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AsTrRAcr A theory is presented which quantitatively links the physical properties
of a flagellum with parameters which characterize the chemical reactions responsible
for deforming the flagellum. Realistic values for the wave parameters are predicted
when order-of-magnitude values for the appropriate constants are used. The model
may be useful in other fields where mechanochemical coupling occurs.

INTRODUCTION

In recent theoretical analyses of the behavior of an undulating flagellum some suc-
cess has been achieved by representing the organelle as a vibrating beam (Machin,
1958, 1963; Rikmenspoel, 1965). From this type of analysis it is possible to express
the wave parameters of the flagellum in terms of its elasticity and the viscosity of the
surrounding medium. Other observations (Brokaw, 1968) suggest that this simple
approach is not entirely satisfactory, but its moderate success indicates that the
method warrants further examination.

Analytical methods of Machin (1958) have shown that to sustain the observed
wave forms energy must be provided along the length of a flagellum. This energy will
be stored in the flagellum in chemical form before its use. To bend the flagellum a
reaction occurs which allows chemical energy to be converted into mechanical
energy. It is possible to relate the beat frequency of a flagellum to the rate constant
of a first-order chemical reaction associated with the energy conversion (Holwill and
Silvester, 1965). This reaction is one which limits the beat frequency of the flagellum
although it is not necessarily the one which provides the energy necessary for beating.
A kinetic analysis of the system predicts the variation of beat frequency with tem-
perature that is observed in practice (Holwill and Silvester, 1965, 1967; Holwill,
1969, 1970).
In this paper a consideration of the tension within the flagellum is used to obtain

equations which unite the two types of approach described above. The rates of the
chemical reactions responsible for flagellar activity depend upon the tensions to
which the reactants are subjected, while the same tensions contribute to the forces
which bend the flagellum. The relationships obtained on the basis of chemical
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kinetics are combined with others based on the theory of bending beams to produce
equations which are independent of the tension. In this way the measurable param-
eters of flagellar wavelength and beat frequency can be related to parameters which
characterize the as yet undetermined reactions which bend the flagellum.

REACTION KINETICS

To derive the required expressions it is first necessary to investigate the manner in
which the rate of a chemical reaction depends on the tension to which the reactants
are subjected.
According to the absolute rate theory (Eyring, 1935) a general reaction,

A +B+ C...=X$ *L+M+N+ ..

proceeds through an unstable transition state X* (referred to as the activated state)
and the rate of the reaction is assumed to depend only on the rate of transition
from X* to the products L, M, N.... This rate is determined by the concentration
of X* which may be calculated if equilibrium is assumed between the reactants and
the activated state. Using the absolute rate theory a simple general mathematical
treatment of the progress of the reaction is made possible by this equilibrium as-
sumption. A few detailed analyses which do not assume equilibrium have been
made (see e.g. Laidler, 1965), but there is no significant discrepancy between these
and the method using the equilibrium assumption, provided the activation energy
for the process exceeds 5RT, where R is the gas constant and T the absolute tem-
perature. Holwill and Silvester (1967) have estimated the activation energy for a
chemical reaction which they consider limits the flagellar beat frequency. The
value they obtain, about 62 kJ mole-', is greater than 5RT (about 12 kJ mole-' at
temperatures in the region of 200C) thus providing somejustification for the equilib-
rium assumption in the present analysis.
From the absolute rate theory, the following relation is obtained for a first-order

rate constant k
kT / AG*\ 1

k = P-exp (-- *1hT' RT/

Here AG* is the change in the Gibbs free energy in passing from reactants to the
activated state, P is a transmission coefficient often taken as unity, and h, k are the
Planck and Boltzmann constants respectively.

Suppose that the reactants are subjected to a tension and that the work done by
the fiber in respect to its variations in length and tension is very much greater than
that due to pressure and volume changes. By analogy with the effects of pressure on
reaction rates (e.g. Laidler, 1958) it is found that

k1= ko exp (2)
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where ko is the rate constant at zero tension, J is the tension, and Al* is a mean
change in length associated with activation.
The tension dependence of the rate of a chemical reaction expressed in equation

2 will be used to investigate the behavior of a generalized model of an active flagel-
lum.

