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The house mouse Mus musculus represents a valuable tool for the analysis and the understanding of
the mammalian circadian oscillator. Forward and reverse genetics allowed the identification of
clock components and the verification of their function within the circadian clockwork. In many
cases unforeseen links were discovered between a particular circadian regulatory protein and var-
ious diseases or syndromes. Thus, this model system is not only perfectly suited to pinpoint the com-
ponents of the mammalian circadian clock, but also to unravel metabolic, physiological, and
pathological processes linked to the circadian timing system.

� 2011 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
1. Introduction

The house mouse Mus musculus represents a well-characterized
model system. It combines the ease of genetic manipulation with a
relatively high reproduction rate and fast developmental progres-
sion. In addition, most of its genome is mapped and sequenced.
Thus, it is not surprising that the house mouse is used also in the
field of mammalian chronobiology. As such, circadian phenotypes
are easy to detect. Locomotor activity or voluntary locomotor
activity is measured with passive devices (implanted sensors or
infrared-beam breaks) or running wheel devices, respectively [1].
Mice as nocturnal creatures are active mainly during the dark
phase. This property is maintained under free-running conditions
(i.e., constant darkness), when its endogenous circadian clock dic-
tates the behavior of the animal, devoid of all external timing cues.

The circadian timing system of mammals is organized in a hier-
archical manner [2,3]. A specialized center in the hypothalamus of
the brain synchronizes the organism to the external photoperiod.
This center, localized close to the chiasm of the two optic nerves,
is called suprachiasmatic nucleus (SCN). It receives light input from
the eyes and multiple auxiliary brain regions and its output estab-
lishes stable phase relationships between peripheral circadian
on behalf of the Federation of Euro

er@unifr.ch (J.A. Ripperger),

sity of Fribourg, P.O. Box 209,
clocks. At the base of circadian phenomena are molecular oscilla-
tors [4,5]. These cell-autonomous, self-sustained devices are based
on transcriptional and post-translational feedback loops. Since cir-
cadian oscillators provide a periodicity that is not exactly 24 h
(about 23.5 h in mice), the phase needs to be adjusted every day
to match the external photoperiod. Due to the ability to respond
to environmental signals such as light, the molecular network of
the circadian oscillator is perfectly synchronized to the external
photoperiod.

Specially equipped animal facilities can screen dozens, some-
times hundreds of mice in parallel for disturbances of their circa-
dian timing system. Absence, shortened or lengthened wheel-
running behavior (change in period), and alterations to adapt to
changing photoperiods (phase-shifting) may indicate alterations
in the circadian timing system. Starting from a forward genetics
approach, the mutation responsible for a given phenotype is
identified by positional cloning. Starting from a candidate gene
approach, the responsible gene or its mutation is known in ad-
vance. Its effect on the circadian oscillator is analyzed. Transgenic
mice are sometimes used to address specific regulatory phenom-
ena. In contrast to e.g., tissue culture cells, the house mouse is
not only suitable for research on the circadian oscillator, but also
suitable to monitor the impact of mutations on the coordination
of the entire metabolism and physiology.

We will start with an overview of mouse model systems and
their impact on our understanding of the mammalian circadian
oscillator. Then, we focus on some special mouse mutants that
allow deeper insight into the functioning of the circadian clock.
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Finally, we focus on the interplay of the clock mechanism with dis-
turbances that resemble diseases found in humans.

2. Disturbing rhythms of mice

The first mouse gene identified to be involved in the mamma-
lian circadian oscillator was Circadian locomotor output cycles kaput
[6] (Clock; Table 1). It was found in a large-scale mutagenesis and
phenotype screen from N-ethyl-N-nitrosourea treated mice. The
mutation was mapped by positional cloning and its phenotype
could be attenuated by the incorporation of additional transgenes
containing a functional Clock locus into the genome of mice [7,8].
The mutation arose most probably from an A to T point mutation
in the 50 splice site of intron 19. As a consequence an in-frame dele-
tion of the entire exon 19 resulted (D19). This autosomal-dominant
mutation provoked a lengthening of the free-running period (up to
28 h) and eventually arrhythmicity. Even if we believe nowadays
that many of the phenotypes observed with these mice were due
to a gain-of-function phenotype of the resulting mutant CLOCKD19

protein, its impact on the model building of the mammalian circa-
dian oscillator was tremendous. After the identification of CLOCK’s
function as a transcriptional activator operating via so-called E-box
motifs [9,10], a model based on a transcriptional and post-
translational feedback loop integrating positive and negative ele-
ments was proposed for mammals [11] (see Fig. 1).
Table 1
Mouse circadian clock and clock-related genes (modified from [4]).

