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Abstract 

Van Assche, W., Orthogonal polynomials, associated polynomials and functions of the second kind, Journal of 
Computational and Applied Mathematics 37 (1991) 237-249. 

A survey is given of the interaction between orthogonal polynomials, associated polynomials and functions of 
the second kind with an emphasis on asymptotic results. Various formulas are presented in a unified way in 
terms of Wronskians of solutions of linear recurrence relations. Some of these formulas are classical and go back 
to the previous century, but usually they are hard to locate in the literature. Some new formulas are also given, 
in particular a formula expressing the derivative of an orthogonal polynomial in terms of the orthogonal 
polynomials and the associated polynomials. 

Keywords: Orthogonal polynomials, recurrence relation, asymptotics. 

1. Introduction 

Let p be a probability measure on the real line with an infinite number of points of increase 

and for which all the moments are finite. There exists a unique sequence of orthogonal 
polynomials {p,,(x); n=O, 1,2,...} for which 

j~+)p,(x) d+) = %,,, *, n 2 0, (1.1) 

with 

p,(x)=y,x”+ a**, y,>o. 

These polynomials satisfy a three-term recurrence relation 

%I(4 = an+1I%+1 (4 + &IPnb) + %A-l(X)> n 2 03 (1.2) 
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for which the recurrence coefficients satisfy 

Q =y”-‘>O 
n 

Y, ’ 
b, = 

J 
x&‘(x) d/-+1 E R, 

and with initial values pil( x) = 0 and p,(x) = 1. An interesting result, usually referred to as 
Favard’s theorem [7, Theorem 1.4.41, [8, Theorem 11.1.51, states that for the polynomial solution 
of (1.2) with u,, > 0 and b,, E R and initial conditions P-~(X) = 0, pa(x) = 1, there exists a 
probability measure p so that the orthogonality (1.1) is satisfied. 

Given the sequences { a, > 0; n = 1, 2,. . . } and {b,; n = 0, 1, 2,. . . }, one defines for k E N 

the k th associated polynomials { PA”‘< x); n = 0, 1, 2,. . . } by the recurrence relation 

xpAk’(x) = an+k+lp%(x) + bn+kp!ik’(x) + an+kd%x)T n 2 Oy (1.3) 

with initial conditions 

p?:(x) = 0, pAk’(x) = 1. 

The spectral measure (orthogonality measure) with respect to which these polynomials are 
orthogonal will be denoted by p (k). Notice that for every fixed k the polynomials { pi”_‘,(x); 
n = 0, 1, 2,. . . } form a solution of the recurrence relation (1.2). 

Functions of the second kind { q,(x); n = 0, 1, 2,. . . } are defined by the integral 

P (Y) 
CL(x) = /* d&Y)> x E Q=\supp(II.), (1.4 

where {p,(x); n=0,1,2,...} are the orthogonal polynomials with spectral measure p. These 
functions are well defined whenever x E C \ supp( II), where supp( p) - the support of p - is 
the smallest closed set containing all the points of increase of p. A straightforward analysis 
shows that {q,(x); n =O, 1, 2,... } satisfies the recurrence relation (1.2) with initial conditions 

ad-,(x) = 1, qo(x) =/*. 

Observe that q,, is the so-called Stieltjes transform of the spectral measure p. 
Associated polynomials already appear in Stieltjes’ fundamental work [27] and are very 

natural because they are the numerators for the convergents of certain continued fractions. Some 
interesting properties may be found in the works of Perron [23] and Geronimus [12]. These 
properties and some new results have recently been given by Belmehdi [5] without referring to 
continued fractions. Functions of the second kind and associated polynomials are usually only 
studied for classical orthogonal polynomials [1,4,7,14,22,25,28,32] but recently more general 
orthogonal polynomials have also been considered [2,3,6,9,11]. Grosjean has made some very 
detailed contributions to the analysis of associated polynomials and functions of the second kind 
[13-151. In the next section we will show how all these functions are interrelated. 

2. Wronskians 

Consider the second-order recurrence relation 

xu, = a n+l~,+l + b,, + anUn-l, n 2 0, (2-l) 
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with a,,,, >o, b,ER, n=0,1,2 )...) and x EC. Let {u,} and {u,} be 

then the Wronskian W( u,, u,) is given by 

two solutions of (2.1); 

(2.2) 

This determinant is sometimes also called the Casorati determinant of the two solutions { U, } 
and {v,,} [18, p.3541. It follows easily that W(u,, u,,) is independent of IZ. If the Wronskian of 
two solutions is different from zero, then the two solutions are said to be linearly independent. 
From the general theory of linear recurrence relations it follows that every solution of (2.1) is a 
linear combination of two linearly independent solutions. 

