CONFLUENCE RESULTS FOR THE PURE STRONG CATEGORICAL LOGIC CCL. \(\lambda \)-CALCULI AS SUBSYSTEMS OF CCL

Thérèse HARDIN

Projet FORMEL, INRIA, B.P. 105, 78150 Le Chesnay Cedex, France, and LIENS, Ecole Normale Supérieure, Rue d'Ulm, 75230 Paris Cedex 05, France

Communicated by M. Nivat
Received January 1988
Revised August 1988

Abstract. The Strong Categorical Combinatory Logic (CCL, CCL\(\beta \eta SP \)) developed by Curien (1986) is, when typed and augmented with a rule defining a terminal object, a presentation of Cartesian Closed Categories. Furthermore, it is equationally equivalent to the Lambda-calculus with explicit couples and Surjective Pairing. Here we study the confluence properties of (CCL, CCL\(\beta \eta SP \)) and of several of its subsystems, and the relationship between untyped Lambda-calculi and (CCL, CCL\(\beta \eta SP \)) as rewriting systems. We prove that there exists a subset \(\mathcal{D} \) of CCL, and a subsystem SL\(\beta \) of CCL\(\beta \eta SP \) confluent on \(\mathcal{D} \), a very simple isomorphism between \(\Lambda \), the classical Lambda-calculus, and a subset \(\mathcal{D}_\Lambda \) of \(\mathcal{D} \), which is extended between \(\beta \)-derivations of \(\Lambda \) and a class of derivations of SL\(\beta \). Substitution, which is a one-step operation belonging to the meta-language of \(\Lambda \), is now described by rewritings with SL\(\beta \) and calculations between several substitutions launched at the same time may be performed by SL\(\beta \). This point is a real increase in the calculation capacities of Lambda-calculus (same results for \(\mathcal{D} \)).

The same result holds for the Lambda-calculus with couples and projection rules (without Surjective Pairing).

The locally confluent subsystem CCL\(\beta SP \) (that is SL\(\beta \) + (SP)) is not confluent. This result is obtained by firstly designing a new counter-example (different from J.W. Klop's one) for confluence of the Lambda-calculus with couples and Surjective Pairing and then translating it into CCL. However, CCL\(\beta SP \) is shown to be confluent on the set derived from \(\mathcal{D}_\Lambda \).

These results cannot be obtained with classical methods of confluence and we designed a new method called Interpretation Method based on this trick: a given relation \(K \) is confluent on a set \(X \) if and only if a relation \(\mathcal{E}(R) \) induced by \(R \) on a set of regularized terms \(\mathcal{E}(X) \) is confluent.

Contents

Introduction and summary ... 292
1. Preliminaries ... 294
1.1. Rewriting systems .. 294
1.2. \(\lambda \)-Calculi ... 296
1.3. The Strong Categorical Combinatory Logic 297
1.4. Subsystems of CCL\(\beta \eta SP \): weak confluence, termination 299
2. Confluence properties for subsystems of CCL\(\beta \eta SP \) 300
2.1. Statement of the problems .. 300
2.2. The Interpretation Method .. 301
Introduction and summary

The theories of classical combinators [7, 8] and λ-calculus [5, 1] both have the same purpose: to describe some of the most primitive and general properties of operations and of their combinations. They are in fact abstract programming languages: higher-order level functional languages can be translated in these theories in order to study strategies, parameter passing problems, etc. the pure λ-calculus, λ(V), is a formal system built with a set V of variables and two operations: the abstraction of a variable in a term which constructs a new function “of this variable”, and the application which applies a function to an argument. The meaning of its operational rule, called β-reduction, is that the value of a function applied to an effective parameter is obtained by replacing, in the body of this function, all the occurrences of the formal parameter by copies of this effective argument.

This substitution of variables by terms, which is only described in the meta-language, is not straightforward: it has to avoid variable name conflicts. This is the main problem in λ-calculus implementations.

λ(V) is also endowed with one other rule: the η-rule which says, roughly speaking, that two functions which have the same value for any argument, are equal.

CL, the Combinatory Logic, is a way of doing computations without using bound variables [18]. Functions are built up from some primitive ones (classically, the combinators S and K) and the application operation. Therefore complications of the λ-calculus’ substitution are avoided but the intuitive clarity of λ-notation is completely lost. Furthermore, CL-calculus is weaker than λ-calculus: if their bodies are equal, then functions are equal in λ(V), not in CL.

So how can we keep this intuitive simplicity of λ-calculus and avoid these name clashes? Here are two ways. One may use De Bruijn’s notation for λ-terms which replaces bound variable names by integers pointing out the abstractor of the variable. This calculus is denoted by Λ. The substitution operation still belongs to the metalanguage. It has to do calculations on De Bruijn’s numbers to operate exact reallocations when passing an effective argument.

We are concerned with the second way: the Strong Categorical Combinatory Logic, CCL. It is a first-order theory developed by Curien [6]. Its presentation,
named $CCL\beta\eta SP$, is directly coming from the definition of Cartesian Closed Categories. There are several different ties between CCL and λ-calculus we shall now explain.

Firstly, let $\Lambda_{ef}(V)$ be obtained by adding a coupling operator of $ar^{-}y$ 2 and two projection operators to $\Lambda(V)$. The theory $\beta\eta SP$ is obtained by adding to the theory $\beta\eta$ two projection rules and the so-called Surjective Pairing rule (SP), which states that every term is a pair. Now in [6], among other results, Curien proved that $\Lambda_{ef}(V)$ and CCL are two equivalent theories: there exists translations between $\Lambda_{ef}(V)$ and CCL such that the translations of two terms of $\Lambda_{ef}(V)$, equal in the theory $\beta\eta SP$, are equal in the theory $CCL\beta\eta SP$ and conversely.