Gene Average CT at peak expression

SCN Periphery

Bmal1 15–21 22–02
Clock Constitutive 21–03

Per1 4–8 10–16

Per2 6–12 14–18

Per3 4–9 10–14
Cry1 8–14 14–18

Cry2 8–14 8–12

Rev-erba 2–6 4–10

Rora 6–10 arr. various

Rorb 4–8 18–22

Rorc N/Ab 16–20 variousb

NPAS2 N/Ab 0–4
Bmal2 Constitutive

CK1e Constitutive Constitutive

CK1d Constitutive Constitutive
DecI 2 14

Dec2 6 14

Tim 12d Various

Fbxl3 n/de n/de

a Two independent groups generated Cry1 and Cry2 null mutants and the mice showe
b N/A = not detected in the SCN.
c Hamster mutation.
d The Tim full-length transcript is rhythmically expressed in the SCN but not the shor
e n/d = not determined.
Some years later, a knock out model for the Clock gene was
established [12]. These mice had a slightly shorter period length
than their wild-type controls. In further experiments it was found
that NPAS2, a true homolog [13], compensates for the lack of func-
tional CLOCK protein in the SCN [14]. Consequently, double knock
out mice, by contrast to the individual single knock out mice, were
behaviorally arrhythmic. Surprisingly, the CLOCK protein had a
much greater impact on peripheral oscillators than NPAS2, which
is most operative in the brain [15]. This indicates that within the
circadian oscillator homologous proteins can fulfill tissue-specific
tasks of gene expression. Most probably, due to its nature as a
dominant-negative regulator with normal DNA-binding capability,
the mutant CLOCKD19 protein could interfere with the activity of
both wild-type proteins and therefore provoke a striking pheno-
type [6–8].

To function as transcriptional activator, the CLOCK protein
forms heterodimers. Its interaction partner was identified as
Mop3/BMAL1 [16,17]. The proteins bind together to their cognate
DNA target sequences so-called E-boxes. Single knock out mice
for Mop3/Bmal1 became immediately arrhythmic after their
release into constant dark conditions [17]. Therefore, this protein
appeared to have a prominent function within the circadian
oscillator. The mice displayed further phenotypes like reduced
activity and body weight. These phenotypes could be rescued by
the tissue specific expression of Bmal1 in the muscle, while the
Allele Mutant phenotypes in DD Ref.

Bmal1�/� Arrhythmic [17]
ClockD19/D19 4 h longer period/arrhythmic [6]
Clock�/� 0.5 h shorter period [12]
Per1Brdm1 1 h shorter period [29]
Per1ldc 0.5 h shorter period [107]
Per1�/� 0.5 h shorter pd/arrhythmic [27]
Per2Brdm1 1.5 shorter pd/arrhythmic [26]
Per2ldc Arrhythmic [107]
Per3�/� 0–0.5 h shorter period [108]
Cry1�/�a 1 h shorter period [34]

[36]
Cry2�/�a 1 h longer period [34]

[35]
Rev-Erba�/� 0.5 h shorter period

Disrupted photic entrainment
[41]

Staggerer 0.5 h shorter period
Disrupted photic entrainment

[46]

Rorb�/� 0.5 h longer period [47]
[109]

Rorc�/� Unknown
NPAS2�/� 0.2 h shorter period [110]

n/de [111]
[112]

CK1etauc 0.4 h shorter period [113]
CK1e�/� 0.3 h longer period [114]
Csnkld�/+ 0.5 h shorter period [115]
Dec1�/� No difference in period [116]
Dec1�/� 0.15 h longer period [117]
Sharp2�/� No difference in period [118]

[119]
Sharp1�/� No difference in period [118]

[119]
n/de Embryonically lethal [120]

[121]
Fbxl3�/� 2–3 h longer period [51]

[49]
[50]

d similar phenotypes.

t form [120].



