockstep, which,
moreover, is simpler, requiring no quantification. �

7. Asynchronous parallel composition

Given the preceding, it is not hard to imagine a notion of asynchronous parallel composition that works like
the (Ops1,A − Ops2,A) and (Ops2,A − Ops1,A) parts of Proposition 6.1, provided Ops1,A ∩ Ops2,A = ∅. However
this misses a laxer variant, that tolerates one or other of the subsystems being outside the needed antecedents of
Proposition 6.1 which feature the conjunction of the component retrieve relations. The variant we explore here features
the disjunction.

For asynchronous parallel composition if the retrenchment data for the first retrenchment are subscripted ‘1’ and
for the second ‘2’, we will subscript the composed data ‘(1+2)’. In outline, the retrenchment data for asynchronous
parallel composition are

G(1+2) ≡ G1 ∨ G2 (7.1)

POp,(1+2) ≡
{

G1 ∧ POp,1 if Op ∈ Ops1,A − Ops2,A

G2 ∧ POp,2 if Op ∈ Ops2,A − Ops1,A
(7.2)

OOp,(1+2) ≡
{
OOp,1 if Op ∈ Ops1,A − Ops2,A
OOp,2 if Op ∈ Ops2,A − Ops1,A

(7.3)

COp,(1+2) ≡
{
COp,1 if Op ∈ Ops1,A − Ops2,A
COp,2 if Op ∈ Ops2,A − Ops1,A

(7.4)

The detailed result is easily proved.
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Proposition 7.1. Let Sys1,A (with variables u1, i1, o1) be retrenched to Sys1,C (with variables v1, j1, p1) using
G1, {POp,1, OOp,1, COp,1|Op ∈ Ops1,A}, and Sys2,A (with variables u2, i2, o2) be retrenched to Sys2,C (with variables
v2, j2, p2) using G2, {POp,2, OOp,2, COp,2|Op ∈ Ops2,A}. Suppose Ops1,A ∩ Ops2,A = ∅.

Let Sys(1+2),A have state variable (u1, u2) valued in the appropriate product space, initial states satisfying
Init(1+2),A(u′

1, u
′
2) given by the right hand side of (6.6), and let the operations of Sys(1+2),A be given by (6.8),

(6.9). Likewise let Sys(1+2),C have state variable (v1, v2), initial states satisfying Init(1+2),C(v′
1, v

′
2) given by the right

hand side of (6.10), and let the operations of Sys(1+2),C be given by (6.12), (6.13).
Then Sys(1+2),A is retrenched to Sys(1+2),C using retrieve, within, output and concedes relations G(1+2), {POp,(1+2),

OOp,(1+2), COp,(1+2)|Op ∈ Ops1,A ∪ Ops2,A}, where

G(1+2)((u1, u2), (v1, v2)) ≡ [G1(u1, v1) ∨ G2(u2, v2)] (7.5)

and if Op ∈ (Ops1,A − Ops2,A) then

POp,(1+2)(i1, j1, (u1, u2), (v1, v2)) ≡ [G1(u1, v1) ∧ POp,1(i1, j1, u1, v1)] (7.6)

with OOp,(1+2) and COp,(1+2) given by the right hand sides of (6.19), (6.20), and if Op ∈ (Ops2,A − Ops1,A) then

POp,(1+2)(i2, j2, (u1, u2), (v1, v2)) ≡ [G2(u2, v2) ∧ POp,2(i2, j2, u2, v2)] (7.7)

with OOp,(1+2) and COp,(1+2) given by the right hand sides of (6.22), (6.23).

8. Fusion composition

When developing a complex system, it may happen that different retrenchment relationships between the same two
system models may arise. Recalling that for either ♣ ∈ {∧, ∨}, A ⇒ B and C ⇒ D implies A ♣ C ⇒ B ♣ D, yields
a strategy for combining such different retrenchments about the same pair of abstract and concrete systems. See Fig.
6. Both ♣ give two results worth noting, depending on whether or not the two retrenchments share the same retrieve
relation. The more straightforward disjunctive case is given first.

