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A B S T R A C T

Glioma stem-like cells (GSCs) are hypothesized to provide a repository of cells in tumors that can self-
replicate and are radio- and chemo-resistant. GSC lines, representing several glioma subtypes, have been
isolated and characterized at the transcript level. We sought to characterize 35 GSC lines at the protein
level using label-free quantitative proteomics. Resulting relative fold changes were used to drive
unsupervised hierarchical clustering for the purpose of classifying the cell lines based on proteomic
profiles. Bioinformatics analysis identified synoviolin, serine/arginine-rich splicing factor 2, symplekin,
and IL-5 as molecules of interest in progression and/or treatment of glioma.
ã 2015 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Primary brain tumors comprise 3% of all cancer diagnoses, and
of these, GBM [World Health Organization (WHO) grade IV
astrocytoma] makes up over half (52%) of all cases [1,2]. Despite
an aggressive therapeutic regimen including surgical resection
followed by some combination of chemotherapy and radiotherapy,
the disease is ultimately fatal, with median survival only slightly
over a year after diagnosis [2–6]. A deeper molecular-level
understanding of the origins of GBM is critical in the quest to
discover new therapeutic targets for this disease that few survive.

One factor that contributes to poor clinical outcome is the
presence of a small subpopulation (<1%) of cells within the tumor
which are both radio- and chemotherapy resistant [7–11]. These
cells, termed glioma stem cells or glioma stem-like cells (GSCs) are
postulated to provide a repository of cells for tumor recurrence [7–
11]. GBM has been classified into several subgroups based upon
patterns of gene expression [12–16], and this same classification
scheme may be applied to GSCs. According to The Cancer Genome
Atlas (TCGA), the GBM subgroups are classical, proneural, and

mesenchymal [12–16]. Tumors themselves are not homogeneous;
a recent study of biopsy samples revealed that cells from different
regions of the same tumor show different molecular phenotypes
[17]. Therefore, it is critical to understand GSCs at amolecular level
in order to design an effective treatment regimen for GBM.

The purpose of our study was to perform a proteomic
comparison of 35 GSCs, derived from patient tumors, in
order to gain a deeper understanding of protein-level changes
associated with GSCs and to identify potential therapeutic targets.
The origin of GSCs has yet to be definitively determined, although
glioma may originate from neural stem cells [18–22], glial cells
[23], oligodendrocyte precursor cells [24], neurons [25] or
astrocytes [25,26]. Given the difficulty in identifying an appropri-
ate control for GSCs, each cell line was quantified relative to a
mixed control sample containing an equal amount of protein from
each cell line. The Catalog of Somatic Mutations in Cancer
(COSMIC) database [27–31] was queried in order to compare
our results with genome-level studies of patient tumor samples,
especially for those proteins with no previous association to GBM.
A combination of the Database for Annotation, Visualization and
Integrated Discovery (DAVID) webtool [32,33] and Ingenuity
Pathway Analysis (IPA) was used to determine affected pathways
for each cell line, and IPA was used to determine predicted
upstream regulators. Unsupervised hierarchical clustering of
proteins and of upstream regulators was used to determine similar
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behavior between the cell lines. We identified symplekin (SYMPK)
as a protein whose expression is significantly changed across
several of our cell lines [34]. In addition, we identified novel
putative upstream regulators interleukin-5 (IL5) and synoviolin
(SYVN1). From a cluster of proteins which demonstrated
lower expression in mesenchymal stem cells, we identified
serine/arginine rich splicing factor 2 (SRSF2) as an upstream
regulator.

2. Materials and methods

2.1. Chemicals and Reagents

LC-MS grade acetonitrile and water were purchased from J.T.
Baker (Philipsburg, NJ). Formic acid and RIPA buffer were
purchased from Pierce (Rockford, IL). Iodoacetamide (IAA),
dithiothreitol (DTT), triethylammonium bicarbonate (TEAB) were
obtained from Sigma–Aldrich (St. Louis, MO). Sequencing grade
trypsin was purchased from Promega (Madison, WI), and PMSF
from CalBiochem (Darmstadt, Germany). All chemicals were used
without further purification.

2.2. Cell culture conditions

Isolation of GSCs from patient tumors was performed as
previously described [19] in accordance with the institutional
review board of The University of Texas M.D. Anderson Cancer
Center, and are named in the order they were acquired. GSCs were
cultured according to previously published methods [19,35].
Upon dissociation of cells, GSCs were enriched using CD133 via
flow cytometry. CD133+ cells are grown in serum-free medium
as neurospheres as previously described [21,22]. All cell lines
were tested to exclude the presence of Mycoplasma infection.