Fig. 1. Model of the mammalian circadian oscillator. Components of the core loop (BMAL and CLOCK/NPAS2) drive the expression of the Per and Cry genes. Upon reaching a
certain threshold concentration, the PER and CRY proteins enter into the nucleus. This causes repression of their synthesis. As a consequence, the protein levels of the
repressors decline and a new cycle of transcriptional activation and repression can occur. In concert with post-translational regulatory mechanisms depicted on the right (SCF,
FBXL3, CKI and CKII), which affect the stability or the cellular localization of clock components, a period length of about a day is obtained. To the core loop a variety of other
feedback loops are linked. The stabilizing loop consists of REV-ERBs or PPARa/RORs as repressors or activators of the Bmal1 gene, respectively. The oscillator drives directly
output genes (ccg), e.g., the Nampt gene, which regulates NAD+ synthesis and may therefore rhythmically affect SIRT1 activity. A relatively new link concerns the PER2
protein, which can interact with several nuclear receptors to fine tune the expression of the Bmal1 gene. (+) components of the positive limb of the core loop; (�) components
of the negative limb of the core loop. Adapted from [4,106].
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circadian phenotype was rescued solely by tissue-specific expres-
sion of Bmal1 in the brain [18]. A similar rescue was also possible
by reconstituting the expression of Bmal1 in the SCN by injection
of genetically modified adeno-associated viruses [19]. Tissue-spe-
cific knock out mice of the Bmal1 gene in the liver had no func-
tional oscillator in this tissue [20]. In addition, the glucose
metabolism in the liver was disturbed. Consequently, these mice
exhibited time-restricted hypoglycemia on the systemic level. This
particular finding suggested that peripheral oscillators are directly
involved in the control of rhythmic physiological processes (see be-
low). In Mop3/Bmal1 knock out mice, the expression of the related
Bmal2 gene was drastically down regulated [17,21]. A transgenic
rescue of Bmal2 expression in Mop3/Bmal1 knock out mice restored
rhythmic locomotor activity and the other phenotypes as well.
Therefore, similar to the situation of Clock and Npas2, there may
exist two functional variants of Bmal with redundant and non-
redundant functions.

The mouse mutants discussed so far had an impact on the posi-
tive limb of the core loop of the mammalian circadian oscillator
(Fig. 1). Complexes consisting of BMAL1/2 and CLOCK/NPAS2 com-
ponents bind rhythmically to DNA to activate transcription. The
players of the negative limb counterbalance their action. The first
mouse mutants generated for these players were for the Period 1,
2 and 3 (Per) genes [22–27]. The first two candidates were shown
to affect the circadian oscillator. Mice deficient for these proteins
displayed a shorter free-running period and in the case of PER2 be-
came gradually arrhythmic. However, this phenotype was some-
what dependent on the design and the genetic background of the
knock out mice [28]. The combination of Per1 and Per2 deficiency
yielded mice that became immediately arrhythmic under constant
dark conditions (Table 2) [29]. In addition, inducible overexpres-
sion of PER2 in the brain provoked arrhythmicity in transgenic
mice [30]. Therefore, PER proteins are mandatory for the feedback
mechanism of the circadian oscillator.

In analogy to the situation found within the Drosophila circadian
oscillator, the Per genes were considered as negative regulators of
their own expression. However, some of the phenotypes observed
also suggested a positive function of PER2 on the expression of the
Bmal1 gene [11,26,29]. This observation was recently strengthened
by the finding that PER2 can interact with nuclear receptors on the
regulation of the Bmal1 gene [31]. However, the main function of
the PER proteins is still to repress the activity of the BMAL/CLOCK
(or NPAS2) complex. Mechanistic insights were recently provided
from the Drosophila system. Here the singular Per protein interacts
with the analogous activating Cycle/Clock complex and they be-
come detached from the DNA together [32]. This causes repression
of Per gene transcription. A similar mechanism may be operative in
mammals as well.

The PER proteins form stable complexes with the Cryptochrome
(CRY) proteins, which are the other components of the negative
limb [33–36]. The individual knock out of either of the two variants
of these genes was quite interesting. While Cry1-deficient mice
displayed a shorter free-running period, Cry2 knock out mice
displayed a longer period. Mice deficient for both components



Table 2
Mice with multiple mutations in clock genes.

Genes Alleles Mutant phenotypes in DD Ref.

Bmal1/2 Bmal1�/�Bmal2tg Rhythmic [21]
Per1/2 Per1Brdm1/Per2Brdm1 Arrhythmic [29]

Per1ldc/Per2ldc Arrhythmic [107]
Cry1/2 Cry1�/�/Cry2�/� Arrhythmic [34]

[36]
Per1/Cry1 Per1Brdm1/Cry1�/� Rhythmic [37]
Per1/Cry2 Per1Brdm1/Cry2�/� Rhythmic <6 months, arrhythmic >6 months [37]
Per2/Cry1 Per2Brdm1/Cry1�/� Arrhythmic [39]
Per2/Cry2 Per2Brdm1/Cry2�/� Rhythmic [39]
Per1/Cry1/2 Per1Brdm1/Cry1�/�/Cry2�/� Arrhythmic, reduced activity, no breeding [38]
Per2/Cry1/2 Per2Brdm1/Cry1�/�/Cry2�/� Arrhythmic, reduced activity [38]
Per1/2/Cry1 Per1Brdm1/Per2Brdm1/Cry1�/� Arrhythmic, reduced activity, no breeding [38]
Per1/2/Cry2 Per1Brdm1/Per2Brdm1/Cry2�/� Arrhythmic, reduced activity, only 2 litters [38]
Per1/Rev-erba Per1Brdm1/Rev-Erba�/� Rhythmic, high amplitude resetting [122]
Per2/Rev-erba Per2Brdm1/Rev-Erba�/� Rhythmic, can switch to arrhythmic and back [31]
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became immediately arrhythmic similar to the Per1/Per2 double
knock out mice (Table 2). Interestingly, certain combinations of
single knock out mice of Per and Cry genes can have more or less
severe phenotypes [37–39]. This can be explained by complex
formation of PER and CRY proteins with different affinities and
activities. However, the free-running behavior of a knock out
mouse may be misleading. Intercellular coupling of SCN neurons
can mask the effect of a gene knock out [40]. For example, defi-
ciency for Per1, Cry1, or Cry2 has only a mild impact on an intact
SCN but a severe impact on dissociated SCN neurons. Hence, inter-
cellular coupling can provide robustness to the circadian oscillator
against perturbations that are due to the lack of an oscillator
component.