Our work is a rather complete study of the rewriting system, also named $CCL\beta\eta SP$, obtained by orienting the equations of $CCL\beta\eta SP$ from left to right. Why focusing on this system?

1. By adding types and a rule for the terminal object, we obtain a rewriting system for Cartesian Closed Categories [15].

2. There is a straightforward translation of Λ (λ-calculus with De Bruijn notation) into CCL such that the structure of λ-terms is kept. The β-reduction is simulated by a derivation with the subsystem called $CCL\beta SP$. $CCL\beta SP$ is locally confluent. But Λ_{ef} is not confluent (Klop's counter-example [12]). Is this subsystem $CCL\beta SP$ confluent?

3. ($\Lambda, \beta\eta$) is a confluent theory. Is there a confluent subsystem of $CCL\beta\eta SP$ which reproduces $\beta\eta$-derivations?

Here are our results:

1. λ-Calculus substitution is a one-step operation belonging to the metalanguage. It is reproduced in CCL by a derivation with a subsystem of $CCL\beta\eta SP$ called Subst, therefore broken in several steps, described inside CCL. Subst is locally confluent and terminating. The proof of termination, obtained jointly with Laville [10], could not be obtained with classical termination orderings.

2. There exists a subset \mathbb{D} of CCL and subsystems $SL\beta$, $SL\beta N$ of $CCL\beta\eta SP$ such that the following are satisfied.

 a) $SL\beta$ and $SL\beta \eta$ (extension of $SL\beta N$) are confluent on \mathbb{D}.

 b) Λ is isomorphic to a subset \mathbb{D}_Λ of \mathbb{D}. This isomorphism is extended between β-derivations of Λ and a class of derivations of $SL\beta$. Furthermore, let \mathbb{D}_λ be the set of $CCL\beta SP$-derived terms from \mathbb{D}_Λ. Then \mathbb{D}_λ is a subset of \mathbb{D} and $CCL\beta SP$ is confluent on \mathbb{D}_λ. So not only can we compute β-derivations in CCL and divide the substitution operation in smaller steps, but we can also perform calculations between several substitutions being evaluated (same results for η and $SL\beta \eta$).

 c) Λ_{ef} is isomorphic to a subset \mathbb{D}_{Pa} of \mathbb{D} and this isomorphism may be extended between $\beta\eta P$ derivations of Λ_{ef} and a class of derivations of $SL\beta \eta$.

Summarizing, $(\mathbb{D}, SL\beta \eta)$ is a confluent conservative extension of $(\Lambda, \beta\eta)$ and of $(\Lambda_{ef}, \beta\eta P)$.

3. The locally confluent subsystem $CCL\beta SP$ is not confluent. This result is obtained by first designing a new counter-example for the confluence of $\beta\eta SP$ and then translating it into CCL.
These results about confluence cannot be obtained with classical methods. We designed a general method, called Interpretation Method, based on this trick: a given relation R is confluent on a set X if and only if a relation $\mathcal{E}(R)$ induced by R on a set $\mathcal{E}(X)$ is confluent. So it suffices to find a good notion of interpretation for a given set of terms to obtain confluence (or nonconfluence) properties on this set.

1. Preliminaries

To fix our terminology and notations, we collect in this preliminary section some well-known notions and results about them. In the last part of this section, we will present the Categorical Logic and several already known results about it.

1.1. Rewriting systems

Firstly we recall some well-known results about relations on sets.

Notations. Let R be an internal relation on a set E, called reduction. Let M and $N \in E$. $(M, N) \in R$ is denoted by $(M \stackrel{R}{\rightarrow} N)$. R^*, R^+, R^*, are respectively the reflexive closure, the transitive closure, and the reflexive and transitive closure of R. $=_R$ is the equality defined by R. R^* is also called the derivation relation of R. A normal form for the relation R is called an R-normal form. If it exists and is unique, the R-normal form of a term M is denoted by $R(M)$.

1.1. Definition. (1) A reduction R is weakly confluent if

$$\forall M \in E, \ (M \stackrel{R}{\rightarrow} N) \ and \ (M \stackrel{R}{\rightarrow} P) \Rightarrow \exists Q \in E, \ (N \stackrel{R^*}{\rightarrow} Q) \ and \ (P \stackrel{R^*}{\rightarrow} Q).$$

(2) A reduction R is strongly confluent if

$$\forall M \in E, \ (M \stackrel{R}{\rightarrow} N) \ and \ (M \stackrel{R}{\rightarrow} P) \Rightarrow \exists Q \in E, \ (N \stackrel{R}{\rightarrow} Q) \ and \ (P \stackrel{R}{\rightarrow} Q).$$

(3) A reduction R is confluent if R^* is weakly (or strongly!) confluent.

(4) A reduction R is confluent on the term $A \in E$ if the restriction of R to $\{M \mid M = R^*(A)\}$ is confluent.

(5) A relation is noetherian (or is terminating) if R^* is well-founded, i.e., if there exists no infinite sequence $M_1 R M_2 \cdots R M_n \cdots$.

Extensions of relations

For the formalization of our results, we need to slightly extend the well-known notion of conservative extension of a given relation.

1.2. Definition. Let R be a relation on a set A and S be a relation on a set B. Suppose that
Confluence results for CCL

(1) there exists an injection \(\phi \) from \(A \) into \(B \) (in the classical definition, \(\phi \) is the inclusion of sets),
(2) \(\forall M, N \in A, (\phi(M) S \phi(N)) \iff (M R N) \).
(3) \(\forall M, N \in A, \) if \((\phi(M) S P) \), then there exists an \(N \in A \) such that \((PS \phi(N)) \) (here we do not request that \(P = \phi(N) \)).