If the retrenchment data for the first retrenchment are subscripted ‘1’ and for the second ‘2’, we will subscript the
composed data ‘(1∨2)’. In outline, the retrenchment data for disjunctive fusion composition is as follows:

G(1∨2)(u, v) ≡ G1 ∨ G2 (8.1)

POp,(1∨2) ≡ (G1 ∨ POp,2) ∧ (POp,1 ∨ G2) ∧ (POp,1 ∨ POp,2) (8.2)

OOp,(1∨2) ≡ (G1 ∨ OOp,2) ∧ (OOp,1 ∨ G2) ∧ (OOp,1 ∨ OOp,2) (8.3)

COp,(1∨2) ≡ COp,1 ∨ COp,2 (8.4)

Conc

Abs

G1, {POp,1, OOp,1, COp,1} G2, {POp,2, OOp,2, COp,2}

G(1∨2), {POp,(1∨2), OOp,(1∨2), COp,(1∨2)}

Conc

Abs

G(1∧2), {POp,(1∧2), OOp,(1∧2), COp,(1∧2)}

⇓

Fig. 6. Conjuctive and disjunctive fusion compositions.
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In (8.1)–(8.4) we see echoes of the familiar shapes that feature in retrenchment composition notions, except back to
front. This time it is the concession that has the simple shape, whereas the within and output relations have the tripartite
shape; all this is due to the disjunctive combination of the retrieve relations in (8.1). If the two retrieve relations happen
to be the same, the more complex formulae simplify: the first two conjuncts in (8.2) and (8.3) are erased.

Proposition 8.1. Let Abs be retrenched to Conc using G1, {POp,1, OOp,1, COp,1|Op ∈ OpsA} (with the usual
variables). LetAbsalso be retrenched toConcusingG2, {POp,2, OOp,2, COp,2|Op ∈ OpsA} (with the usual variables).
Then Abs is retrenched to Conc also via G(1∨2) and {POp,(1∨2), OOp,(1∨2), COp,(1∨2)|Op ∈ OpsA} where

G(1∨2)(u, v) ≡ [G1(u, v) ∨ G2(u, v)] (8.5)

POp,(1∨2)(i, j, u, v)

≡ [(G1(u, v) ∨ POp,2(i, j, u, v))

∧ (POp,1(i, j, u, v) ∨ G2(u, v))

∧ (POp,1(i, j, u, v) ∨ POp,2(i, j, u, v))] (8.6)

OOp,(1∨2)(o, p; u′, v′, i, j, u, v)

≡ [(G1(u
′, v′) ∨ OOp,2(o, p; u′, v′, i, j, u, v))

∧ (OOp,1(o, p; u′, v′, i, j, u, v) ∨ G2(u
′, v′))

∧ (OOp,1(o, p; u′, v′, i, j, u, v) ∨ OOp,2(o, p; u′, v′, i, j, u, v))] (8.7)

COp,(1∨2)(u
′, v′, o, p; i, j, u, v) ≡ [COp,1(u

′, v′, o, p; i, j, u, v) ∨ COp,2(u
′, v′, o, p; i, j, u, v)] (8.8)

Proof sketch. The disjunction of the PO antecedents for the two retrenchments gives (8.5), (8.6). The disjunction of the
consequents combines the existential quantifications, and then the abstract steps via distributivity, after which boolean
algebra gives (8.7), (8.8). �

If the two retrenchments share the same retrieve relation, this simplifies as stated above.

Corollary 8.2. Let G1 = G2 in Proposition 8.1. Then the composition reduces to

POp,(1∨2)(i, j, u, v) ≡ [POp,1(i, j, u, v) ∨ POp,2(i, j, u, v)] (8.9)

OOp,(1∨2)(o, p; u′, v′, i, j, u, v) ≡ [OOp,1(o, p; u′, v′, i, j, u, v) ∨ OOp,2(o, p; u′, v′, i, j, u, v)] (8.10)

COp,(1∨2)(u
′, v′, o, p; i, j, u, v) ≡ [COp,1(u

′, v′, o, p; i, j, u, v) ∨ COp,2(u
′, v′, o, p; i, j, u, v)] (8.11)

Note that we could happily replace one or more of the disjunctions in (8.6) by either disjunct alone or by conjunctions
of them as these just strengthen the antecedents of the relevant PO. Similarly for the RHS of (8.9).

The conjunctive fusion of retrenchments has a more familiar form; we subscript the composed data ‘(1∧2)’. Here
it is in outline form:

G(1∧2) ≡ G1 ∧ G2 (8.12)

POp,(1∧2) ≡ POp,1 ∧ POp,2 (8.13)

OOp,(1∧2) ≡ OOp,1 ∧ OOp,2 (8.14)

COp,(1∧2) ≡ (G1 ∧ OOp,1 ∧ COp,2) ∨ (COp,1 ∧ G2 ∧ OOp,2) ∨ (COp,1 ∧ COp,2) (8.15)

However (8.12)–(8.15) come with a caveat on joint simulability. Here are the details, starting with a preliminary
definition.