2.3. Proteomic analysis of GSCs

Sample preparation and nanoLC–MS/MS analysis of GSCs was
performed as previously described [34]. Briefly, protein (100mg)
isolated from 2�106 cells was reduced (TCEP) and alkylated
(iodoacetamide). After precipitation using four volumes (440mL)
of ice cold acetone for 2h at �20 �C, protein was resuspended in
8M urea (12.5mL) and digested with trypsin (10mg in 87.5mL of
TEAB buffer) for 24h at 37 �C.

Chromatographic separation and mass spectrometric analysis
was performed with a nanoLC chromatography system (Easy-nLC
1000, Thermo Scientific), coupled on-line to a hybrid linear
iontrap–Orbitrap mass spectrometer (Orbitrap Elite, Thermo
Scientific) through a Nano-Flex II nanospray ion source (Thermo
Scientific) as previously described [34]. Briefly, samples were
analyzed in groups of block-randomized triplicates [36], with three
GSCs and M37 (mixed control sample consisting of equal protein
from 37 cell lines) in each group. Each block consisted of one
technical replicate of each GSC and theM37; the run order for each
block was randomized so that data acquisition was not performed
in the same order for any of the three blocks. A total of three blocks
was acquired for each group of samples, resulting in acquisition of
three data files for each GSC and M37. Peptides (1mg cell protein
digest) were separated by gradient elution using a C18 column
(10 cm�75mm ID,15mm tip, ProteoPep II, 5mm, 300Å, New
Objective) using a 4h gradient. Mobile phases were 0.1% formic
acid in water (A) and 0.1% formic acid in acetonitrile (ACN; B). All
nanoLC–MS/MS datawere acquired using XCalibur, version 2.7 SP1
(Thermo Fisher Scientific) using a Top 10 HCD method as
previously described [34]. The data files have been deposited into
ProteomeXchange repository (PXD001890) [37–40].

2.4. Bioinformatic analysis

Data files were analyzed as previously described [34]. Instru-
ment .raw files for each experimental block were imported into
Progenesis LC–MS software (version 18.214.1528, Nonlinear
Dynamics) for m/z and retention time alignment. This process
combines observations for all samples in the block as single
measurements for each peptide feature, which allows the best
peptide spectrum match for a particular peptide feature to be
projected onto all runs within the experimental block. Next, the
top 5 spectra for each feature were exported as a combined .mgf
file for database searching in PEAKS [41–43] (version 6, Bioinfor-
matics Solutions Inc., Waterloo, ON) and Mascot (version 2.3.02,
Matrix Science). Database searches were performed as previously
described [34] (10ppmparent ion tolerance, 0.025Da fragment ion
tolerance, fixed carbamidomethyl cysteine, variable oxidation
(methionine), deamidation (asparagine, glutamine) and phosphor-
ylation (serine, threonine, tyrosine), with a maximum of three
post-translational modifications per peptide; trypsin with two
missed cleavages). Peptide-spectrummatches were then exported
from PEAKS as a .xml file and re-imported into Progenesis LC–MS
in order to assign peptide-spectrum matches to features. After
filtering to remove peptide-spectrum matches below 95% peptide
probability (as calculated in PEAKS, using the Peptide
Prophet algorithm [44]), manual conflict resolutionwas performed
by removing lower scoring peptide spectrum matches in order to
ensure that a single unique peptide sequence was assigned to each
feature. Feature intensities were normalized using the default
normalization algorithm in Progenesis LC-MS (http://www.non-
linear.com/progenesis/qi-for-proteomics/v2.0/faq/how-normal-
isation-works.aspx), and normalized peptide intensity data was
exported and filtered to remove non-unique peptides,methionine-
containing peptides [45], and all modified peptides except those
containing cysteine carbamidomethylation. Peptide intensities
were imported into DanteR (version 0.1.1) [46,47] for protein
quantification as previously described [34]. Briefly, intensities for
peptides with the same sequence were combined into a single
entry by summation, in order to correct for MS1-level misalign-
ment and to fold together measurements representing multiple
charge states of the same peptide. The resulting peptide intensities
were log2-transformed and combined to generate protein abun-
dances (RRollup) without considering proteins with a single
peptide assignment. Default settings were used: 50% minimum
presence of at least one peptide, minimum dataset presence 3,
p-value cutoff of 0.05 for Grubbs’ Test, minimum of 5 peptides for
Grubbs’ Test. A one-way ANOVA was performed for each
experimental block, relative to M37, to obtain estimated fold
changes, and p-values were corrected for multiple testing [48]. In
order to compare results across experimental blocks, estimated
protein fold changes from all experimental blocks were standard-
ized to correct for analytical differences, and the resulting
standardized fold changes were imported into Ingenuity Pathway
Analysis. Resulting z-scores for upstream regulators and biological
and disease functions for all cell lines were exported and collated.
After filtering to remove entries with no missing values,
unsupervised hierarchical clustering of proteins was performed
using a Euclidean distance metric and a Ward linkage metric in
Mass Profiler Pro (Agilent, Santa Clara, CA). After filtering to
remove entries with <20% missing values, unsupervised hierar-
chical clustering of upstream regulators was performed using a
Euclidean distancemetric and an average linkagemetric in DanteR.