Then \((B, S) \) is called an \(\text{\textit{m}} \)-extension of \((A, R)\) ("\(\text{\textit{m}} \)" like monomorphism!). \((B, S) \) is called a \textit{conservative} \(\text{\textit{m}} \)-extension of \((A, R)\) if
\[\forall a, b \in A, \ (\phi(a) =_S \phi(b) \iff a =_R b). \]

The proof of the following proposition is trivial.

1.3. Proposition. \textit{A confluent} \(\text{\textit{m}} \)-extension \((B, S) \) of \((A, R)\) is conservative.

Term rewriting systems

Now we suppose that \(E \) is a first-order algebra \(T_\mathfrak{F}(V) \) where \(V \) is a set of variables and \(\mathfrak{F} \) is the signature of this algebra. Let \(M \in T_\mathfrak{F}(V) \). \(O(M) \) denotes the set of occurrences of \(M \) and \(M|_u \) is the subterm of \(M \) at the occurrence \(u \).

1.4. Definition. A relation \(R \) on \(T_\mathfrak{F}(V) \) is
(1) \textit{stable} if, for any substitution \(\sigma \), if \((M R N) \) then \((\sigma(M) R \sigma(N)) \);
(2) \textit{compatible} if, for any term \(P \) and for any \(u \in O(P) \), if \((M R N) \) then \((P[u \leftarrow M] R P[u \leftarrow N]) \).

1.5. Definition. A \textit{rewriting system} is a finite set \(C \) of couples \((g_i, d_i)\) of terms in \(T_\mathfrak{F}(V) \) such that \(V(d_i) \subseteq V(g_i) \). These couples are called rewriting rules. The \textit{rewriting relation} induced by \(C \) is the smaller stable and compatible relation containing \(C \). It is also denoted by \(C \). \((M C N) \) will sometimes be denoted by \((M \rightarrow C N) \). A \textit{redex} is an instance of the left member of a rule. Let \(M \) be a term such that \(M|_u = \sigma(g) \). The term \(N = M[u \leftarrow \sigma(d)] \) is a \textit{reduct} of \(M \). We will use the following notation to specify the redex occurrence: \(M \rightarrow_u^\mathfrak{F} N \).

The test for weak confluence may be restricted to certain couples of terms: the critical pairs whose definition is recalled in the following.

1.6. Definition. Given two rules \((g, d)\) and \((l, r)\), let \(u \) be an occurrence of \(g \) such that \(g|_u \) is not a variable and \(g|_u \) and \(l \) are unifiable. Let \(N = g|_u \vee l \). Let \(\sigma \) be the substitution such that \(N = \sigma(g|_u) \) and \(\tau \) the substitution such that \(N = \tau(l) \). The superposition of these two rules determines the \textit{critical pair} \((P, Q)\) defined by
\[P = \sigma(g[u \leftarrow \tau(r)]), \quad Q = \sigma(d). \]

1.7. Proposition. A rewriting relation \(C \) is weakly confluent if and only if, for any critical pair \((P, Q)\) between two rules of \(C \), there exists a term \(S \) such that \(PC^* S \) and \(QC^* S \).
1.2. \(\lambda \)-Calculi

The pure \(\lambda \)-calculus on a set \(V \) of variables is denoted by \(\Lambda(V) \). We suppose familiarity with this theory and we only recall De Bruijn's notation. For further details, see [1, 11, 12, 16].

1.8. Definition. \(\Lambda \), the set of \(\lambda \)-calculus terms in De Bruijn's notation, is defined inductively as follows:

1. If \(n \in \mathbb{N} \), then \(n \in \Lambda \).
2. If \(M \) and \(N \in \Lambda \), then \(MN \in \Lambda \).
3. If \(M \in \Lambda \), then \(\lambda(M) \in \Lambda \).

Substitution, in De Bruijn's formalism, is defined as follows.

1.9. Definition. The substitution of \(N \) at height \(n \) in \(M \), denoted by \(\sigma_n(M, N) \), and the incrementation with \(n \) from \(i \), denoted by \(\tau_n^i(M) \), are defined by induction as follows:

\[
\sigma_n(MP, N) = \sigma_n(M, N)\sigma_n(P, N), \quad \sigma_n(\lambda M, N) = \lambda(\sigma_{n+1}(M, N)),
\]

\[
\sigma_n(m, N) = \begin{cases}
 m-1 & \text{if } m > n, \\
 \tau_n^i(N) & \text{if } m = n, \\
 m & \text{if } m < n
\end{cases}
\]

where

\[
\tau_n^i(M) = \begin{cases}
 m+n & \text{if } m \geq i, \\
 m & \text{if } m < i
\end{cases}
\]

\[
\tau_n^i(MP) = \tau_n^i(M)\tau_n^i(P), \quad \tau_n^i(\lambda(M)) = \lambda(\tau_{n+1}^i(M)).
\]

1.10. Definition. The \(\beta \)-reduction in \(\Lambda \) is the rewriting relation defined by the rule

\((\lambda M)N \rightarrow \sigma_0(M, N) \).

We now turn to \(\eta \)-reduction.

1.11. Definition. \(M \in \Lambda \) satisfies condition \(C(\eta) \) if and only if, for any occurrence \(u \) of a number \(p \) in \(M \), one has \(p \neq (|u|, M) \), where \((|u|, M)\) is the number of \(\lambda \) whose occurrences are prefixes of \(u \), i.e., the height in \(\lambda \) of \(u \).