Definition 8.3. Let Abs be retrenched to Conc using G1, {POp,1, OOp,1, COp,1|Op ∈ OpsA} (with the usual
variables). Let Abs also be retrenched to Conc using G2, {POp,2, OOp,2, COp,2|Op ∈ OpsA} (with the usual variables).
If for any Op ∈ OpsA and u, v, i, j, v′, p, such that:

G1(u, v) ∧ G2(u, v) ∧ POp,1(i, j, u, v) ∧ POp,2(i, j, u, v) ∧ stpOpC(v, j, v′, p) (8.16)
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holds, we have

∅ /= {(u′, o)|(u �(i, OpA,1, o)−→u′)�1(v �(j, OpC,1, p)−→v′)}
∩ {(u′, o)|(u �(i, OpA,2, o)−→u′)�1(v �(j, OpC,2, p)−→v′)} (8.17)

then we say the two retrenchments from Abs to Conc are close to cosimulating.

Proposition 8.4. Let Abs be retrenched to Conc using G1, {POp,1, OOp,1, COp,1|Op ∈ OpsA} (with the usual
variables). LetAbsalso be retrenched toConcusingG2, {POp,2, OOp,2, COp,2|Op ∈ OpsA} (with the usual variables).
Suppose the two retrenchments from Abs to Conc are close to cosimulating. Then Abs is retrenched to Conc also via
G(1∧2) and {POp,(1∧2), OOp,(1∧2), COp,(1∧2)|Op ∈ OpsA} where

G(1∧2)(u, v) ≡ [G1(u, v) ∧ G2(u, v)] (8.18)

POp,(1∧2)(i, j, u, v) ≡ [POp,1(i, j, u, v) ∧ POp,2(i, j, u, v)] (8.19)

OOp,(1∧2)(o, p; u′, v′, i, j, u, v) ≡ [OOp,1(o, p; u′, v′, i, j, u, v) ∧ OOp,2(o, p; u′, v′, i, j, u, v)] (8.20)

COp,(1∧2)(u
′, v′, o, p; i, j, u, v)

≡ [(G1(u
′, v′) ∧ OOp,1(o, p; u′, v′, i, j, u, v) ∧ COp,2(u

′, v′, o, p; i, j, u, v))

∨ (COp,1(u
′, v′, o, p; i, j, u, v) ∧ G2(u

′, v′) ∧ OOp,2(o, p; u′, v′, i, j, u, v))

∨ (COp,1(u
′, v′, o, p; i, j, u, v) ∧ COp,2(u

′, v′, o, p; i, j, u, v))] (8.21)

Proof sketch. The conjunction of the PO antecedents for the two retrenchments gives (8.18), (8.19). The conjunction of
the consequents exploits the close to cosimulation of the two retrenchments to deduce that whenever the conjunction
of PO antecedents holds for some u, v, i, j, v′, p, a joint witnessing u′, o can be found for the two PO consequents.
Hence the conjunction of existential quantifications can be combined into a single quantification, after which boolean
algebra gives (8.20), (8.21). �

Note that the restriction of the above to the same retrieve relation case, merely removes the need for (8.18), and
simplifies (8.21) in the obvious way, so we do not quote it separately.

The above is, up to a point, reminiscent of the schema calculus of Z, the detailed differences hinging on the precise
lexical mechanisms used to identify (and to keep distinct) various pieces of the two components, as well as the fact that
the Z schema calculus has a wider remit anyway. One can make this analogy more extensive, and thereby bring the
present mechanism closer to synchronous parallel composition too, by allowing state (or other) spaces to overlap3 rather
than coincide exactly, and allowing the sets of operation names to overlap rather than coincide exactly. The notational
ramifications of this are rather cumbersome so we do not go into details. And whereas the disjunctive version of such
a generalised fusion can be carried through relatively straightforwardly, the conjunctive version involves the kind of
additional constraints we saw in Proposition 8.4.

9. Associativity, coherence, stronger compositions

With any notion of composition comes the issue of associativity. Once soundness is proved, associativity reduces to
an algebraic problem of performing the composition two ways and checking the equivalence of the outcomes. We see
that in most of the cases dealt with above, the structural forms of the compositions are very similar, differing in which
variables are identified or not, and which of the identified ones are quantified over. The symmetry of the expressions
derived is a big help in showing associativity. We give the treatment of some typical cases, leaving the rest as obvious
generalisations.