For additional analysis of biological function, Gene Ontology
(GO) analysis was performed using the Database for Annotation,
Visualization and Integrated Discovery (DAVID) webtool [32,33].
For each cell line, the proteins were separated into lists of proteins
which were increased and decreased relative to mixed control.
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Each list was uploaded into the DAVID webtool for separate
analysis in order to generate lists of biological functions impacted
bychanges inprotein expression. The Catalog of SomaticMutations
in Cancer (COSMIC) database [27–31] was queried in order to
compare our results to known transcript-level variations in
sequence and copy-number variation (CNV) associated with
GBM tumor samples.

3. Results

3.1. Experimental design

The purpose of our study was to perform a comparison of 35
GSCs at the protein level in order to see if unsupervised
hierarchical clustering of protein expression levels was compara-
ble to similar analysis performed on genomic data, and if this
clustering was comparable to transcript-based TCGA classification
of cell lines. We initially started with 37 cell lines; however, due to
low protein yield, two cell lines were removed from the final

analysis. Due to the inherent controversy in choosing a normal
control for GSCs, we designed a study inwhich we created a mixed
control sample consisting of equal protein from each of the GSC
lines. In order to minimize technical difficulties arising from
analysis of a large number of cell lines, the 35 GSCs were divided
into subgroups consisting of three cell lines plus the mixed control
sample (Fig. 1). The GSCs and mixed control were analyzed by
nanoLC–MS/MS in block-randomized fashion with triplicates of
each cell line analyzed across three separate blocks [36] in order to
minimize confounding effects associated with data acquisition,
and each subgroup was quantified separately, with fold changes
calculated relative to the mixed control sample. Finally, the
calculated fold changes were collated and standardized in order to
correct for confounding effects relating to instrument drift over
time. A total of 2820 proteins were quantified across all GSCs, with
2670 meeting a significance cutoff of p<0.05 in at least one cell
line. A complete list of quantified proteins can be found in
Supplementary Table 1.

(All supplementary material related to this article can be found,
in the online version, at http://dx.doi.org/10.1016/j.
euprot.2015.06.008.)

Because the GSCs were enriched for CD133 via flow cytometry
and have been previously shown to exhibit stem-like properties,
we assessed our data for the presence of CD133 and other stem cell
markers. Nestin, an intermediate filament protein, was identified
in all cell lines and showed a significant fold change relative toM37
(p<0.05, fold change >2) in only 15/35 cell lines. No specific trend
was observed regarding GSC classification and nestin expression.
CD133 itself was not found in our quantitative data. This may be
due to the fact that it is a membrane protein with five
transmembrane domains. In addition, it is a glycoprotein. Because
the GSCswere not treatedwith PNGase F before analysis, wewould
not expect to identify heavily glycosylated proteins. Sox-2 was also
not identified. This is also not surprising, since it is a transcription
factor and exhibits low copy numbers within cells.

We recently reported preliminary results for chromosome 19
proteins in a subgroup of the GSCs [34]. Our method was validated
by finding that a cell line analyzed twice, in an early subgroup and
again in a later subgroup, clustered together in both principal
components analysis (PCA) and unsupervised hierarchical cluster-
ing (Supplementary Fig. 1). This report expands these findings to
include proteins in all cell lines from all chromosomes. Previously
reported findings are included again in order to provide a complete
and more detailed comparison of the GSCs.