Consider u, =p,(x) and u,, =pi!!,(x) with Wronskian 

W( P,, PA%) = an+J P,(xM”(x) -P,,~(x)P%(x)] = al > 0. (2.3) 

It follows that every solution of (2.1) is a linear combination of p,(x) and #!,(x). In particular 
for kEN, 

pi?/,(x) =Ap,(x) + B&(x). 

Setting n = k and n = k - 1 yields 

A= -ak Pm4 

W( Pn, Pi%) 

Pk-lb) 

B=ak w(p,, p;“,> = 

which gives the formula 

An interesting special case is obtained by taking k = 2, giving 

xpi?,(x) = alp,(x) + b,p~?,(x) + $pASz(x). 

When considering the (k - 1)st associated version of this formula, we obtain 

xp:k_i( x) = a,pLk-‘) (x) + LlP:%x) + -$-p;*-:“(x). 

(2.4) 

(2.5) 

This formula was already given in [9] and is the basis for a perturbation theory for orthogonal 
polynomials defined by a recurrence relation. If x E C \ supp( p), then in a similar way 

q,(x) = CPnb) + DP%XL 

and setting n = 0 and n = - 1 (observe that a,p?‘,(x) = -al) gives 

c= 4d-4 D= --$ 

which results in the well-known formula 

P:!!~(x) = a, 
/ 

J%(x) -Pn(Y) dp(Y) 

X-Y 
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In general we may consider { &;.(x)} and { pi”_‘(x)} with j < k as two solutions of (2.1). Their 
Wronskian is given by 

w( PA!;., p;k_)k) = a n+l[ P~i_)j(+4%k+l(X) -P~~~+,cxM%(x)] = %P&,(X), 

(2.6) 

which means that both solutions are linearly independent if and only if x is not a zero of PL<~_~. 
Finally let us work out the Wronskian of { q,(x)} and { p~~lk_‘(x)}, which is 

I+?% PA%) =a,+,[q,(x)p~k_),,,(x) - qn+l(x)P3(x)] = a,q,-1(x). (2.7) 

It follows that {q,(x)} and {p:“_‘(x)} are linearly independent whenever x E C \ co(supp( p)), 
where co(supp( p)) is the convex hull of supp(p), i.e., the smallest closed interval containing 
supp( p). Indeed, by the representation 

PnbMx) = /“tx; :fy’ P,(Y) G.(y) + /$&$ 44Y) 

= P,‘(Y) 
/ x-y &4YL (2-8) 

for which the orthogonality (1.1) was used, it follows that p,(x)q,( x) is the Stieltjes transform of 
the probability measure pi(y) dp( y) and it is easy to show that the Stieltjes transform of a 
probability measure has no zeros outside the convex hull of its support (see, e.g., [16, letter 2731 
or [26]). None of these Wronskian formulas is new: the equation (2.3) even goes back to the 
previous century and expresses the well-known relationship between numerators and denomina- 
tors of the convergents of a Jacobi continued fraction. The Wronskian formulas can also be 
found in [5]. 

As a result of all these Wronskian formulas we will now give two formulas closely related to 
the Christoffel-Darboux formula. We have been unable to find these formulas in the literature 
and therefore believe them to be new. 

Theorem 1. The following formulas are valid: 

(2.9) 

and its confluent form 

i $Pj-I(x)P~/-:(x) =P,‘Cx)* 
j=l J 

(2.10) 

Proof. Let k < n; then from (2.5) we obtain 

and from (1.2) 

(2.11) 

(2.12) xp,-1(x) = %P/c(x) + bk-IPk-I(x) + %-,P/c-,(x). 
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Multiply (2.11) by pk_i( x) and (2.12) by pik_jk( y) and subtract the obtained equations to find 

A, =&+I - (x -Y)dpk-i(X)P%Y)P 

where we have used the abbreviation 

A, =P,-,(x)P%:‘,(Y> - 

By iteration one easily obtains 

Setting k = 1 leads to (2.9). Formula (2.10) is obtained by letting y tend to x. •I 

Introduce the truncated Jacobi matrix A,, = (Ai,j)oci,jin with A,,; = b, and Aj,i_l =Ai_l,i= 
ui; then (2.10) is actually a trace formula since P~(x)/P,( ) x is equal to the trace tr(xl - A,)-‘. 
The left-hand side of (2.10) can then be obtained by computing (x1 - A,)-’ using cofactors. As 
a consequence of Theorem 1 we find 

(2.13) 

which is obtained by multiplying (2.9) by pk_ I( y) and integrating with respect to the measure CL. 
When k = 1, the classical formula for pi!?, drops out as a special case. Another formula for pik_)k 

is obtained by observing that 

P%X) =Apnb) + Bakh 

and solving for A and B - using (2.7) - gives 

P2cb) = wh?lb)Pn(X) - %Pk-lbklnb) 

=a k / 
P,dx)Pk-dx) -Ph)Pk-l(Y) dp(Y) 

X-Y 
9 (2.14) 

which could also be verified by comparing with (2.13) and using the orthogonality. 