Consider (5.2), which defines P(Op,1>Op,2) as POp,1. Since the first element of a sequence is the same regardless
of the assembly order of the sequence, associativity follows. Similar arguments yield:

3 This means viewing each state (or other) space as a certesian product, and identifying common factors in the overlapping spaces, (on the basis
that these cartesian factors carry the values of lexically identical variables of the two systems, for example).
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Proposition 9.1. The compositions in (5.2), (6.18)–(6.23), (7.6), (7.7), are associative.

Consider (8.5), which defines G(1∨2) as (G1 ∨ G2). Substituting this into G((1∨2)∨3) = (G(1∨2) ∨ G3) yields ((G1 ∨
G2) ∨ G3), equivalent to the other association order, so associativity follows. The same holds if ∨ is replaced by ∧,
and if the variables that occur in the various predicates are made distinct, and/or quantified over in the ways that occur
above, since the fact that we deal with distinct systems/retrenchments etc., enables us to avoid any bound variable
capture problems.

Proposition 9.2. The compositions in (3.5)–(3.7), (4.7), (5.3), (6.6), (6.10), (6.14)–(6.16), (7.5), (8.5), (8.8)–(8.11),
(8.18)–(8.20), are associative.

Consider (8.21). Suppressing the ∧’s to save space, this defines COp,(1∧2) as (G1OOp,1COp,2 ∨ COp,1G2OOp,2 ∨
COp,1COp,2). Since various G’s and O’s occur in this, associativity for COp,(1∧2) depends on the composition
laws for the G’s and O’s, given by (8.18), (8.20). Substituting these, and COp,(1∧2), into COp,((1∧2)∧3) as given
by (G(1∧2)OOp,(1∧2)COp,3 ∨ COp,(1∧2)G3OOp,3 ∨ COp,(1∧2)COp,3) yields, after some working:

COp,((1∧2)∧3) = [G1OOp,1G2OOp,2COp,3 ∨ G1OOp,1COp,2G3OOp,3 ∨ COp,1G2OOp,2G3OOp,3

∨ G1OOp,1COp,2COp,3 ∨ COp,1G2OOp,2COp,3 ∨ COp,1COp,2G3OOp,3

∨ COp,1COp,2COp,3] (9.1)

which is easily seen to be symmetric in the indices 1, 2, 3. Therefore the other association order will yield the same
result. As previously, the use of distinct and/or quantified variables for the cases that occur in previous sections will
not spoil associativity. Neither will the interchange of ∧ and ∨, nor cases where the retrieve relation is the same or
absent.

Proposition 9.3. The compositions in (3.8), (4.8), (4.10), (5.4), (8.6), (8.7), (8.21), are associative.

The above covers everything except (4.5). However it is not hard to see by explicit calculation that the two association
orders for (4.5) yield:

P((1;2);3) = P((1;2);3) = [G1POp,1 ∧ wp(�1(Op1), G2POp,2) ∧ wp(�1(Op1), wp(�1(Op2), G3POp,3))] (9.2)

which relies on the compositionality and associativity of the wp set transformer.

Proposition 9.4. The composition in (4.5) is associative.

With associativity covered for each of the compositions, there arises the additional question of whether the different
composition methods cohere. In other words if two systems are combined using one technique, and the result combined
with a third system using another technique, is the answer equivalent to doing the second composition earlier and the
first composition later? In view of the structural similarity of the composition laws in all the cases examined, and the
inevitable disjointness of the variables quantified over in different compositions, we claim the answer is affirmative,
at least up to natural isomorphisms such as the one needed to identify ((u1, u2), u3) with (u1, (u2, u3)) in Section
6.

In each of the compositions treated, boolean algebra was the guiding light, and led to an easy treatment of asso-
ciativity. However, the presence of the disjunction in the retrenchment PO consequent, and the use of the distributive
law in forming the composed concedes relations, can lead to a rapid proliferation of cases, usually in a composed C

(cf. (9.1)). Many of these need not contain useful facts about the systems of interest. (Their presence is innocuous
provided some top level disjunct of C contains valid information whenever C is needed.) By judicious strengthening
of the output and concedes relations with information from the PO antecedent (in effect bringing the PO closer to
the simulation relation �1) these effects can be controlled. However associativity (and thus inevitably coherence in
general) become more difficult issues. For pure vertical composition, these matters have been studied in some depth in
[6,7]. Given the structural similarities between the various compositions, the theory of stronger compositions for the
other composition techniques will be similar.