3.2. Analysis of Biological Function

GO and IPA analyses were performed on significantly changed
proteins (p<0.05) in each cell line. For GO analysis, protein lists
were separated based upon decreased or increased fold change
relative to mixed control and analyzed separately using the DAVID
webtool [32,33]. A complete list of the top biological functions
from GO can be found in Supplementary Table 2. The number of
proteins with GO terms related to RNA processing was among the
most significantly enriched (128 proteinswith higher expression in
GSC8-11,155 proteins with lower expression for GSC126 compared
to M37). When ranked by number of cell lines impacted, the GO
term represented across the greatest number of cell lines was
generation of precursor metabolites and energy (33 cell lines),
followed closely by oxidation reduction (32 cell lines), glycolysis
(32 cell lines) and cellular carbohydrate catabolic processes (32 cell
lines).

The table of identified proteins and their relative expression
values for each cell line was uploaded into IPA for further
elucidation of biological function through a Core Analysis.
HumanCyc metabolic pathways [49] are used in IPA, making IPA

[(Fig._1)TD$FIG]

Fig. 1. Workflow for proteomics analysis of GSCs. Patient-derived GSCs were lysed
and processed for nanoLC–MS/MS analysis as described in Section 2, Materials and
methods. GSCs were analyzed in 13 groups, with each group containing 3 GSCs and
a control sample (M37). Within each group, samples were analyzed in triplicate,
employing block randomization in order to eliminate potential sources of bias in
data acquisition. The resulting .raw files were aligned by accuratemass and time for
label-free quantitative proteomics, and protein-level fold changes relative to M37
were calculated by one-way ANOVA (DanteR). The resulting protein fold changes
relative to M37 were used for bioinformatic characterization of GSCs.
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findings complementary to KEGG findings from DAVID. Canonical
pathways which were found to be significant (p<0.05) in the
highest number of cell lines included protein ubiquitination
pathway (33 cell lines), gluconeogenesis I (33 cell lines), glycolysis I
(33 cell lines), regulation of cellular mechanics by calpain protease
(33 cell lines), signaling by Rho family GTPases (33 cell lines),
caveolar-mediated endocytosis signaling (32 cell lines), mitochon-
drial dysfunction (32 cell lines), and epithelial adherens junction
signaling (32 cell lines). A complete list of enriched canonical
pathways can be found in Supplementary Table 3.

Similarly, a comparisonwas made for significant enrichment of
diseases and biological functions (p<0.05) in IPA. Those which
were found to be significant in the largest number of cell lines
included folding of protein (35 cell lines), apoptosis (34 cell lines),
apoptosis of tumor cell lines (34 cell lines), cell death (34), cell
death of tumor cell lines (34 cell lines), cell viability (34 cell lines),
metabolism of protein (34 cell lines), necrosis (34 cell lines), and
proliferation of tumor cell lines (34 cell lines). A complete list of
affected biological functions can be found in Supplementary
Table 4.

In addition to p-values, IPA also provides z-scores for diseases
and biological functions. These z-scores provide a measure of
predicted activation or inhibition based upon observed protein fold
changes; those with z-scores <�1.50 were predicted to show
significant inhibition, while z-scores >1.50 were predicted to be
significantly activated. Experimentally observed gene expression
or transcription events, associated with literature-derived regula-
tion (activating or inhibiting) serve as the basis for inference.
Likewise, literature-derived gene-level effects on diseases and
biological functions are used to provide an indication of activation
or inhibition. Given the observed differential regulation of a gene
(up or down) in a dataset, the activation state for a downstream

gene or biological process is determined based upon information
contained in the Ingenuity Knowledgebase. Diseases and biological
functions with significant z-scores in the highest number of cells
included viral infection (16 cell lines), migration of cells (16 cell
lines), organismal death (16 cell lines), modification of reactive
oxygen species (15 cell lines), cell movement of tumor cell lines (15
cell lines), and migration of tumor cell lines (14 cell lines).
Upstream regulators predicted to be significantly inhibited or
activated included INSR (27 cell lines), MYC (23 cell lines),
retinoblastoma-associated protein (RB1, 22 cell lines), TP53 (21
cell lines), HNF4A (19 cell lines), MYCN (19 cell lines), IL5 (17 cell
lines), and SYVN1 (14 cell lines). A complete list of activated and
inhibited biological diseases and functions can be found in
Supplementary Table 5.