3. Asymptotic formulas 

We will now give some asymptotic formulas for ratios of orthogonal polynomials and their 
associated polynomials. We will show that the functions of the second kind are very useful in 
asymptotic analysis. 

Let us first discuss some decompositions into partial fractions. We will always denote the 
zeros of p,, in increasing order by 

X1.n < X2,” < * - * < x,,n- 

It is very well known that the zeros of p,, belong to the convex hull of supp(p) [7, p.291. The most 
elementary rational fraction and its partial fractions decomposition is 

$g = 5 x _lXj n * 
j=l 

(3.1) 
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Another rather common fraction is 

p!?*(x) = a, L ‘i.n 

Pnb> j=l X-xjny 

where 

x, = PEICxj,n) 
J.” PnlCXj,n) ’ 

The numerator P:!!~(x~,,) can be replaced using (2.3) and (1.2) which gives 

Aj,n = 

(3.2) 

(3.3) 

The numbers { Xj,,; 1 <j < n} are all positive and are known as Christoffel numbers [28, p.481. 
They appear in the Gauss-Jacobi quadrature formula 

i Aj,nP(xj,n) = /P(X) dp.(x), (3 *4) 
j=l 

which is valid for every polynomial P of degree at most 2n - 1. A new decomposition into 
partial fractions is, k < n, 

pk-r(x)p,(k_)(x) = a k Aj,nPi-l(xj,n) 

P,(X) 
k x-xxi. . 

j=l 

(3.5) 

In order to check this formula we need to evaluate the residues of the left-hand side. The residue 
for x~,~ is 

R 
Pk-,(xj,,)P~“_‘,(xj,,) 

J.n = 
P,‘Cxj,n) * 

Use (2.6) with j = 0 and x = x~,~ to find 

and from (3.3) we see that (3.5) is indeed the desired decomposition. Taking k = 1 gives (3.2) and 
for k = n we find a formula already obtained in [29]. 

For the next theorem we need some notation. Define 

z,= {xj,n; l<j<n, n>,N}, 

X, = Z; = {accumulation points of Z, } , 

X,={xEZ,; p,(x)=Oforinfinitelymanyn}. 

These sets have been introduced in [7]. Note the relations 

suPP(4 = Xl ” X, = co(suPP(!4)* 

We can now formulate a generalization of Markov’s theorem. 
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Theorem 2. Suppose that the moment problem for p is determined; then for every k E N, 

(3.6) 

uniformly on compact subsets of C \( X, U X,). 

Proof. We use induction on k. When k = 0, the result is immediate. For k = 1 we have Markov’s 
theorem: 

l im PEd-4 = 

/ 

dPL(Y) 
n-cc p,(x) a1 X-Y ’ 

uniformly on every compact subset of C \co(supp( p)). Markov proved this result for supp( p) = 
[a, b] with a and b finite [28, p.571, but the result also holds for infinite intervals provided the 
underlying moment problem is determined. Actually PA!!,< x)/p,( x) is the [n - l/n] Pad6 
approximant of a,q, at cc. The uniform convergence on compact subsets of C \( Xi U X,) can 
be shown as follows. Let K be a compact subset of @ \( Xi U X,); then it contains at most a 
finite number of zeros of the sequence { pn} and none of these zeros belong to X,. Therefore we 
can choose an integer N such that K fl (Xi U 2,) = $3. The distance 

8 = inf{ 1 z - x 1; ZEK, XEX&JZN} 

is strictly positive and by (3.2) we have for n >, N, 

Therefore pi!! *( x)/p,,( x is uniformly bounded on K for n > N and the result follows from the ) 
Stieltjes-Vitali theorem. 