224 R. Banach et al. / Journal of Logic and Algebraic Programming 75 (2008) 209–229

10. Composition of retrenchment with refinement

One of the goals of retrenchment is to coexist smoothly and fruitfully with refinement, so that a development process
can get the benefits of both: the strength of reasoning control offered by refinement, together with the expressivity of
model evolution offered by retrenchment. For this we formulate a notion of refinement whose structure is in sympathy
with the POs adopted for retrenchment. Refinement will thus be characterised by a forward simulation criterion, namely
by the usual initialisation PO (2.1), and the following operation PO:

G(u, v) ∧ InOp(i, j) ∧ stpOpC(v, j, v′, p)

⇒ (∃ u′, o • stpOpA(u, i, u′, o) ∧ G(u′, v′) ∧ OutOp(o, p)) (10.1)

This is convenient, as with some mild additional assumptions on InOp, OutOp, the definition can be brought close to
other refinement definitions. We assume for compatibility, that the sets of operations at the abstract and concrete levels
are in 1–1 correspondence.

One can now ask how do such refinements and retrenchments compose? In the case of output retrenchment,
one can view (10.1) as a degenerate retrenchment PO with null concession and suitably restricted POp and OOp,
and then use vertical composition. However this approach does not extend to primitive retrenchment (which has
no OOp relations), or to many other forms, differing in the shape of the defining PO, that can be imagined. We
want a composition policy with refinement that extends to all variants of retrenchment. Therefore we proceed as
follows.

One can see a refinement characterised by (2.1) and (10.1), as providing relations G(u, v), InOp(i, j), OutOp(o, p)

between the state spaces, input spaces, output spaces respectively, at the two levels. One can view these as a translation
mechanism for mapping any predicate W in the abstract (resp. concrete) world to the concrete (resp. abstract) one:
we just take the relational image of W through an appropriate cartesian product of G(u, v), InOp(i, j), OutOp(o, p)

relations. So we use a copy of G(u, v) for each occurrence of a state variable in W , a copy of InOp(i, j) for each
occurrence of an input variable in W , a copy of OutOp(o, p) for each occurrence of an output variable in W . We use
this to fuel the definition of a retrenchment/refinement composition.

Proposition 10.1. Let there be a retrenchment from Abs to Conc (using the usual variables) given by GT, {POp,T,

OOp,T, COp,T|Op ∈ OpsA}. Let there be a refinement from Conc to Imp (the ‘implementation’ system, with vari-
ables w, k, q) given by GF, {InOp,F, OutOp,F|Op ∈ OpsC}. Then there is a retrenchment from Abs to Imp given by
G(T,F ), {POp,(T,F), OOp,(T,F), COp,(T,F)|Op ∈ OpsA}, where

G(T,F)(u, w) ≡ [∃ v • GT(u, v) ∧ GF(v, w)] (10.2)

POp,(T,F)(i, k, u, w) ≡ [∃ v, j • GT(u, v) ∧ GF(v, w) ∧ POp,T(i, j, u, v) ∧ InOp,F(j, k)] (10.3)

OOp,(T,F)(o, q; u′, w′, i, k, u, w)

≡ [∃ v′, p, v, j • OOp,T(o, p; u′, v′, i, j, u, v)

∧ OutOp,F(p, q) ∧ GF(v′, w′) ∧ InOp,F(j, k) ∧ GF(v, w)] (10.4)

COp,(T,F)(u
′, w′, o, q; i, k, u, w)

≡ [∃ v′, p, v, j • COp,T(u′, v′, o, p; i, j, u, v)

∧ GF(v′, w′) ∧ OutOp,F(p, q) ∧ InOp,F(j, k) ∧ GF(v, w)] (10.5)

Proposition 10.2. Let there be a refinement from Pre (the ‘preliminary’ system, with variables t, h, n) to Abs given by
GF, {InOp,F, OutOp,F|Op ∈ OpsA}. Let there be a retrenchment from Abs to Conc (using the usual variables) given by
GT, {POp,T, OOp,T, COp,T|Op ∈ OpsA}. Then there is a retrenchment from Pre to Conc given by G(F,T), {POp,(F,T),

OOp,(F,T), COp,(F,T)|Op ∈ OpsA}, where

G(F,T)(t, v) ≡ [∃ u • GF(t, u) ∧ GT(u, v)] (10.6)

POp,(F,T)(h, j, t, v) ≡ [∃ u, i • GF(t, u) ∧ GT(u, v) ∧ InOp,F(h, i) ∧ POp,T(i, j, u, v)] (10.7)
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OOp,(F,T)(n, p; t ′, v′, h, j, t, v)

≡ [∃ u′, o, u, i • OutOp,F(n, o) ∧ GF(t ′, u′) ∧ InOp,F(h, i) ∧ GF(t, u)