A GENERALIZED FLAGELLAR MODEL

For analytical purposes we shall consider a generalized model of a flagellum capable
of propagating two-dimensional waves. This model contains an elastic filament
which resists the bending induced by forces from two bilaterally symmetric molecular
fibers (Fig. 1). The nature of the molecular arrangements need not concern us
here, but current ideas favor either a system where localized contraction occurs
or one in which filaments slide relative to one another.
The observed patterns of flagellar bending require chemical energy to be available

at all points along the flagellum (e.g. Holwill, 1966). To produce bending each
fiber must, effectively, be capable of local contraction and extension. At a given
point on an individual fiber two chemical reactions may occur, one to elongate the
fiber, the other to shorten it.
From absolute rate theory the velocities VL and Vs of these reactions may be

written

VL= CLexp (AILJ), and (3)

(RT)
Vs =Csexp k RT)' (4)

where J is the local tension of the reactants while CL and Cg are temperature-

////ELA~STIC BEAM

MOLECULAR
FIBER

FIGuRE 1 A bilateral arrangement of molecular fibers capable of bending the elastic beam
which contains them. With correct phasing of the activation of the two fibers, the elastic
beam can execute planar undulations similar to those observed on the flagella of many
organisms.
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dependent coefficients which are in general functions of the concentration of the
reactants. AIL* and A1s* are the changes in length associated with activation of the
two processes.
The relative extension (e) of a fiber will be governed by the changes (+ e) in

length which occur during a single shortening or elongating reaction, together with
the effects of elasticity in the fiber. We can write

de dJ + e Clexp IAL*J Cs exp r )](5*)=at-+E[Ct e P RTI Cep RT(5
where a is an elastic constant. If J and e are sufficiently small that second and
higher powers of them can be neglected, equation 5 may be rewritten in the form

de dJ=a + pJ- qe + (,6

where p, q, and g are constants. Equation 6 represents the response of the molecular
fiber for small values of J and e. In actual flagella the assumptions of small J and e
may well be invalid in certain segments of the contraction-extension cycle, but they
will be made here to show that the mechanochemical approach can produce a model
capable of generating waves similar to those on flagella.

WAVE PROPAGATION ALONG FLAGELLA

The response described by equation 6 can be incorporated into equations relating
to a beam bending in a viscous fluid as derived by Machin (1958).

In his analysis Machin (1958) obtained the following expression for the small
displacement y of an elastic filament distorted by active bending moments
M(x, t) in a viscous medium:

aM+aY + by = O. (7)
Ox aX4 Oit

a is a constant describing the elastic properties of the beam while b is a constant
proportional to the viscosity of the medium. If the bending moment arises from equal
and opposite tensions in the bilaterally arranged fibers (Fig. 1), then

M = cJ, (8)

where c is a constant, and if the distance between the two fibers is 2d (Fig. 1), then
the extension of the "outer" fiber per unit length is

82e = drau (9)

provided the curvature is small.
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From equations 6-9 the following differential equation may be obtained

(cd + aa) + (qcd + ap) dxo + bat.-.Y + bp d = . (10)

A solution of equation 10 is

y = [exp (rnt) + Kexp (r2t)]IEl exp (- ikx) + E2 exp (- kx)

+ E3 exp (ikx) + E4exp (kx)), (11)

where r1 and r2 are given by taking the alternative signs of the root in the equation

r = 2b- -[pb + k4(cd + aa)l

41 -Vp2b2 + 2pbk4(cd + aa) + e(cd + aa)2 - 4bk'a(qcd + ap)1. (12)

Equation 11 will be oscillatory provided r is complex, but sustained oscillations of
finite amplitude are only possible if r is purely imaginary. This is the situation which
would reasonably correspond to the observed behavior of flagella, and it is therefore
of interest to investigate it further.
The wavelength (2Tr/k) and frequency (w/27r) of the oscillation are given by

2b + k4(cd + aa) = 0 (13)

-2 p (ap + qcd\
a cd+ aa 14

For real values of k and w it is clear from equations 13 and 14 that p must be
negative and that (ap + qcd) must be greater than zero, since all constants except
p and q are necessarily real and positive. In the next section we will show that realistic
values for the various parameters can yield orders of magnitude for k and co which
are found in real flagella.