Now suppose the result is valid up to k. By (2.5), 

When we divide each term in this equation by p,(x), then by the induction hypothesis 

l im Pz2l(x) 

n+oO p,(x) 
= y[(x-b,,) a,qAx) - a,a,-lq,-2(x)l = a,+lqAx)Y 

uniformly on compact subsets of C \( Xi U X,). 0 

This theorem is very useful in determining the spectral measure $“) for the associated 
orthogonal polynomials { p:“‘} when the moment problem for p is determined. Indeed, from 

p;k_;l)( x) 
!irnw p;k’(X) = ak+l J 

d#k’(y) 
x-y ’ 

XEC\R, 

and from 

P;;);‘;’ = P:?“tx) Pn+kcX) 

n X Pn+ktX) pik’(X) ’ 
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we can find the Stieltjes transform of EL(~) by means of (3.6), giving 

J dkk’b) 1 qkcX) 

X-Y = ak qk-1(X) ’ 
xEC\R. (3.7) 

The measure p.(k) may now be obtained using the Stieltjes inversion formula [33, pp. 93-961 

:~L(k)({X})+~Cl(k)({Y})+~(k)(lX, YD 

qk(l+ ic) 

qk-l(t-ic) - qk-l(t+ic) 
dt. 

The relation (3.7) was already known to Stieltjes for k = 1 [16, letter 4261, [27]. Explicit 
expressions of the associated measure may be found for classical polynomials [1,4], [7, Chapter 
VI], [25,32] and Grosjean made a very detailed study of the associated polynomials and functions 
of the second kind corresponding to the Legendre polynomials [13] and the Jacobi and 
Gegenbauer polynomials [14]. 

4. Ceshro summability 

In this section we will consider the Cesaro sums 

; ;.;pr(x)qk(x), ; n&p:(x)~ 
k=O 

the first one outside the spectrum, the latter on the spectrum. The second Cesaro sum is closely 
related to the Christoffel function X,(x) which is defined as 

Mx> = (~~P~W} -l. 

This Christoffel function plays a crucial role in many investigations concerning 
polynomials [21]. 

Let us first consider the (C, 1) convergence of p,(x)q,(x). 

Theorem 3. Let c, be a positive sequence such that (x,,, - x~,~)/c,, is bounded; then 

P&lx) 

Ptl(c,x) 
- ;<Pk(cnxhk(cnx) = O( $)y 

orthogonal 

(4.1) 

where the O-term hola% uniformly on compact subsets of C \ R. If c, = 1 for all n, then the result 
holds uniformly on compact subsets of C \( X, U X,). 

Proof. By Theorem 1 we have 



W. Van Assche / OrthogonaIpolynomiaIs and related functions 

and by (2.14) 

Therefore 

By means of the confluent form of the Christoffel-Darboux formula [7, p.241 we have 

1 Pk-l(CnX)P%W> dw) - 
ak Pn(GJ) 

=Pk-1(cnx)qk-1(cnx) -P:-lkn4,(, 
” 

x). 

4&A 
Pn(W) 

n-l 

c P2(4 = ;;;;; %[Pk?X)Pn-kx) -Pn(W)P,l-,(c,4] 
k=O " 

Now let K be a compact set in C \ R and let S be the distance between 
x E K, 

PL(CnX) 1 Pn-1(w) * 

245 

(4.2) 

K and R ; then for 

and 

Pn-I(W) I 1 n x 

P,(c,x) ~ a"j=l 

J,nPi-I(xj,n) 

= I c,x - xj,n 1 

<a, 
c,6 ' 

where we have used (2.8) and (3.5). Moreover, 

P,‘(W) PnlL(CnX) n 

PnkJ) - Pn-1kx) = ,F1 CnX 1 xj,n - i1 c x -‘x,.._l 
j=l n 

1 = 
c,x - XII,, 

By the interlacing of the zeros x/,~ < xj,,_r < ~~+r,~ this gives 

P,‘(Cn4 pn)_l(cnx) 1 1 n-1 

P,(W) - Pn-I(C&) G c,6 + c,2a2 jzl - C (xj,n-l -xj,n) 

1 
<-+ & nI?1 CXj+l,n 

1 xn,, - X1.n 

CJ n j=l 
-Xj,n) = $ + $f 

n CT,2 . 

A combination of all these bounds gives 
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If (+I - x1.n )/c, is bounded, then also a,/~,, is bounded because 

[19, p.521. This concludes the proof. 0 

A more precise result can be obtained when supp(p) = [ - 1, l] [20]. Let us introduce some 
sequences of probability measures associated with orthogonal polynomials. Define v,, and 5, by 

J f(x) dv,(x) = ; i f( %) 
j=l n 

and 

(4.3) 

(4.4) 

where f is a bounded continuous function. The behaviour of v,, as n -+ cc gives the asymptotic 
distribution of the contracted zeros xj,/c,,, 1 <j < n, and the behaviour of &, gives the weak 
(C, 1) behaviour of the polynomials p,, on the spectrum. Recall that a sequence p,, of probability 
measures converges weakly to a positive measure p if and only if 

J f(x) d/%(x) + J f(x) dPL(& 

for every bounded and continuous function f. 