∧ OOp,T(o, p; u′, v′, i, j, u, v)] (10.8)

COp,(F,T)(u
′, w′, o, q; i, k, u, w)

≡ [∃ u′, o, u, i • GF(t ′, u′) ∧ OutOp,F(n, o) ∧ InOp,F(h, i) ∧ GF(t, u)

∧ COp,T(u′, v′, o, p; i, j, u, v)] (10.9)

Proof sketches. The proofs of the above follow the style of Proposition 3.1. Initialisation is trivial. Then one starts with
the lower system, exploits the relevant PO to assert the relevant property of a transition of the intermediate system,
and then proceeds to exploit the other PO. Since there is only one component retrenchment, the forms (10.2)–(10.9)
emerge from a top level case analysis, rather than needing boolean algebra. �

With the basics established, let us restrict to output retrenchment, and, taking a refinement to be a degenerate
retrenchment with false concession, compare the compositions (10.2)–(10.9) with the vertical composition of Section
3. We see that the forms (10.2)–(10.9) differ slightly from those in (3.5)–(3.8) when a false concession is folded in to
the latter. While the retrieve relations and within relations compose identically (overlooking the different signatures
of POp and InOp), the formula for the output relation features additional occurrences of GF ∧ InOp,F ∧ GF (in both
(10.4) and (10.8)) compared with (3.7), and the formula for the concedes relation features additional occurrences of
InOp,F ∧ GF (in both (10.5) and (10.9)) compared with (3.8). These additional occurrences of elements from the PO
antecedent justify viewing the present compositions as stronger vertical compositions. Note that the strengthenings are
as benign as can be, in that both strengthened and unstrengthened forms of (10.4), (10.5) and (10.8), (10.9) lead to the
same simulation relation for the combined retrenchment/refinement. Note furthermore that because both (3.5)–(3.8)
and (10.2)–(10.9) are sound, we have a choice of composition for these cases, underlining again that compositions are
a matter for definition.

The heterogeneous compositions we have defined, indicate that associativity is really a coherence issue here. We
note that the compositions (10.2)–(10.9) are all pure relational compositions, which points to easy associativity. Thus
a refinement composed with a retrenchment composed with a further refinement, reduces to two successive bouts of
relational composition for each constituent relation. Moreover a retrenchment composed with a refinement composed
with a further retrenchment, can be seen as yielding a concession like (9.1), but with occurrences4 of G′

2OOp,2
strengthened by InOp,2G2, and terms containing COp,2 erased; this for either association order.

Proposition 10.3. The compositions (10.2)–(10.9) of retrenchments with refinements are associatively coherent.

11. Decomposition

The counterpart of composition is decomposition. One can search for conditions that capture the inverses of all
the constructions given above. However it is more natural to look for decompositions based on the likely uses of
retrenchment, in particular on its potential for being ‘like refinement except round the edges’ (see [9]). This points
to decomposing operations and retrenchment data round different parts of their activity, primarily by partitioning the
operations’ domains in appropriate ways.

Proposition 11.1. Let there be a retrenchment from Abs to Conc (using the usual variables) given by G, {POp, OOp,

COp|Op ∈ OpsA}. Suppose for Op ∈ OpsA

dom(OpA) = {(u, i)|th ∃ u′, o • stpOpA(u, i, u′, o)} = aOp,1 ∪ aOp,2 ∪ · · · ∪ aOp,KOp
(11.1)

dom(OpC) = {(v, j)|th ∃ v′, p • stpOpC(v, j, v′, p)} = cOp,1 ∪ cOp,2 ∪ · · · ∪ cOp,LOp
(11.2)

4 The after-state prime introduced for clarity.
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Let OpA,k and OpC,l be names for suboperations with step relations as follows:
stpOpA,k

= aOp,k � stpOpA ; stpOpC,l
= cOp,l � stpOpC (11.3)

where � is domain restriction. Then

stpOpA =
⋃

1�k�KOp

stpOpA,k
; stpOpC =

⋃
1�l�LOp

stpOpC,l
(11.4)

Let

POp,kl = {(i, j, u, v) ∈ POp|(u, i) ∈ aOp,k, (v, j) ∈ cOp,l} (11.5)

OOp,kl = {(o, p; . . .) ∈ OOp|stpOpA,k
(u, i, u′, o), stpOpC,l

(v, j, v′, p)} ⊆ O+
Op,kl ⊆ OOp (11.6)

COp,kl = {(u′, v′, o, p; . . .) ∈ COp|stpOpA,k
(u, i, u′, o), stpOpC,l

(v, j, v′, p)} ⊆ C+
Op,kl ⊆ COp (11.7)

Then for all 1 � k � KOp, 1 � l � LOp:
(1) OpA,k is retrenched to OpC,l via G, POp,kl, OOp,kl, COp,kl .
(2) OpA,k is retrenched to OpC,l via G, POp,kl, O

+
Op,kl, C

+
Op,kl .