The decrementation operation is defined for any term \(M \) satisfying \(C(\eta) \). It is denoted by \(M^1 \). \(M^1 \) is obtained from \(M \) by replacing any number \(p \) with occurrence \(u \) in \(M \) by the number \((p-1)\) provided that \(p \) satisfies \(p > (|u|, M) \).
1.12. Definition. The \(\eta \)-reduction in \(\Lambda \) is the rewriting relation defined by the rule
\[
\lambda A0 \rightarrow A^1 \text{ if } A \text{ satisfies } C(\eta).
\]

Now we give the two classical ways to add couples.

1.13. Definition. The applicative \(\lambda \)-calculus, denoted by \(\Lambda_{ca} \), is the pure \(\lambda \)-calculus extended with constants \(D, F, S \) and rules

\[
\begin{align*}
(Fst) & \quad Fxy \rightarrow x, \\
(Snd) & \quad Sxy \rightarrow y, \\
(SP) & \quad D(Fx)(Sx) \rightarrow x.
\end{align*}
\]

1.14. Definition. The functional \(\lambda \)-calculus, denoted by \(\Lambda_{cf} \), is obtained from the pure \(\lambda \)-calculus by adding a binary operator denoted by \(\langle, \rangle \), two unary operators denoted by \(\text{fst} \) and \(\text{snd} \) and the rules

\[
\begin{align*}
(Fst) & \quad \text{fst}(\langle x, y \rangle) \rightarrow x, \\
(Snd) & \quad \text{snd}(\langle x, y \rangle) \rightarrow y, \\
(SP) & \quad \langle \text{fst}(x), \text{snd}(x) \rangle \rightarrow x.
\end{align*}
\]

These rules, with the \(\beta \)- (resp. \(\beta \eta \))-rule, define the theory \(\beta SP \) (resp. \(\beta \eta SP \)). The theory \(\beta P \) is obtained from \(\beta SP \) by removing the (SP)-rule. \(\Lambda_{ca}(V) \) and \(\Lambda_{cf}(V) \) are the corresponding extensions of \(\Lambda(V) \).

1.15. Theorem. \((\Lambda_{ca}, \beta P), (\Lambda_{cf}, \beta P) \) satisfy the Church-Rosser Property. \((\Lambda_{ca} \beta SP), (\Lambda_{cf}, \beta SP) \) do not satisfy the Church-Rosser Property.

The first part of this result presents no difficulties. The conjecture defined by the second part was stated by Mann during 1972. The first counter-example and, as far as we know, the only one until ours, was found by Klop [12, 13]. Recently De Vrijer [19] proved that \(\Lambda_{cf}(V) \) is a conservative extension of \(\Lambda(V) \) and, jointly with Klop [13] that \(\Lambda_{cf}(V) \) has the unique normal-form property.

1.3. The Strong Categorical Combinatory Logic

Upon the idea that semantics can be made akin to syntax, Curien introduced the Categorical Combinatory Logic, called CCL. Numerous results about this—typed or untyped—theory may be found in his extensive monography [6]. We recall only the results which are needed in the following.

1.16. Definition. CCL is a first-order algebra. Its signature consists of

1. two binary operators: the composition \(\circ \) and the pairing \(\langle, \rangle \),
2. one unary operator: the curryfication \(\Lambda \),
3. four constants: the identity \(Id \), the projections \(\text{fst} \) and \(\text{snd} \) and the applicator \(\text{App} \).
| Ass | \((x \circ y) \circ z\) | \(x \circ (y \circ z)\) |
| IdL | \(Id \circ x\) | \(x\) |
| IdR | \(x \circ Id\) | \(x\) |
| Fst | \(Fst \circ \langle x, y \rangle\) | \(x\) |
| Snd | \(Snd \circ \langle x, y \rangle\) | \(y\) |
| Dpair | \((x, y) \circ z\) | \((x \circ z, y \circ z)\) |
| FSI | \(\langle Fst, Snd \rangle\) | \(Id\) |
| SP | \(\langle Fst \circ x, Snd \circ x \rangle\) | \(x\) |
| D\(\Lambda\) | \(\Lambda(x) \circ y\) | \(\Lambda(x \circ (y \circ Fst, Snd))\) |
| Beta | \(App \circ \langle \Lambda(x), y \rangle\) | \(x \circ \langle Id, y \rangle\) |
| A\(\iota\) | \(\Lambda(App)\) | \(Id\) |
| S\(\Lambda\) | \(\Lambda(App \circ (x \circ Fst, Snd))\) | \(x\) |

Fig. 1. The system \(CCL\beta\eta SP\).

1.17. Definition. The Strong Categorical Combinatory Logic, \(CCL\beta\eta SP\), is defined by the equations of Fig. 1.

We recall the DB-translation between \(A\varepsilon\varepsilon(V)\) and CCL designed by P.L. Curien.

1.18. Definition. Let \(M \in A\varepsilon\varepsilon(V)\). Let \((x_0, \ldots, x_n)\) be a list of variables such that \(FV(M) \subseteq (x_0, \ldots, x_n)\). The term \(M_{DB(x_0, \ldots, x_n)}\) is defined as follows.

1. If \(M = x\), then \(M_{DB(x_0, \ldots, x_n)} = Snd \circ Fst^i\) where \(i\) is the smaller integer such that \(x = x_i\).

2. If \(M = NP\), then \(M_{DB(x_0, \ldots, x_n)} = App \circ \langle N_{DB(x_0, \ldots, x_n)}, P_{DB(x_0, \ldots, x_n)} \rangle\).