Upstream analysis, also performed in IPA, provided a list of
inferred upstream regulators based upon measured fold changes
for each cell line. The goal of the IPAUpstream Regulator analytic is
to identify a putative cascade of upstream transcriptional
regulators (TRs) that can explain the observed gene expression
changes in a user’s dataset, which can help illuminate the
biological activities occurring in the tissues or cells being studied.
IPA’s definition of upstream TR is quite broad and includes any
molecule that can affect the expression of other molecules. This
means that IPA-defined upstream regulators can be almost any
type of molecule, from transcription factor, to microRNA, kinase,
compound, or drug.

For each potential TR, two statistical measures, an overlap
p-value and an activation z-score are computed. The overlap
p-value assigns likely upstream regulators based on significant
overlap between dataset genes and known targets regulated by a
TR. The purpose of the overlap p-value is to identify upstream
regulators that are able to explain observed gene expression

[(Fig._2)TD$FIG]

Fig. 2. Unsupervised hierarchical clustering of protein-level fold changes for GSCs. Protein fold changes were standardized to account for analytical variation, and
unsupervised hierarchical clusteringwas performed for those proteins present in >80% of the cell lines. Two cell lines were removed from this analysis due to a lownumber of
significant proteins. TCGA classification of cell lines [C (classical), M (mesenchymal), P (proneural), and X (unclassified)], as determined at MDACC, was added to the heat map
in order to compare to results based on transcript-level classification. Red indicates protein levels higher than inM37, while blue represents protein levels lower than inM37.
The protein cluster encompassed by the black box represents a proteomic signature of proteins decreased in a cluster of cell lines enriched for mesenchymal GSCs. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

88 C.F. Lichti et al. / EuPA Open Proteomics 8 (2015) 85–93



changes, but no activation or inhibition is predicted. Upstream
regulators which were found to be significant (overlap p-value
<0.05) in the largest number of cell lines included cellular tumor
antigenp53 (TP53),myc proto-oncogene protein (MYC), huntingtin
(HTT), hepatocyte nuclear factor 4-alpha (HNF4A), amyloid beta A4
protein (APP), N-myc proto-oncogene protein (MYCN), insulin
receptor (INSR), E3 ubiquitin-protein ligase synoviolin (SYVN1),
interleukin-3 (IL3), fragile X mental retardation protein 1 (FMR1),
adenosine receptor A2a (ADORA2A), aryl hydrocarbon receptor
nuclear translocator (ARNT), Cu-Zn superoxide dismutase (SOD1),
and interleukin-5 (IL5). A complete list of significant predicted
upstream regulators can be found in Supplementary Table 6.

The activation z-score is used to infer likely activation states of
upstream regulators based on comparison with a model that
assigns random regulation directions. Under ideal circumstances,
the activation z-score can also be used to predict upstream
regulators independently from the overlap p-value, based on
significant patternmatch of up/down regulation. A complete list of
upstream regulators can be found in Supplementary Table 7.

3.3. Classification of GSCs by unsupervised hierarchical clustering

In order to determine common patterns of molecular-level
behavior amongst the GSCs based upon proteomics analysis,
unsupervised hierarchical clustering was performed for proteins
(by log2 fold change, Fig. 2) and for upstream regulators (by
z-score, Fig. 3). Next, each cell line was labeled with its TCGA
classification, as assigned by our collaborators at MDACC [50], in
order to see if a characteristic signature was present for one or

more classes of cells. In both instances, enrichment was seen for
mesenchymal cell lines. In the protein heat map (Fig. 2), two
classical (GSCs 289 and 6-27) and five mesenchymal cell lines
(GSCs 107, 20, 272, 28, and 267) were grouped together (left, box).
In the heat map for predicted upstream regulators (Fig. 3), two
classical cell lines (GSCs 231 and 285), four mesenchymal cell lines
(GSCs 107, 267, 28, and 20) and one unclassified cell line (GSC 126)
were grouped together (right).

3.4. Analysis of a protein cluster down-regulated in mesenchymal
GSCs

Because the top protein cluster (outlined in black, Fig. 2) stood
out as being characteristically decreased inmesenchymal cell lines,
the list of 74 proteins (Supplementary Table 8) in this cluster was
extracted for further analysis. GO analysis as performed using the
DAVID webtool (Fig. 4) revealed that a majority of these proteins
were involved in RNA splicing. In IPA, significant (p<0.05)
canonical pathways included granzyme B signaling, DNA dou-
ble-strand break repair by non-homologous end joining, estrogen
receptor signaling, and DNA methylation and transcriptional
repression signaling. Topmolecular and cellular functions included
RNA post-transcriptional modification (32 proteins), cellular
growth and proliferation (44 proteins), protein synthesis (16
proteins), gene expression (35molecules), and cell morphology (10
proteins). The top four upstream regulators (p-value of overlap
<0.05) were the transcription regulators serine/arginine rich
splicing factor 2 (SRSF2), E2F1, MYC, and E2F4.