In an oscillatory solution of equation 10 the first and third terms in the braces of
equation 11 represent propagating waves in opposite directions. The other two
terms represent an exponential increase and decrease in displacement. The solution
which applies to a flagellum requires the specification of the boundary and initial
conditions appropriate to this case. These boundary conditions are not known for a
real flagellum (Machin, 1963), but the form of a solution can be obtained for various
ideal situations in which the proximal end of the flagellum is freely hinged, rigidly
clamped, or free, while the distal end is free. For any combination of these conditions
it can be shown that El = EjI so that the amplitudes of the propagating waves
are equal and the system will exhibit standing waves. Such a system cannot produce
a propulsive force, and is thus not a reasonable model of a flagellum. It is only when
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the transverse and angular impedances at least at one end of the flagellum are neither
zero nor infinite that El and Es are not equal, so that one of the progressive
waves will dominate, thereby allowing propulsion to occur. A more detailed dis-
cussion concerning the impedances is given by Machin (1963) who shows that a
propagating wave form will arise at least in the situation where the impedances at
one end of the flagellum are such that energy absorption by a viscous-type mecha-
nism occurs and that a source of energy is also present. Without more knowledge
about the function of the various structural elements of a flagellum it is not possible
to express the impedances in mathematical terms. It is interesting to note, however,
that Rikmenspoel (1966), using a different type of analysis, has shown that the wave
velocity along the type of elastic system envisaged here is largely independent of the
exact form of the boundary conditions.

ESTIMATION OF WAVELENGTH AND FREQUENCY

We will assume that the boundary and initial conditions of the system are such that
progressive waves of finite amplitude are sustained by the model system.
To obtain orders of magnitude for the wavelength (27r/k) and the beat frequency

(w/2ir) predicted by equations 13 and 14 it is first necessary to estimate values
appropriate to flagella for the various parameters in equations 13 and 14. A pre-
liminary requirement for this is the assumption that bending forces arise in a
particular structural component of the flagellum. It is not possible to assign a func-
tion with any certainty to a particular flagellar feature, but in the majority of models
of flagellar bending so far proposed the outer ring of nine fibers in the 9 + 2 ax-
onemal complex figures prominently as the origin of the bending force. There are
several ways in which the nine fibers could be used to produce planar bending, but
it is reasonable to suppose that both c (equation 8) and d (equation 9) will have
values of the order of the radius of the nine-fiber ring. From electron microscope
studies a typical value for this radius is 0.075 ,u (e.g. Gibbons, 1967), so that c and d
are each of the order of magnitude 10-1 ,u.
The parameter a (equation 7) is the stiffness of the elastic beam and can, in

principle, be calculated for a flagellum, if a particular structural feature is assumed
to have the elasticity which opposes the bending forces. Since several authors
(Holwill, 1966; Rikmenspoel, 1966; Rikmenspoel and Sleigh, 1970) obtain values in
the region of 102 N m2 for the stiffness of certain cilia and flagella, we will assume
this value for the present calculation.

In equation 7 the coefficient b involves the viscosity (,A) of the fluid in which the
flagellum moves and has the form

b=2 RX ( 15)

where R is the Reynolds number for the system. For an aqueous environment and a
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Reynolds number of lo-' (e.g. Holwill, 1966), b has an order of magnitude 1 m N
sec.
An estimate of the elastic constant a can be made by assuming that the molecular

forces which give the fiber its elastic properties are, in common with many materials,
about one order of magnitude weaker for small strains than those involved in
covalent bonding. A realistic value for the order of magnitude of a is then 109 N-1.
Bothp and q (equation 6) are difficult to estimate with accuracy, but by expanding

the exponentials of equation 5 we see that p has the same order of magnitude as
eCAI*/RT in which the subscripts L and S have been omitted. The activation length
may be positive or negative (Glasstone et al., 1941) but commonly observed values
for Al*/RT are of the order 1010 N-1. The parameter C will approximate the number
of molecular changes involving extension or shortening per unit length of a fiber.
Using the data of Silvester and Holwill (1965) the value for C has an order of
magnitude of 1011 mi- sec-'. Taking a value of 100 nm for e we obtain an estimate
for p of 4 1012 N-1 s-'. In an oscillatory system, as we have already seen, it is neces-
sary that p should take the negative value.
To obtain an order of magnitude for q it is again necessary to assume a fairly

specific mechanism for the chemical reactions underlying shortening and elongation
of a fiber. Since the molecule adenosine triphosphate (ATP) is known to be in-
timately involved in flagellar activity it is natural to consider the values of q that
would arise if the fibrillar shortening and extension were the result of the breakdown
and formation of an ATP-enzyme complex. If the reactions are of first order then q
turns out to be the sum oftwo real or apparent rate constants, and for the mechanism
mentioned above has an order of magnitude of 10-8 at reasonable values of the ATP
concentration. For convenience the estimates we have made are summarized in
Table I.