3. If \(M = \lambda x. N\), then \(M_{DB(x_0, \ldots, x_n)} = \Lambda(N_{DB(x_0, \ldots, x_n)})\).

4. If \(M = Fst(N)\), then \(M_{DB(x_0, \ldots, x_n)} = Fst \circ N_{DB(x_0, \ldots, x_n)}\).

5. If \(M = snd(N)\), then \(M_{DB(x_0, \ldots, x_n)} = Snd \circ N_{DB(x_0, \ldots, x_n)}\).

6. If \(M = (N, P)\), then \(M_{DB(x_0, \ldots, x_n)} = \langle N_{DB(x_0, \ldots, x_n)}, P_{DB(x_0, \ldots, x_n)} \rangle\).

Now the following proposition gives a first connection between the two theories.

1.19. Proposition. Let \(M\) and \(N \in A\varepsilon\varepsilon\) such that \(FV(M) \cup FV(N) \subseteq \{x_0, \ldots, x_n\}\). Then,

\[
M =_{\beta\eta SP} N \Rightarrow M_{DB(x_0, \ldots, x_n)} =_{CCL\beta\eta SP} N_{DB(x_0, \ldots, x_n)};
\]

\[
M \rightarrow^{\beta} N \Rightarrow M_{DB(x_0, \ldots, x_n)} \xrightarrow{(Beta)\ Subst} N_{DB(x_0, \ldots, x_n)}.
\]

The \(\beta\)-reduction is firstly simulated by one (Beta)-reduction followed by a derivation with the rules of a subsystem called Subst defined below. The research of occurrences concerned with the started substitution is broken in several steps, each one being the passage through one node of the term (see Example 2.5). Note that (FSI) or (SP) steps can be avoided with a good choice of strategy. These remarks are the starting point of our study of the subsystems of \(CCL\beta\eta SP\).
We now recall the fundamental equational result of Curien. From the translation $M_{\text{DD}(x_0, \ldots, x_n)}$, Curien defined a translation M_{CCL} from Λ_{ef} into CCL. He also designed a translation denoted by Λ_ϵ from CCL into Λ_{er}. As we will not use them, we will not recall these translations but we give the following result.

1.20. Theorem (Curien Theorem of Equivalence). Let A and $B \in \text{CCL}$, M and $N \in \Lambda_{\text{ef}}$. Then,

$$M = \beta_\eta \Rightarrow M_{\text{CCL}} = N_{\text{CCL}},$$

$$A = \text{CCL} \beta_\eta B \Rightarrow A_{\text{CCL}} = B_{\text{CCL}},$$

$$M_{\text{CCL} \Lambda_{\text{CCL}}} = \beta_\eta M, \quad A_{\text{CCL} \Lambda_{\text{CCL}}} = \text{CCL} \beta_\eta A.$$

In the sequel, we will only work with ground terms: the combinators. So the set of combinators will still be called CCL.

1.4. Subsystems of $\text{CCL} \beta_\eta \eta$SP: weak confluence, termination

The equations of $\text{CCL} \beta_\eta \eta$SP will be always oriented from left to right. We define several interesting subsystems of $\text{CCL} \beta_\eta \eta$SP in the following definition.

1.21. Definition

$$SL = (\text{Ass}) + (\text{IdL}) + (\text{IdR}) + (\text{Fst}) + (\text{Snd}) + (\text{Dpair}) + (\text{DA}),$$

$$SL\beta = SL + (\text{Beta}), \quad SL\beta N = SL\beta + (\text{Al}) + (\text{SA}),$$

$$\text{Subst} = SL + (\text{FSI}) + (\text{SP}), \quad \text{CCL} \beta \eta \text{SP} = \text{Subst} + (\text{Beta}).$$

With the system KB, developed at INRIA, which contains an implementation of the Knuth-Bendix Algorithm [14], we obtain the following results.

1.22. Proposition. Subst, $\text{CCL} \beta_\eta \text{SP}$ are weakly confluent. SL, $SL\beta$, $SL\beta N$, $\text{CCL} \beta_\eta \text{SP}$ are not weakly confluent.

In the above presentation, we have noticed that λ-calculus substitution may be computed with the subsystem Subst, broken in several steps such that each of them is the crossing of a node of the term's tree. Therefore, we have to ensure that this travel may be done in a nondeterministic way to obtain the confluence of Subst. As it is weakly confluent, it suffices to prove its termination. This work was done jointly with Laville and published in [10].

1.23. Theorem. Subst is terminating.

We say only a few words about the proof of this result. The presence of the rules (Ass) and (DA) strongly perturbed all attempts to use standard techniques: polynomial orderings, recursive path orderings, recursive decomposition orderings, . . . We analyzed the maximal number of applications of the rule (DA) in any derivation.
of a given term M. This analysis requires as subroutines the analysis of the maximal number of Λ and of (\cdot, \cdot) in any term N derived from M. The analysis of the pairs is the most tricky: we computed this number as the length of a list which may be viewed as the list of the Λ-heights of the leaves of the tree associated to the "worst" N. We refer to [9, 10] for further details.

1.24. Remark. In the above presentation, we stated that the subsystem $CCL\beta SP$ can simulate reductions of Λ_{cr}; therefore it cannot be terminating.

2. Confluence properties for subsystems of $CCL\eta SP$

2.1. Statement of the problems

In the previous section, we showed that the confluent subsystem $Subst$ can manage the substitution operation and that the β-reduction is calculated with the subsystem $CCL\beta SP$. This subsystem is weakly confluent. $(\Lambda_{cr}, \beta SP)$ is not confluent. What about $CCL\beta SP$'s confluence? We will prove that $CCL\beta SP$ is not confluent: the Surjective Pairing rule (SP) destroys confluence property.