[(Fig._3)TD$FIG]

Fig. 3. Unsupervised hierarchical clustering of putative upstream regulators for GSCs. Unsupervised hierarchical clustering of putative upstream regulators by z-score as
calculated by Ingenuity Pathway Analysis. Before clustering, the list was filtered to remove upstream regulators present in<80% of the cell lines, and cell lines were removed
which did not contain 80% of the listed upstream regulators. TCGA classification of cell lines [C (classical), M (mesenchymal), P (proneural), and X (unclassified)], as
determined at MDACC, was added to the heat map.White/yellow indicates higher z-scores, while red/black represents lower z-scores. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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4. Discussion

Herein we report the results of a study in which we performed
label-free quantification of 37 GSCs. Due to the inherent challenges
of comparison when there is no clear normal control sample,
quantification was performed relative to a mixed control sample
(M37) containing equal protein from each of the cell lines studied.
Ultimately, due to problems with low protein levels in two of the
original samples, 35 samples were quantified. Cell lines were
analyzed in groups of 3 plus M37 in block-randomized analytical
triplicates. Fold changes relative toM37 were used to compare and
characterize the GSCs. Because the GSCs are quantified relative
to an average protein signature for all cell lines, proteins with
common expression changes across all cell lines will not be
measured as significant. However, proteins which are different
from the average would be expected to provide a characteristic
proteomic signature for each cell line. Shared proteomic signatures
should also be discernible for similar GSCs, facilitating the
identification of potential therapeutic targets.

Our results represent the first reported relative protein
quantification for 35 GSC lines. Our analysis identified significant
changes in a number of proteins known to be dysregulated in
glioma. These include twoproteinswhose overexpressionhas been
linked to temozolomide (TMZ) resistance in GBM: galectin-1
(LGALS1) [51] and EGFR [52,53]. In addition, our results for affected
biochemical pathways are consistent with those which have
been previously reported. For instance, glycolysis and gluconeo-
genesis have been shown to be upregulated in mesenchymal
GSCs [54]. Confirmation of known findings gives greater
confidence in the novel findings in our dataset, which may be
used as a basis for further mechanistic studies into GBM
chemoresistance.

Several of the GSCs from this study have been previously
characterized at the transcript level [50]. Since protein and
transcript levels do not tend to correlate closely [55–58], we
would not expect the cells to cluster in the same manner at the
protein and transcript levels. The transcripts [50] and proteins are
similar in that two clusters were observed in unsupervised
hierarchical clustering, but a slight difference was seen in terms
of the cell lines that were clustered together. In both instances,
GSCs 6-27, 20 and 28 were clustered together. Of the other
common cell lines between the two studies, GSCs 2 and 17 were in
cluster 1 in the transcriptomic data [50] and cluster 2 in the
proteomic data. Multiple cell lines exhibit mixed transcript-level
TCGA profiles [50], so it is not surprising to see similar behavior at
the protein level. For example, GSC6-27 was reported to display
characteristics of bothmesenchymal and proneural subtypes at the

transcript level [50], which helps to explain its appearance in a
cluster of mesenchymal cell lines.

4.1. Potential role of SYMPK in glioma

Our preliminary results demonstrated the first report of SYMPK
as a potential protein-level biomarker for glioma in GSCs 2, 11 and
13 [34], although it has been previously implicated in lung cancer
[59] and colorectal cancer [60]. Herein we report that, in addition
to the previously published results, we have measured significant
fold changes in GSCs 231 and 296. In the GSCs, significant fold
changes relative to M37 were measured for five cell lines, four of
which are classical (GSCs 2, 11, 13 and 231) and one of which is
proneural (296). SYMPK was found to be significantly increased
relative toM37 in three of the classical cell lines (GSCs 2,11 and 13)
and in the proneural cell line GSC296, while it was decreased in the
remaining cell line (GSC231). In COSMIC, for 166 patient tumor
samples, both overexpression (five samples) and underexpression
(three samples) of SYMPK was seen. Therefore, further study is
warranted in order to determine the role of SYMPK in GBM. Initial
studies should focus on orthogonal validation using techniques
such as peptide MRM or western blotting. Orthogonal validation is
especially important due to the nature of the quantitative
comparison. In addition to confirming significant changes in
SYMPK in GSCs 2, 11, 13, 231 and 296, orthogonal validation might
reveal significant changes in protein expression in other cell lines.