Coupled to the core loop is a second, stabilizing loop (Fig. 1). Mice
deficient for the nuclear receptor REV-ERBa showed a shorter period
probably due to dampened amplitude of Bmal1 expression [41]. The
REV-ERBaprotein bound to the promoter region of the Bmal1 gene in
the phase of transcriptional repression [31]. This specific action of
REV-ERBa was exploited to shut down specifically the circadian
oscillator in the liver [42]. Inducible overexpression of this nuclear
receptor completely abolished Bmal1 expression and consequently
the rhythmicity of the circadian oscillator. Surprisingly, some genes
were rhythmically expressed in such livers, including the Per2 gene.
These rhythmic gene expressions were demonstrated to rely on
systemic cues. A function for the related Rev-Erbb gene on the
circadian oscillator was not yet examined in vivo. In tissue culture
cells it behaves very much like the Rev-Erba gene [43].

In contrast to the negative regulator REV-ERBa, the nuclear
receptors RORa and PPARa were important for the transcriptional
activation of the Bmal1 gene in the SCN and the liver, respectively
[44–46]. Other related nuclear receptors like RORb and PPARc had
also an impact on the circadian oscillator or Bmal1 expression
[43,47,48]. Nuclear receptors hence target preferentially the stabi-
lizing loop. The precise functions of the stabilizing loop, however,
remain to be determined. In mice, rhythmic expression of the
Bmal1 gene e.g., in the liver appears unnecessary for core oscillator
function and circadian rhythm generation [31]. However, in the
SCN with constant high expression of BMAL1, there was a yet to
be determined impact on the free-running behavior observed.

Taken together, the various genetic mouse models were very
valuable to unravel the operating mode of the mammalian circa-
dian oscillator (Fig. 1). The transcriptional activators BMAL/CLOCK
(or NPAS2) activate transcription of the Per and Cry genes via E-box
motifs. Upon reaching a certain threshold concentration, the
negative components feed back onto their own synthesis. When
the protein concentrations finally decline, repression is released
and another cycle of about a day can occur. Problems arising with
the interpretation of circadian phenotypes are due to the fact that
all the relevant components of the oscillator structure exist at least
in duplicates. There may consequently be redundant and non-
redundant functions for each set of components. As a conclusion,
further investigations are necessary to assign precise functions to
each component and to understand the clockwork of the circadian
oscillator. An interesting avenue in this context is the study of epi-
genetic regulation of gene expression reviewed in this issue by
Merrow and Ripperger.

3. Lessons from mice

Forward genetics, as mentioned above, provides information on
the phenotype, the responsible mutation and sometimes allows
drawing conclusions about the function of the protein involved.
Recently, two large-scale mutagenesis projects identified two inde-
pendent mutations in the same protein [49–51]. The FBXL3 protein
is an E3-type ubiquitin ligase. The two independent mutations,
provoking very long free-running periods of about 27–28 h of
homozygous animals, mapped to an interaction domain for CRY
proteins. Indeed, due to the lack of interaction, the CRY proteins
were less ubiquitinylated and hence became stabilized. Surpris-
ingly, on the molecular level, the expression of the Per genes was
down-regulated, provoking long periods due to prolonged repres-
sion by CRY proteins [51].

Interesting insights in further post-translational regulatory
phenomena were obtained by generating mice with a human
transgene for the Per2 S662G mutation [28]. These mice could
phenocopy the familial advanced sleep phase syndrome observed
in certain families. The mutation of serine 662 to glycine inacti-
vates the first phosphorylateable serine in a phosphorelay located
in this region of the PER2 protein. The phosphorylation of serine
662 greatly facilitates phosphorylation of serine 665, 668, 671,
and 674 by Casein kinase I (CKI). Mice with the human transgene
and this particular mutation displayed a drastically shorter free-
running period length. Surprisingly, when a transgene was intro-
duced into mice with a serine 662 to aspartic acid substitution, a
longer period length resulted, indicating that the phospho-mimick-
ing amino acid allowed for normal CKI function on the phosphore-
lay. Transferring the different transgenes into heterozygous CkId
knock out mice supported the hypothesis that CKI was involved
in the subsequent phosphorylation of the phospho-relay (see con-
tribution in this issue by the Kramer lab).