Theorem 4. If c, is a positive sequence such that (x,,, - x~,~)/ c, is bounded, then the weak limits 

of v,, and 5, are the same. 

Proof. The Stieltjes transforms of vn and 5, are 

and 

J %,(y) 
x _ y 

n 

and by Theorem 3 we see that the Stieltjes transforms of v,, and 5, have the same limits. The 
Grommer-Hamburger theorem [33, p.1041 states that when a sequence of probability measures 
p,, is such that the Stieltjes transforms converge on compact subsets of Q) \lR to a function S, 
then S is the Stieltjes transform of a positive measure p and p,, converges weakly to p. The result 
thus follows by applying this to our sequences of probability measures. •I 

This theorem states that the sequence 5, and the zero distribution of orthogonal polynomials 
are closely related. Moreover, the (C, 1) limit of p,( x)q,( x) is exactly the Stieltjes transform of 
the asymptotic zero distribution. This was already known before [10,17], [19, p.491, [30], [31, 
Chapter 51. 
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The (C, 1) convergence of p,( x)q,(x) can be improved to (C, 0) convergence when the 
recurrence coefficients behave nicely. 

Theorem 5. Suppose that a,, + a > 0 and b, + b; then 

uniformly on compact subsets of C \ supp( p). The square root is such that 

lim e 1 
= . 

X’cc X 

For every continuous function f : [b - 2a, b + 2a] + Ri which is bounded outside [b - 2a, b + 2a] 

one has 

Proof. From (2.7) with k = 0 one easily obtains 

[ 

P,+Ax) _ qn+Ax) 1 1 
a 

n+l P,(X) q,(x) = PJx)qJx) . 

Now { p, } and { q, } both satisfy the same recurrence relation with converging recurrence 
coefficients. By PoincarC’s result it then follows that the ratios p,+,(x)/p,( x) and qn+l( x)/q,(x) 
converge to one of the solutions of the quadratic equation 

ag*(x) - (x - b)g(x) + a = 0, 

provided that 1 g(x) 1 # 1. Clearly, 

lim Pn+l(x) _ Yn+l 

.x-cc xp,(x) yn 

and 

so that 

and 

l im 4,+1(x) Pn+l(x) = lim,,,xlP~+I(Y)/(x-Y) @L(Y) 

X’cc q,(x) P,(X) lim ,-,xlp,‘(yV(x -Y> dl-L(y) = I’ 

l im Pn+l(X) = x - b + {(x - b)* - 4a2 

n--rcc p?z(x) 2a 

l im  qn+&) x-b-d(x-b)*-4a* 
dx) = 2a > 

n-m 

in the neighborhood of cc, and in such neighborhoods we thus have 

&~Pn(x)qn(x) = 
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This convergence is uniform on compact subsets of C \ supp( p) since on such a compact set K 
we have 

where 6 is the distance between K and supp(p). The uniform convergence thus follows from the 
Stieltjes-Vitali theorem. The second part of the theorem concerning the weak convergence of the 
measures p,, given by dp,,( y) =p,‘( y) dp( y) follows, since 

so that the Stieltjes transforms of the measures p,, converge to the Stieltjes transform of the 
arcsin measure on [b - 2a, b + 2a] uniformly on compact sets in C \ IR and we can then apply 
the theorem of Grommer and Hamburger. 0 

The previous result was already given in [24] and is an easy consequence of the convergence of 
the recurrence coefficients. It shows that the functions of the second kind behave like the 
reciprocal of the orthogonal polynomials outside the spectrum. A stronger result holds when we 
impose stronger conditions on the measure p. 

Corollary. Suppose that supp( p) = [ - 1, 11 and that 

lim q,(x)(x + LZi)R = &%vF?iD(x - v’x’), 
n+oo 

uniformly on compact subsets of C \[ - 1, 11, where D is the Szego” function 
-it9 

&J” log ~‘(COS 0) : T 1 (& de), IZI cl. 
-77 

Proof. This follows immediately since the recurrence coefficients 

a,++, b, +O, 

and 

J&p,&)(x + G-1)-” = &D(x - G), 

uniformly on compact subsets of C \[ - 1, l] [8, Chapter V], [28, 

This result was already given in [3] where a more complicated 
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