(3) OpA,k is retrenched to OpC,l via G, POp,kl, OOp, COp.

Proof sketch. That (11.4) holds is immediate. That (1)–(3) hold follows from the original operation PO for Op. �
Note that the unions in (11.1), (11.2) need not be disjoint, though the disjoint case is highly relevant to a decomposition

strategy. A disjunctive fusion composition converse to Proposition 11.1 is worth recording.

Proposition 11.2. Let there be a retrenchment from Abs to Conc (with the usual variables), but using a naming
convention that groups operations into families of suboperations belonging to a main operation name, and allowing
retrenchment data between arbitrary suboperations of main operation names’ abstract and concrete families. Thus the
abstract suboperation names are {OpA,k|1 � k � KOp, Op ∈ OpsA}, and the relevant concrete ones are {OpC,l |1 �
l � LOp, Op ∈ OpsA}. The retrenchment itself is given by G, and {POp,kl, OOp,kl, COp,kl |1 � k � KOp, 1 � l �
LOp, Op ∈ OpsA}, so that each individual suboperation PO holds for all 1 � k � KOp, 1 � l � LOp, Op ∈ OpsA.
For Op ∈ OpsA, define operations OpA, OpC by

stpOpA =
⋃

1�k�KOp

stpOpA,k
; stpOpC =

⋃
1�l�LOp

stpOpC,l
(11.8)

Then for all 1 � k � KOp, 1 � l � LOp:

(1) OpA is retrenched to OpA,k via G = id∪, POp = id∪×I, OOp = id∪×I×∪×O, COp = ∅.
(2) OpA,k is retrenched to OpA

via G = id∪, POp = iddom(OpA,k)−⋃{dom(OpA,k′ )|k′ /=k}, OOp = id∪×I×∪×O, COp = ∅.
(3) Analogous results for the concrete (sub)operations.
(4) OpA is retrenched to OpC (in terms of the original data) via

G, POp = POp,kl � (dom(OpC,l) − ⋃{dom(OpC,l′)|l′ /= l}), OOp,kl, COp,kl .
(5) For Op ∈ OpsA, defining:

POp =
⋃

1�k�KOp,1�l�LOp

POp,kl (11.9)

OOp =
⋃

1�k�KOp,1�l�LOp

OOp,kl (11.10)

COp =
⋃

1�k�KOp,1�l�LOp

COp,kl (11.11)

then OpA is retrenched to OpC via G, POp, OOp, COp.
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Proof sketch. Claims (1)–(3) reduce to obvious refinements. For a given Op, k, l, claim (4) is a composition according
to Proposition 10.1 and Proposition 10.2, of the refinement in (1), the given k, l retrenchment, and the concrete version
of the refinement in (2). Claim (5) follows by disjunctive reasoning, as in Corollary 8.2. �

12. Application areas

In preceding sections, we focused on the technical details of a variety of composition mechanisms for retrenchments.
In this one, we look outwards, to outline the utility of these mechanisms in the system engineering context. We do not
deal with applications in detail, which would unbalance the present paper, rather we talk about applicability in general
terms and point to more detailed work elsewhere.

Vertical composition hardly needs justification of course, as the idea of developing a system by proceeding from the
highest level abstraction towards implementation via incremental stages is such an old one. From a system engineering
point of view, the most salient point as regards propositionally driven retrenchment composition, is the potentially rapid
proliferation of top level disjuncts in composed concessions, of which many can be redundant, as noted in Section
9. The previously cited [6,7] explore this in some detail and offer appropriate remedies. The decompositions treated
in Section 11 can also help to counteract this proliferation, by subdividing operations’ concessions into finer grained
pieces that can be judiciously recombined to avoid ‘junk’.

Horizontal composition, and its close ally the simulation relation, are intriguingly different in retrenchment as
compared with refinement, particularly as regards loss of standard inductive reasoning. The horizontal composition
result that we proved, squeezes the permitted departure points for composed operations, via a fairly stringent composed
within relation.