The strength of transgenes, however, is the direct visualization
of gene expression in living mice. Two kinds of reporters are com-
monly used, luciferase reporters and fluorescent protein reporters.
Amongst the luciferase reporters two different and complementary
systems are quite popular. The first system drives luciferase
expression from circadian regulatory regions. One of the first
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transgenic reporter mouse used in chronobiology had integrated
the mPer1-promotor driving circadian luciferase expression [52].
A 7.2 kilobase pair (kbp) fragment of the mouse Per1 gene contain-
ing its two alternative promoters in front of exon 1A and 1B was
fused to the firefly luciferase reporter gene (a similar mouse line
was generated with 6.75 kbp of mPer1 regulatory region [53]).
The distribution of expression of this transgene resembled the
endogenous mPer1 expression and a light pulse could induce
expression of the luciferase reporter in the SCN. Brain slices of
the SCN region displayed rhythmic luciferase activity in culture.
Therefore, expression of the transgene matched perfectly with
the endogenous gene.

The system was later on used to monitor circadian gene expres-
sion in a living mouse [54]. An optic fiber cord linked to a photo-
multiplier device was placed just above the SCN. Upon constant
perfusion of luciferin, the lumigenic substrate for the luciferase en-
zyme, into this brain region, circadian luciferase activity was mon-
itored for up to five days in free-running mice. Altogether, these
mice represent an elegant, well-controlled experimental system
to monitor circadian gene expression in living animals.

These reporter-dependent systems allow the visualization of
circadian rhythms in isolated peripheral organs. A transgenic rat
with the incorporation of a similar Per1-driven reporter was used
to address the impact of feeding on peripheral oscillators [55].
Mice as nocturnal animals prefer to consume food in the dark
phase. When they become challenged by a temporarily restricted
food access, their peripheral circadian oscillators adapt to this
new situation. For the experimental procedure, the access of food
was restricted to some hours during the light phase. The mice dis-
played food anticipatory activity, i.e., they became active a couple
of hours before the food was administered. Surprisingly, there oc-
curred an uncoupling of the SCN oscillator from the peripheral
oscillators under these conditions. While the SCN clock was still
synchronized to the environmental light-dark rhythm, the phase
of the liver and lung clocks changed by up to 12 h. As a conclusion,
timing cues like food uptake are thought to synchronize peripheral
oscillators. However, the central SCN circadian clock governs feed-
ing behavior itself.

The second system relies on a fusion protein between PER2 and
luciferase [56]. This was achieved by an in frame knock in of the
luciferase open reading frame into the last exon of the mouse
Per2 gene. This fusion protein was sufficient to drive circadian
rhythms in mice. The advantage of this system is that the luciferase
activity reflects directly the presence of the PER2 protein. When
compared to a mouse strain in which a mouse Per2 gene promoter
drives luciferase expression, the typical delay of PER2 protein accu-
mulation measured up to mRNA accumulation was conserved [57].

The Per2:luc mice were successfully utilized to investigate the
function of the SCN within the circadian clock system. Tissue ex-
plants from multiple origins (liver, lung, etc.) showed free-running
circadian rhythmicity albeit with different period lengths. These
rhythms were nearly as robust as the rhythms of luciferase activity
originating from SCN tissue. Shortly after the removal from the
body context, the phases of PER2:Luc expression in essentially all
the tissues examined were coupled. In contrast, in genetically iden-
tical animals with an ablation of the SCN, all the tissues displayed
random phases of PER2:Luc expression. Therefore, the main func-
tion of the SCN is to organize stable phase relationships between
the peripheral oscillators (see contribution by the Kalsbeek lab in
this issue).

In a similar approach, intercellular coupling of SCN neurons was
demonstrated using the Per2:luc mice [40]. This reporter was
crossed into various knock out mice. Most mice (apart from the
arrhythmic Cry1/Cry2 double knock out mice) displayed circadian
rhythms in explanted SCN tissues. However, there were differences
observed. For example, SCN tissue from Cry1- or Per1-deficient
mice displayed synchronized luciferase activity. When the SCN
neurons were dispersed, essentially all of the neurons lost rhyth-
micity over a couple of days. Therefore, the culture became rapidly
desynchronized. The phenomenon of intercellular coupling can ob-
struct the impact of a clock mutation [40].