But, by doing it carefully, we remarked that we get substitution simulation without using this rule (SP) and its degenerated form (FSI). Therefore we remove these two rules from $Subst$, giving rise to the system SL (see Fig. 2).

$$\begin{align*}
(Ass) & \quad (x \circ y) \circ z = x \circ (y \circ z) \\
(IdL) & \quad Id \circ x = x \\
(IdR) & \quad x \circ Id = x \\
(Fst) & \quad Fst \circ (x, y) = x \\
(Snd) & \quad Snd \circ (x, y) = y \\
(Dpair) & \quad (x, y) \circ z = (x \circ z, y \circ z) \\
(DA) & \quad A(x) \circ y = A(x \circ (y \circ Fst, Snd))
\end{align*}$$

Fig. 2. The rewriting system SL.

SL is not weakly confluent: the term $A(x) \circ Id$ creates a critical pair between (DA) and (IdR). Its resolution needs the rule (FSI). Now there is a critical pair between (FSI) and (Dpair) whose resolution needs (SP):

\[
\begin{align*}
A(x) \circ Id & \overset{(IdR)}{\longrightarrow} A(x), \\
A(x) \circ Id & \overset{(DA)}{\longrightarrow} A(x \circ (Id \circ Fst, Snd)) \overset{(IdL)}{\longrightarrow} A(x \circ (Fst, Snd)), \\
(Fst, Snd) \circ x & \overset{(FSI)}{\longrightarrow} Id \circ x, \\
(Fst, Snd) \circ x & \overset{(Dpair)}{\longrightarrow} (Fst \circ x, Snd \circ x).
\end{align*}
\]

SL without (IdR) is weakly confluent but cannot manage the substitution operation. Furthermore we want to perform the β-reduction. $SL\beta$ (SL+(Beta)) is
not weakly confluent. There is one critical pair between (Beta) and (Ass):

$$\text{(App o \langle \Lambda(x), y \rangle) o z \rightarrow^* (x o \langle z o Id, y o z \rangle); (x o \langle z, y o z \rangle)}$$

whose resolution needs (IdR). So we cannot escape this rule (IdR). The only way to get confluence results for SL and SLβ is to restrict the set of terms: we will define a subset \(D \) of CCL upon which SLβ is confluent. To obtain these results, we cannot use Newman’s Lemma: SLβ has infinite derivations. Furthermore, the rule (Ass) is essential to manage substitution. It perturbs all attempts to use a standard technique for confluence. For example, there is no way to construct a parallelization relation \(R_p \) (s.t. it may reduce several redexes already present in a term) which satisfies \(SLβ \subseteq R_p \subseteq SLβ^* \) and which is strongly confluent. The proof of this fact is given in the following remark.

2.1. Remark. Let \(M, N, P, Q \) be four constants. Let \(X \) be the term \(((M o N) o P) o Q \). We have

$$X \xrightarrow{\text{(Ass)}} Y = (M o (N o P)) o Q \quad \text{and} \quad X \xrightarrow{\text{(Ass)}} Z = (M o N) o (P o Q).$$

Therefore,

$$XR_pY \quad \text{and} \quad XR_pZ.$$

But \(Y \) and \(Z \) have only one redex. So the only possibility is

$$Y R_p M o ((N o P) o Q) \quad \text{and} \quad Z R_p M o (N o (P o Q)).$$

A created redex has to be reduced: \(R_p \) cannot be strongly confluent.

So we will build a new method: the Interpretation Method described in Section 2.2 which will be used to obtain all our confluence results.

2.2. The Interpretation Method

First we recall the definition of an interpretation.

2.2. Definition. Let \(E \) and \(F \) be two sets. Let \(\mathcal{E} \) an application from \(E \) into \(F \). Let \(R \) be an internal relation of \(E \). An \(\mathcal{E} \)-interpretation of \(R \), \(\mathcal{E}(R) \), is an internal relation of \(F \) such that the following diagram holds:

$$
\begin{array}{c}
M \xrightarrow{R} N \\
\downarrow \quad \downarrow \\
\mathcal{E}(M) \xrightarrow{\mathcal{E}(R)} \mathcal{E}(N)
\end{array}
$$

Our method is based on the following general lemma.

2.3. Proposition. Let \(R \) be a reduction relation defined on a set \(E \) and \(\mathcal{E} \) an internal relation of \(E \) such that

1. \(\mathcal{E} \subseteq R^* \),
(2) \(\mathcal{R} \) is confluent and terminating,
(3) there exists an interpretation of \(R \), \(\mathcal{R}(R) \), such that \(\mathcal{R}(R) \subseteq R^* \).
Let \(X \subseteq E \). Then \(\mathcal{R}(R) \) is confluent on \(\mathcal{R}(X) \) iff \(R \) is confluent on \(X \).

Proof. We only have to draw the diagrams of the Figs. 3 and 4.

How to make use of such a method?

(1) Let \(R \) be a rewriting system defined by the rules \(r_1, \ldots, r_n \). The relation \(\mathcal{R} \) may be defined by a subsystem of \(R \) or only by certain instances of certain rules. For example, if \(R \) contained a rule such (Ass), then this rule would be included in \(\mathcal{R} \) in order to handle redex creations. Now let \(X_i \) be the subset of \(\mathcal{R}(E) \) where \(\mathcal{R}(r_i) \) is defined. Then the \(\mathcal{R} \)-interpretation of \(R \) is defined on \(\cap_i X_i \) and is the union of the \(\mathcal{R} \)-interpretations of the \((r_i) \). Furthermore, if \(r_i \subseteq \mathcal{R} \) then \(\mathcal{R}(r_i) \) is the identity.