Substituting these values in equations 13 and 14 we find that the predicted wave-
length and beat frequency have orders of magnitude of 10 ,u and 100 sec-' respec-
tively. These values agree well with the wave parameters observed on real flagella.

TABLE I
ORDERS OF MAGNITUDE OF THE

PARAMETERS INVOLVED IN
THE THEORY

Parameter Order of magnitude

c 101 m
d 1O m
a 1-22 N m2
b 1 m N sec
a 109 N'
p - 1012 N-1 sec-'
q 10 sec-1
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DISCUSSION

In this paper we have used chemical kinetics and the theory of bending beams to
obtain an expression for the wave parameters of an elastic system (which represents
a flagellum) in terms of coefficients associated with the chemical reactions which
bend and straighten the beam. To obtain these equations several approximations
were made, the most important of which are the specification of small amplitudes
and the neglect of higher powers than unity of the tension and extension of the
molecular fiber in the expansion of the exponential terms in equation 5. It is likely
that none of these approximations is valid for a real flagellum so that the equations
13 and 14 derived here are to be regarded as a first step in the development of
nonlinear flagellar models.

Equations 13 and 14 allow specific mechanisms for flagellar activity to be examined
for feasibility. For example, they immediately show that a purely passive elastic
system (which is characterized by zero values ofp and q) cannot sustain undamped
oscillations, a fact which has been demonstrated in earlier work (e.g., Machin, 1958).
Similarly, certain types of viscoelastic systems in which p and q are both positive
cannot account for observed flagellar behavior. Any system in which q = 0, such
as one involving zero-order rate processes, is also unsatisfactory. As noted earlier,
however, a system involving first-order reactions can yield values of p and q which
permit the formation of sustained undulations.

It is encouraging that the use of reasonable values for the chemical and physical
parameters (Table I) in equations 13 and 14 leads to realistic values for the wave-
length and beat frequency of the model. The reliability of the values obtained by this
method can bejudged only with difficulty, mainly because of the problems associated
with the estimation of p, q, and a; however, the estimates of p, q, and a are unlikely
to be in error by more than one or two orders of magnitude. In the most unfavorable
case this could result in values one order of magnitude greater for the wavelength
and frequency, but in view of the methods used for the estimation, this magnitude
of discrepancy is not unreasonable.

Equations 13 and 14 do allow certain predictions to be made about the variation
of the flagellar wave parameters with altered physical and chemical conditions, such
as viscosity, temperature, and concentration of chemical substances. The results of
these investigations will be reported elsewhere, but we may note here that good
agreement is obtained in most cases between the experimental results and the pre-
dictions of our equations. In these experiments, the values for p, q, and a are ob-
tained graphically and are found to have values of the order of magnitude shown in
Table I.
One serious discrepancy of the theory presented here is the prediction of equation

14 that the beat frequency should be independent of the viscosity. In practice the
frequency decreases significantly when the viscosity is increased by one or two orders
of magnitude. This failure is a direct consequence of the approximations made in
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describing the model, and can be eliminated by including nonlinear terms in the
analysis. Machin (1963) has shown that the effect of including certain types of non-
linearity in the analysis of a similar model is to allow only one propagating wave to
be present at any time on the flagellum. We are currently investigating the effects of
nonlinearities on the behavior of our model and can say at this stage that the
equations predict a dependence of the oscillation frequency on viscosity, although
we cannot express this dependence quantitatively.
The results we have obtained are largely independent of the adoption of a specific

model for the flagellum, but may be used to predict the properties of the various
components of such a model. In a local contraction model, for instance, the elastic
coupling between adjacent units would be characterised by the parameter a while
this same parameter would determine the nature of the elasticity in the cross-linkages
of a sliding filament model. Of more fundamental importance is the expression of the
chemical parameters in terms of the physical properties of the system. The formula-
tion of this type of mechanochemical coupling is of importance not only in the field
of flagellar activity but in any system, e.g. muscle, peritrich stalks, mitotic spindles,
where a chemical reaction leads directly to the development of motive force.
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