In essence, the same kind of experiments with luciferase-based
reporter lines can be performed also with fluorescence protein-
based reporter lines. Due to the characteristics of fluorescent pro-
teins, it is possible to monitor circadian rhythms in individual liv-
ing cells. The Green Fluorescence Protein (GFP) has one major draw
back. By contrast to luciferase, the GFP protein, after appropriate
folding into a barrel-like structure, is extremely stable (with a
half-life of more than a day). Therefore, this protein is not suited
to monitor the highly dynamic processes that occur within the
mammalian circadian oscillator. This draw back was overcome
by fusing various degradation motifs to the protein. Nowadays
variants of GFP exist with different spectral excitation and emis-
sion spectra with half-lives in the range of 1–2 h.

This system was used to demonstrate the behavior of the circa-
dian oscillator during cell division in vitro [58]. Destabilized Venus
(a yellow-shifted variant of GFP) was fused into exon 3 of the
mouse Rev-Erba gene in a genomic construct. Mouse NIH 3T3 fibro-
blasts were stably transfected with this construct and after syn-
chronization with dexamethasone the accumulation of the
Venus-reporter monitored in real-time. Surprisingly, cell-autono-
mous oscillations were detected in all cells of the culture albeit
with individual phases and period lengths. These rhythms could
be synchronized by a dexamethasone shock. In addition, using this
system it became obvious that oscillator information was passed to
the daughter cells after cell division. An independent line of exper-
iments used single-cell luciferase monitoring of stably transfected
RatI cells. The obtained results were essentially the same [59].

Recently, fluorescent reporters were incorporated into the gen-
ome of mice [60]. Two different kinds of fluorescent reporters were
used to follow the expression of Per1 and Per2 in the brain, a Venus
reporter and a RED fluorescent protein, respectively. The expres-
sion of the transgenes was driven from the entire authentic
promoters and regulatory regions. Again, transgene expression
matched the expression of the endogenous gene. Surprisingly, in
the SCN a different localization of the two different reporters was
observed. In other brain regions, these differences were even more
drastic. Venus was visible in neuronal and non-neuronal cells,
while RED was more restricted to glial cells and some progenitor
cells of the dentate gyrus. Therefore, there are tissue-specific dif-
ferences in the accumulation of the PER1 and PER2 proteins as
well. Taken together, we learned a lot about the properties of the
mammalian circadian oscillator from transgenic mice.
4. The impact of clock genes on physiology

The above paragraphs describe the effects of mutations in clock
genes mainly on activity as a behavioral read-out for the circadian
clock. Interestingly, mutations in and deletions of clock genes af-
fect a plethora of other physiological processes as well. This indi-
cates that either the circadian clock is important for these
processes or that clock genes might have also clock-independent
functions.

One of the first observations that a clock gene has an impact on
physiology apart from clock function was made in mice mutant in
the Per2 gene. These mice are more prone to develop a form of can-
cer in response to gamma radiation, which is accompanied by al-
tered expression of genes involved in cell cycle regulation such
as Myc, cyclins and Mdm2 [61]. It later appeared that the circadian
clock is important in the timing of the cell division cycle in mice by
directly regulating wee1 gene expression [62]. However, not all
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clock components have the same effect on cancer development. A
mutation in the Cry genes in mice sensitized for cancer develop-
ment due to a p53 mutation protected animals from early onset
of cancer [63]. Mice with a functional deficiency of Clock do not dis-
play predisposition to tumor formation both during their normal
life span or when challenged by gamma-radiation [64]. The above
results illustrate the dichotomy in biological consequences of the
disruption of the circadian clock with respect to cancer develop-
ment. There are probably complex interconnections between carci-
nogenesis, ageing and the individual components of the circadian
clock because nucleotide excision repair has been suggested to
be under clock influence [65,66] and DNA damage affects phase
resetting in the murine circadian clock [67].

Feeding has been observed as the dominant Zeitgeber for many
organs [55,68] indicating that nutrition affects the clock. Clock mu-
tant mice display obesity and metabolic syndrome highlighting a
function of the circadian clock in co-ordination of food uptake
and processing [69]. Since the circadian clock regulates the rate-
limiting enzyme of mammalian nicotinamide adenine dinucleotide
(NAD+) biosynthesis, nicotinamide phosphoribosyltransferase
(NAMPT, see Fig. 1), and as a consequence causes levels of NAD+

to display circadian oscillations [70,71], the clock affects at least
those metabolic pathways that depend on NAD+ or NADH, respec-
tively. Another proposed interaction between metabolic cycles and
the circadian clock appears to be an enzyme that responds to nutri-
ent availability, adenosine monophosphate-activated protein ki-
nase (AMPK). AMPK phosphorylates the clock protein CRY1
thereby marking it for degradation via Fbxl3 [72], directly affecting
the circadian oscillator. An elegant study by Kornmann et al. [42]
showed that PER2 is not only part of the circadian oscillator affect-
ing metabolism, but that it also responds to systemic cues, thereby
linking the clock and metabolism in an interdependent fashion.
This might be achieved partially through protein-protein interac-
tions, such as PER2-nuclear receptor binding [31]. There is also evi-
dence for REV-ERBa affecting aspects of metabolism. Sterol
response element binding protein (SREBP) regulated pathways
are affected in Rev-erba knock out mice leading to changes in tem-
poral lipid accumulation in blood and liver as well as alterations in
bile acid accumulation [73]. Lipid metabolism appears also to be
regulated by PER2 through direct interaction with PPARc [123].
Additional support for a strong relationship of the clock with
metabolism comes from a recent genome-wide profiling study
showing that most of the BMAL1 targets appear to be related to
metabolism [124].