(2) Now the construction of \(\mathcal{R}(R) \) is done in three stages as follows (see Fig. 5).

Let \(M \) be a term having an \(r \)-redex \(A \) at the occurrence \(u \) and let \(B \) the reduct of \(A \):

\[M[u \leftarrow A] \rightarrow^r M[u \leftarrow B]. \]
On the one hand, interpret the context: let \(\Omega \) be an inert constant (a hole), let \(C \) be the context \(M[u \leftarrow \Omega] \). The interpretation of \(C \) is \(C' = \mathcal{E}(C) \). \(\Omega \) may appear at several occurrences of \(C' \). On the other hand, interpret the redex and its reduct. \(\mathcal{E}(A) \) and \(\mathcal{E}(B) \) are called the "fragments". Now, stick up \(\mathcal{E}(A) \) at any occurrence of \(\Omega \) in \(C' \). We do not get \(\mathcal{E}(M) \): this sticking may create new \(\mathcal{E} \)-redexes. We have to reduce them in order to get \(\mathcal{E}(M) \). \(\mathcal{E}(N) \) is obtained in the same way. This interpretation is well-chosen if, despite the redex creations, the interpretation of \(r \) is well-defined.

If \(R \) is not weakly confluent and if nevertheless the rules satisfying \(r \notin \mathcal{E} \) have only critical pairs with the rules satisfying \(r \subseteq \mathcal{E} \) then, by taking their \(\mathcal{E} \)-normal form, some instances of such critical pairs may disappear. So the interpretation is letting out the "essential" instances of these critical pairs. Now either we add the relation obtained by superposition of these "essential" instances, or we restrict the set of terms: we only accept the terms which cannot create such "essential" instances. The construction of the subset \(\mathcal{D} \) in Section 2.3 gives an example of this last choice. Furthermore, all the confluence results of this paper are obtained with this interpretation method. In [9], another application of this method may be found. It proves that the system obtained by removing from \(\text{SL} \beta \) the rule \((\text{DA})\) and adding a rule called \((\text{Beta}')\) in [6] is confluent upon the whole set of terms of CCL. This subsystem can simulate the so-called "weak" \(\beta \)-reduction.

Fig. 5. Sticking fragments in a context.
2.3. The subsystem \(SL \) is confluent on the subset \(\mathcal{D} \)

As we said in the Section 2, \(SL \) contains a critical pair between \((\text{IdR})\) and \((\text{DA})\) and \(SL \) without \((\text{IdR})\) cannot manage the substitution operation (see the following Examples 2.5 and 2.6). Instead of simply deleting \((\text{IdR})\) from \(SL \), we will replace this rule by its two following instances:

\[
\begin{align*}
\text{Fst} \circ \text{Id} & \quad \xrightarrow{\text{(FiD)}} \quad \text{Fst}, \\
\text{Snd} \circ \text{Id} & \quad \xrightarrow{\text{(SiD)}} \quad \text{Snd}.
\end{align*}
\]

It is easy to see that these instances are sufficient to simulate the \(\lambda \)-calculus substitution (see again Examples 2.5 and 2.6). The so-obtained system is called \(\mathcal{C} \) (see Fig. 6).

\[
\begin{array}{|l|}
\hline
\text{(Ass)} & (x * y) * z \rightarrow x * (y * z) \\
\text{(IdL)} & \text{Id} \circ x \rightarrow x \\
\text{(Fst)} & \text{Fst} \circ (x, y) \rightarrow x \\
\text{(Snd)} & \text{Snd} \circ (x, y) \rightarrow y \\
\text{(Dpair)} & (x, y) * z \rightarrow (x * z, y * z) \\
\text{(DA)} & \Lambda(x) * y \rightarrow \Lambda(x * (y \circ \text{Fst, Snd})) \\
\text{(FiD)} & \text{Fst} \circ \text{Id} \rightarrow \text{Fst} \\
\text{(SiD)} & \text{Snd} \circ \text{Id} \rightarrow \text{Snd} \\
\hline
\end{array}
\]

Fig. 6. The system \(\mathcal{C} \).

2.4. Remark. The following rule can remove the critical pair between \((\text{IdR})\) and \((\text{DA})\) too:

\[
\lambda(x) \rightarrow \lambda(x \circ (\text{Fst, Snd})),
\]

but only with this orientation. So it has no operational sense!

2.5. Example. Let \(M \) be the term

\[
M = \text{App} \circ \langle \Lambda((\text{Id} \circ \text{Fst, Snd}), \text{Snd} \circ \text{Fst}) \rangle, \text{Snd} \rangle.
\]

Remark that \(M = (\lambda y. \lambda x. (y, x), z)_{DB(z)} \). The substitution is launched by applying the rule \((\text{Beta})\) at the occurrence \(\varepsilon \):

\[
M \xrightarrow{\text{(Beta)}} \langle \Lambda((\text{Snd} \circ \text{Fst}), \text{Snd} \circ \text{Fst}) \circ \text{Id, Snd} \rangle \equiv M'.
\]

The following term is a reduct of \(M' \):

\[
\langle \Lambda((\text{Snd} \circ \text{Fst}), \text{Snd} \circ \text{Fst}) \circ ((\text{Id} \circ \text{Fst, Snd} \circ \text{Fst}), \text{Snd} \circ \text{Id})
\]

(use rules \((\text{Dpair})\), \((\text{DA})\), \((\text{Ass})\), \((\text{Fst})\) and \((\text{Dpair})\)). We only need the rule \((\text{SiD})\) to obtain the normal form of \(M' \). Now look at the following term:

\[
((\Lambda((\text{Snd} \circ \text{Fst, Snd})), \text{Snd} \circ \text{Fst})) \circ \text{Id}.
\]
Here is one of its reducts:

\[\lambda((\text{Snd} \circ \text{Fst}, \text{Snd}) \circ (\text{Id} \circ \text{Fst}, \text{Snd})), \text{Snd} \circ (\text{Fst} \circ \text{Id})]. \]

Now with (Dpair), (IdL), (Fst) and (Snd), the subterms "under" \(\lambda \) are reduced in normal form: the \((\text{IdR}) \)-redex is changed into an (FSI)-redex by an application of the (DA)-rule and then may disappear by applications of (Fst) or (Snd) rules. We need the rule (FiD) in order to reduce the term \(\text{Snd} \circ (\text{Fst} \circ \text{Id}) \).