SYMPK has been found in both the nucleus and in tight junction
complexes (TJ) [61]. As a nuclear protein, it is involved in histone 30

mRNAmaturation as a part of the polyadenylationmachinery [62].
As a TJ protein, it has been found to modulate cellular architecture
and has been shown to play a role in maintaining mitotic fidelity
through the support of spindle formation [59]. In human colorectal
cancer cells, increased expression of SYMPK in the nucleus was
shown to promote tumorigenesis through upregulation of claudin-
2 [60]. A pangenomic loss-of-function screening assay identified
SYMPK as a potent chemosensitizer; reduced levels of SYMPK
caused non-small-cell lung carcinoma cells to be sensitive to lower
doses of paclitaxel [63]. In a follow-up study, knockout of SYMPK
was shown to inhibit tumor growth through induction of mitotic
defects, both in vitro and in vivo, while not affecting normal cells
[60]. Given these results, SYMPK might prove to be a useful target
in the design of a novel chemotherapy-based treatment strategy
for GBM. The commonly accepted treatment protocol for GBM
involves surgical resection, followed by chemotherapy treatment
(usually with TMZ as adjuvant chemotherapy), and radiation [6],
but a recent study has demonstrated the effectiveness of
combination therapies using TMZ and paclitaxel [64]. Another

[(Fig._4)TD$FIG]

Fig. 4. GO Biological Processes analysis of protein cluster decreased in mesenchymal GSCs. Bar chart represents classification of GO biological processes as determined by
DAVID. Bars represent the number of proteins in the specified category, while the black line indicates statistical significance (�10log(p)).
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study, using paclitaxel poliglumex in combination with TMZ and
concurrent radiation, showed some promise in terms of overall
survival, but the drugs could not be combined safely due to toxicity
issues [65]. Therefore, it would be useful to measure the
effectiveness of SYMPK knockdown to enhance the effectiveness
of a combined chemotherapeutic regimen in GSCs.

4.2. Newly reported upstream regulators SYVN1 and IL5

Upstream analysis, as performed in IPA, identifies upstream
regulators whose activation or inhibition is consistent with
measured protein fold changes. In our study, several species
known to be dysregulated in glioma were identified as upstream
regulators in both tumors and glioma cell lines, includingMYC [66–
71], MYCN [72,73], TP53 [74–77], and RB1 [71]. Identification of
these known upstream regulators provides greater confidence in
the novel upstream regulators identified in our study, SYVN1 and
IL5. It is important to emphasize that upstream analysis provides
an indication of protein activity rather than expression level,
although changes in expression may accompany activation or
inhibition. In addition, our z-scores were calculated from fold
changes relative to M37. Although the results indicate a similar
pattern of behavior for several mesenchymal cell lines, the novel
findings in this study would require activity and/or functional
assays for validation.

SYVN1 is an E3 ubiquitin ligase, transferring ubiquitin
specifically from ubiquitin-conjugating enzyme E2 G1 (UBC7) to
its substrates, thus promoting their proteasomal degradation. It is
involved in ER-associated degradation system, targetingmisfolded
proteins for degradation.Within the brain, SYVN1protects neurons
from apoptosis by promoting degradation of polyglutamate-
expanded huntingtin protein (HTT) and unfolded prosaposin
receptor GPR37 (GPR37). Perhaps most significantly, SYVN1 acts
as a negative regulator of TP53 by sequestering it in the cytoplasm
and promoting its degradation. Through degradation of TP53,
SYVN1 plays a critical role in regulating transcription, cell cycle
regulation and apoptosis [78].

The association between TP53 and SYVN1makes the prediction
of SYVN1 as an upstream regulator particularly intriguing.
According to the COSMIC database, 25% of Astrocytoma Grade IV
(GBM) samples were found to have mutations in TP53. This
number is lower than the 87% mutation frequency cited by TCGA
[13]. In terms of expression data, nine out of 166 samples (�5.5%)
demonstrated overexpression of TP53, while five samples (3%)
showed overexpression. It has been found that mutations in TP53
lead to decreased degradation of p53 protein oligomers, resulting
in increased accumulation in the nucleus [75]. Therefore, the role
of SYVN1 in GBM merits further study.