Why should metabolic cycles be linked to circadian cycles? One
of the important functions of the circadian clock is to allow an
organism to predict recurring daily events. In a competitive envi-
ronment such as our world this gives a competitive advantage
since the body is prepared for e.g., food uptake allowing efficient
and rapid uptake of nutrients. In support of this view are competi-
tion experiments performed with photosynthetic cyanobacteria
[74]. Strains having a clock that is in resonance with the environ-
mental light-dark cycle outcompete strains not in resonance.
Hence, the circadian clock might also be important to predict food
availability in mammals. In line with this hypothesis is the finding
that mice with a mutation in the Per2 gene do not have food antic-
ipatory activity (FAA) and temperature increase [75] indicating
that PER2 is involved in food anticipation either in its function as
a clock gene or via a clock-independent mechanism. Although
other clock components such as NPAS2 or Mop3/BMAL1 show
reduced food anticipation [19] recent experiments suggest that
daily rhythms of FAA do not require the circadian clock [76].

Glucose is an important energy source in mammals but due to
its ability to chemically react with lipids and proteins it has to be
kept constant at low levels in the blood (at around 6 mM in hu-
mans). Several clock components affect glucose levels in the mouse
such as Clock and Bmal1 [20,69] indicating an involvement of the
clock in the regulation of blood glucose levels (see also contribu-
tion by the Kalsbeek lab in this issue). However, the circadian clock
would impose a 24-h cycling rhythm on these glucose levels. To
achieve homeostatic levels the central clock regulates via rest-
activity cycles food consumption and the liver clock in an opposite
cycling manner expression of GLUT2, the glucose uptake trans-
porter in liver cells [20]. As a consequence glucose uptake in the li-
ver becomes higher after food has been digested. When no food is
taken up less glucose transporter is present on liver cells with the
consequence of reduced glucose uptake. This mechanism adjusts
the levels of blood glucose and hence the level over 24 h is more
or less constant with a minimal amplitude of cycling [77]. This
leads to a constant supply of glucose to the brain.

Light is the most powerful synchronizer of the mammalian cir-
cadian system and affects initially the brain. It is perceived mainly
by retinal ganglion cells (RGCs) [78] and causes activation of sig-
naling pathways in the SCN that converge on the phosphorylation
of cAMP response element-binding protein (CREB). Phospho-CREB
homodimers bind to the promoters of the clock genes Per1 and
Per2 thereby activating their expression. As a consequence behav-
ioral activity rhythms in mice and humans are phase advanced or
delayed, depending on the time of nocturnal light exposure (re-
viewed in [79]).

Recent findings indicate, that light mediated signaling involving
the clock gene Per2 affects synaptic efficiency in mice by regulating
the presence of vesicular glutamate transporter 1 on a defined
vesicular pool [80,81]. The light regulated membrane traffic of neu-
rotransmitter transporters may allow the presynaptic terminals to
replenish during physiological rest periods and to avoid prolonged
or repeated periods of enhanced stimulation. This is probably one
of several reasons why mice bearing a mutation in the Per2 gene
show alterations in mood related behaviors such as addiction to
cocaine [82] and consumption of ethanol [83]. Proteomic analysis
revealed that synaptic vesicle cycling itself is probably important
for sustaining the circadian clock in the SCN [84]. This is supported
by the finding that a mutation in the GTPase Rab3, a regulator of
synaptic vesicle transport and Ca2+-triggered vesicle release prob-
ability, accelerates the clock by about 2 h [85]. Taken together syn-
aptic vesicles appear to play an important role in light mediated
effects on the circadian clock and its neurophysiological outputs.

Mice with a point mutation in the gene Clock display increased
excitability of dopamine neurons, cocaine reward, and expression
of tyrosine hydroxylase, the rate-limiting enzyme in dopamine
synthesis [86]. Furthermore, these animals display a mania like
phenotype similar to that observed in patients with bipolar disor-
der [87]. A molecular link between the circadian clock mechanism
and dopamine metabolism has been established [88]. In mice, the
clock proteins BMAL1, NPAS2, and PER2 directly regulate expres-
sion levels and activity of monoamine oxidase A, an enzyme
important in dopamine degradation, in brain regions relevant for
reward and mood related behavior. Taken together these findings
indicate an involvement of the clock in the regulation of metabo-
lism of neurotransmitters in the brain. However, it is unclear
how light can affect neurotransmitter metabolism via clock
mechanisms.