Since horizontal compositions of the simulation relation can hold even if the departure points do not fall in the
permitted squeezed area, an ad hoc approach for understanding how different parts of two systems in a retrenchment
relationship are able to simulate one another offers the most productive way through the simulation landscape. Finite
inductions, such as are used to establish loop termination for example, come closest to replacing the standard inductions
for horizontal reasoning of refinement. This, and the other results in Section 4 illuminate rather well the nature of the
territory between provable horizontal composition and the simulation relation.

Being a natural outgrowth of horizontal composition, dataflow composition combines neatly with synchronous
parallel composition to give a flexible mechanism for composing development/evolution steps for subcomponents into
a development/evolution step for the system as a whole, for a single pair of abstraction layers, and at the semantic level.
It is not hard to see that if the inputs and outputs of subcomponents are suitably factorised, the subinputs and suboutputs
can be connected up at will to form a wide variety of dataflow networks.5 The technique is most convincing when the
graph of subcomponents is acyclic; cyclic dependencies are best handled at the language level. The application of this
to e.g. circuit design, is not hard to imagine, and has been exploited using the simulation relations of the composed
retrenchments for fault tree extraction [2–5]. There is certainly no reason why other analyses of the simulation relations
of composed retrenchments should not also yield fruitful outcomes.

The asynchronous parallel composition we sketched finds application in the development of combinations of
independent units of functionality, thus being related to promotion in Z terminology [18,19]. The antecedent of
its PO allows for the possibility that some of the components have already passed into a non-simulable condition,
unlike the synchronous version.

Fusion composition is as already noted, reminiscent of the schema calculus of Z (cf. [21, Chapter 17]) but adapted
for retrenchment. Due to its more focused remit in dealing with the relationship between transition systems, there is a
less visible need for an analogue of schema negation; i.e. how interesting can it be to say that there is not a retrenchment
relationship between two steps when retrenchment is already so flexible? A further application of fusion composition
arises in viewpoint composition, in which different retrenchments between two systems focus on different aspects of
their relationship.

The compositions of retrenchments with refinements enable a number of system development scenarios to be cast
as generic algebraic problems, which can be solved once and for all. For example, suppose a system Abs is refined to
an implementation Ref, and subsequently the definition of Abs is evolved to accommodate new requirements, giving

5 We did not pursue this extension in Sections 5 and 6 to avoid notational clutter.
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a retrenched system Ret. Can one do the necessary refinement of Ret to get a new implementation automatically?
The affirmative answer to this question and others like it appears in [14]. Other relevant works are [1,15]. These
constructions, the technical details of which can get surprisingly arduous, all rest on the compositions of retrenchments
with refinements studied in Section 10.

The technical points noted in the last three paragraphs were all key ingredients in the creation of the Tower Pattern,
and its application to the Mondex Electronic Purse development [20]. The tower, introduced in the context of Mondex
in [8] and further exploited for other Mondex requirements issues in [9,10] is the ‘applications nickname’ given to the
various square completion problems solved in [14]. For Mondex, the detailed application of these concepts needed to
be reinforced by the other ideas because of the structure of the original Mondex development.

Finally, the decomposition mechanisms described in the previous section open the door to capturing many aspects
of finegrained requirements reasoning via a selection of retrenchments. In [17] decomposition is combined with the
algebraic techniques just highlighted, to show how a spectrum of requirements issues, falling beyond the usual scope
of refinement, can be both expressed and formally related to one another.

13. Conclusions

In the preceding sections we introduced a variety of composition mechanisms for retrenchments, and examined the
interaction with (a convenient form of) refinement, as well as looking at decomposition via partitions of operations’
domains. It is important to explore a number of these mechanisms in the mutual context that they create for each
other, as composition for retrenchments only rarely reduces to simple composition of relations. Thus while some
components of a retrenchment composition combine by simple relational composition, others combine using a C(1,2) =
(G1C2 ∨ C1G2 ∨ C1C2) shape, and there are other possibilities too, as we saw. The main issues raised, concern
associativity and coherence, and these are best dealt with under a common umbrella. Fortunately, the shapes we
adopted behave well as regards associativity and coherence, within the propositionally based strategy for composition
pursued in this paper.

The latter remark underlines the fact that the choice of a law of composition is exactly that: a choice. Different
choices can lead to different properties, as the discussion of retrenchment/refinement composition showed to a small
extent, and which has been much more extensively explored for vertical composition in [6]. In fact other kinds of
retrenchment than the form investigated in this paper can throw up different criteria that influence the range of choices
available for defining laws of composition. Finally, in the last section, we hope to have sketched enough evidence to
convinced the reader that all the composition mechanisms that we investigated have worthwhile applications to system
engineering.
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