IL5 is intriguing due to reports linking levels of this cytokine
with LGALS1, a protein that has been long known to suppress
immune response through apoptosis of T cells [79]. Previous
studies in GBM have demonstrated that increased levels of LGALS1
at the tumor margin are linked to invasivity [80], a process that is
believed to occur through suppression of the innate immune
response [81]. Moreover, LGALS1 and IL5 have been linked in other
types of cancer. A recent study of pancreatic stellate cell lines, the
origin of elevated LGALS1 found in pancreatic ductal adenocarci-
noma stromal tissue, showed a correlation between elevated
LGALS1 expression and increased levels of IL5 [82]. Further, both
knockdown and inhibition of LGALS1 reversed the elevation in IL5
levels. Given these findings, we believe that further study, aimed at
determining a possible role of IL5 in invasivity of GBM, is
warranted.

4.3. SRSF2 linked to chemoresistance

In our analysis, a distinctive proteomic signature was present
for a cluster of proteins that were decreased in several of the
mesenchymal cell lines. Processes relating to RNA splicing were
highly represented in this cluster, and SRSF2 was implicated as an
upstream regulator. SRSF2 itself was a part of this cluster and
demonstrated lower relative protein expression. In the COSMIC
database, for a total of 712 Grade IV astrocytoma (GBM) tumor
samples, no RNA-level copy number variation, overexpression, or
underexpression were reported for SRSF2. This discordance is not
surprising; it is well known that correlation between protein and
transcript data is not high. Regulation of protein abundance is not
controlled solely by RNA transcription; factors such as protein and
transcript stability both come into play. Studies conducted across a
variety of species have shown poor to moderate correlation
between protein and transcript [55–58]. Therefore, our findings
serve to further highlight the utility of quantitative proteomics in
the quest for therapeutic targets. As is the casewith other reported
findings, orthogonal validation is an important and necessary step
in this process. Western blotting and/or peptide MRMwork would
be a critical step in confirming the measured decrease in SRSF2 in
mesenchymal cell lines andmight also uncover significant changes
in expression in other cell lines.

SRSF2 is involved in pre-mRNA splicing and is a required
member of the ATP-dependent splicing complex. Although there
are no literature reports of SRSF2 associated with GBM, SRSF2 has
been associated with other cancers. Recent reports have linked
SRSF2 to chemoresistance in hepatocellular carcinoma [83] and
bladder cancer [84,85]. The basis of SRSF2 chemoresistance is
related to upregulation of miR-193a-3p, which has been found in a
recent study to be upregulated in hypoxia and in GBM tumor
samples [86]. Upregulation of miR-193a-3p was shown to lead to
suppression of SRSF2 [84]. Given the relatively lower expression of
SRSF2 in our mesenchymal GSCs, miR-193a-3p is worthy of further
study.

Cellular levels of SRSF2 are regulated by an acetylation/
phosphorylation signaling network [87]. Proteasomal degradation
of SRSF2 is controlled by acetylation on lysine 52, catalyzed by
histone acetyltransferase KAT5 [87]. This effect is counterbalanced
by the deacetylase HDAC6. Moreover, KAT5 was found to
negatively control SRSF2 phosphorylation [87]. Because SRSF2 is
known to inactivate TP53, this crosstalk of post-translational
modifications is critical in carcinogenesis. Phosphorylation of
SRSF2 by SRSF protein kinase 2 (SRPK2) inactivates TP53, resulting
in cyclin D1 expression and neuronal apoptosis [88]. Therefore, in
addition to a measurement of protein expression, it would be
critical to study SRSF2 phosphorylation and acetylation in the
GSCs.

5. Conclusions

We have demonstrated the utility of using a mixed control
sample in the relative quantification of GSCs. Through our analysis,
wehave identified GSC proteinswith known association toGBM, as
well as several novel ones, including SYMPK, SYVN1, and IL5. These
proteins all connect, both directly and indirectly, to TP53 (Fig. 5).
This combination of known and novel proteins demonstrates the
hypothesis-generating power of our approach. Further studies are
warranted to evaluate our novel findings in GSCs.
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Fig. 5. Network demonstrating connection between novel and known regulators or
GBM. A network demonstrating connection of our newly reported proteins SYMPK,
SYVN1, IL5, and SRSF2 to known GBM-related proteins TP53 and LGALS1. Solid lines
indicate direct interactions, while dashed lines indicate indirect interactions.
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