Blood pressure and heart rate are known to show a circadian
pattern. Mice with altered core clock genes Bmal1 and Clock display
a disruption in this circadian pattern [89]. These mice also appear
to be more resistant to immobilization stress indicating that the
vascular clock may modulate the capacity to respond to environ-
mental stressors. Interestingly, Bmal1 and Clock mutant mice show
a loss of vascular adaptation and predisposition to thrombosis [90],
both hallmarks of endothelial dysfunction. In line with these obser-
vations is the finding that mice with a mutation in the Per2 gene
display altered vascular endothelial function due to a decreased
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production of nitric oxide and vasodilatory prostaglandins as well
as an increased release of COX-1-derived vasoconstrictors in aortic
rings [91]. Further evidence of involvement of the Per2 gene in the
vasculature is the observation that a mutation in this gene causes
Akt-dependent senescence and impairs ischemia-induced revascu-
larization through the alteration of endothelial progenitor cell
function [92].

A temporal map of the nuclear receptor transcriptome provides
clues concerning the circadian control of cardiovascular physiology
[93]. Nuclear hormone receptors such as RARa and RXRa can reg-
ulate CLOCK and NPAS2 activity resulting in a repression of CLOCK/
NPAS2:BMAL1 mediated transcription in vascular cells [94]. Bind-
ing of retinoic acid to these receptors can phase shift Per2 mRNA
rhythms in vivo and smooth muscle cells in vitro indicating an
interplay in cardiovascular function of nuclear receptors with the
circadian clock. Modulation of this process via PER2 can be envis-
aged [31] and additional nuclear receptor agonists may be involved
in the circadian regulation of vascular tone.

There is evidence that the circadian clock influences the im-
mune system. Mice with a loss of function mutation in the Per2
gene display a loss of interferon-c (IFN-c) mRNA cycling in the
spleen [95]. Additionally, these animals are also more resistant to
lipopolysaccharide-induced endotoxic shock than wild type mice
and show decreased levels of pro-inflammatory cytokines in the
serum. The impaired IFN-c production is attributable to a defect
in natural killer cell function [96]. Furthermore, Bmal1 appears to
regulate the development of B-cells [97] and in macrophages a cir-
cadian clock controls inflammatory immune responses [98]. Inter-
estingly, IFN-c affects electrical activity and clock gene expression
in SCN neurons [99] and tumor necrosis factor alpha (TNF-alpha)
suppresses expression of clock genes by interfering with E-box
mediated transcription [100] depending on calcium and p38 MAP
kinase signaling [101]. These findings indicate a feedback regula-
tion between the circadian and the immune system.

Hematopoietic stem cells (HSCs) circulate in the blood stream
and exhibit robust circadian fluctuations, peaking 5 h after light
onset with a nadir in the dark. These circulating HSCs and their
progenitors fluctuate in anti-phase to the expression of the chemo-
kine CXCL12 in the bone marrow microenvironment [102]. Both
circulating HSC levels and CXCL12 expression are regulated by
adrenergic stimulation regulated by the SCN. Interestingly, bone
formation occurs in mice in a diurnal manner, with the greatest
remodeling occurring during the periods of light, which corre-
sponds to the resting period [103]. Many hormones affecting skel-
etal mass such as parathyroid hormone and leptin undergo
circadian cycling [104]. Also clock genes such as Per2 in osteoblasts
inhibit bone formation, and in their absence, leptin-driven adren-
ergic stimulation has a proliferative effect on osteoblasts [105].
Interestingly, Cry2 influences bone formation affecting osteoclasts,
indicating that Per2 and Cry2 balance bone formation via different
pathways [125]. Taken together, it appears that the circadian clock
affects bone and bone marrow formation and hence will influence
blood-cell production.
5. Perspectives

Mice have been very valuable for our understanding of the
mammalian circadian oscillator over the past decades. Significant
progress was made with the advance of new knock out mouse
and mutant mouse strategies. Tissue-specific knock out mice will
be necessary to unravel the link between the circadian oscillator
and metabolic or physiological processes in a given tissue or the
entire animal. Although there is now tremendous competition
from in vitro-tissue culture systems, the overall picture can only
be deduced from the specifics of mice. In the future, it will be
possible to translate the results found with the house mouse to
the clinic. For many typical human diseases there exist reasonably
well-established mouse models. Due to the ease of these models, it
will be possible to find links between disturbances of the circadian
oscillator and a particular disease. Therefore, research on the house
mouse will prosper for many years to come.
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