2.6. Example. Let \(N = \lambda(\text{App}) \). Note that \(N \) is not a DB-translation of a \(\lambda \)-term. \(N \circ \text{Id} \) has two reducts, itself and \(\lambda(\text{App} \circ (\text{Id} \circ \text{Fst}, \text{Snd})) \) whose (SL)-normal form is \(\lambda(\text{App} \circ (\text{Fst}, \text{Snd})) \). Here we have an "essential" critical pair: to solve it, we have to add either the (FSI)-rule or the following rule:

\[\text{App} \circ (\text{Fst}, \text{Snd}) \rightarrow \text{App} \]

which leads to a nonlinear rule too.

Now \(\mathcal{E} \) is shown to be weakly confluent with the system KB [14] and as a subsystem of \(\text{Subst} \), it is terminating. So it can be used to define an interpretation: the interpretation of a term \(M \) will be the \(\mathcal{E} \)-normal form of \(M \) denoted by \(\mathcal{E}(M) \).

However we want to run \(\beta \)-reduction. So we have to examine the critical pairs between \(\mathcal{E} \) and (Beta). There is only one, between (Beta) and (Ass), which is \((\mathcal{E}(z \circ \text{Id}), \mathcal{E}(z)) \). The rules (FiD) and (SiD) are not sufficient to solve any instance of this critical pair in CCL. By an examination of the \(\mathcal{E} \)-interpretation of (IdR) upon CCL, we will define \(\mathcal{D} \), the subset of "well-formed terms": any instance of this critical pair in \(\mathcal{D} \) is solved with \(\mathcal{E} \).

2.3. Construction of \(\mathcal{D} \)

2.7. Theorem. The system \(\mathcal{E} \) (Fig. 6) is confluent.

Notations. Let \(M \) be a term of CCL. \(\mathcal{E}(M) \) is the \(\mathcal{E} \)-normal form of \(M \). \(M(u) \) denotes the symbol of \(M \) at the occurrence \(u \). \(m, n, \alpha, \gamma \) often denote subwords of occurrences. Let \(u \) be an occurrence in a term \(M \) of CCL. The father of \(u \) is the greater strict prefix of \(u \).

First we describe \(\mathcal{E} \)-normal forms in order to construct the interpretations of different rewriting relations.

2.8. Proposition. Let \(M \) be a term in \(\mathcal{E} \)-normal form different from a constant. Then any subterm of \(M \) has one of the following forms where \(h_i \) denotes App or Fst or Snd
(or Ω the "hole").

$$
(1) \quad \begin{cases}
 h_1 \circ (\ldots (h_{n-1} \circ (h_n \circ \lambda(A)) \ldots) ; \lambda(A), \\
 h_1 \circ (\ldots (h_{n-1} \circ (h_n \circ (\text{App} \circ \langle A, B \rangle)) \ldots) ; \langle A, B \rangle
\end{cases}
$$

where A and B are terms in ε-normal form.

$$
(2) \quad k_i \circ (\ldots (k_{n-1} \circ k_n) \ldots) \text{ such that any } k_i \text{ is a constant. Moreover,}
\begin{align*}
 (\forall i < n), \quad k_i & \neq \text{Id} \quad \text{and} \quad (k_n = \text{Id}) \Rightarrow k_{n-1} = \text{App} \text{ (or } \Omega).
\end{align*}
$$

Proof. Look at the left members of the rules: the top-symbols are only \circ. Let u be a given occurrence in a term M in ε-normal form. If $M(u)$ is λ or $\langle \ldots \rangle$, then $M|_u$ must be in ε-normal form, where $i = 0, 1, 2$. If $M(u) = \circ$, then the left son must be a constant different from Id. Moreover, if the right son is a pair or the constant Id, then the left son cannot be a projection. □

2.9. Definition. A subterm of a term in ε-normal form built only with compositions and constants, whose father occurrence is λ or $\langle \ldots \rangle$, is called a leaf. This λ or this $\langle \ldots \rangle$ is said to be the anchor of the leaf.

So, if a term is represented by a tree with its root as the upper point, its leaves are the maximal subterms under the lowest symbols λ or $\langle \ldots \rangle$. Note that the constants h_i of the Proposition 2.8(1) are not leaves: such a sequence of constants h_i is called a chain. The extremity of this chain is the symbol λ or $\langle \ldots \rangle$ appearing in Proposition 2.8(1). All these notations are presented in Fig. 7.

The leaves of a term will play an essential role: they are the subterms to be examined in order to know if the given term may lead to essential critical pairs, when composed with Id on the right.

2.10. Definition. The height of a leaf at occurrence u in term M (in ε-normal form) is the number of λ whose occurrences are prefixes of u. It is denoted by $(|u|, M)$ or simply $|u|$ if no ambiguity arises.

![Fig. 7. A term in ε-normal form.](image-url)
Notations. We recall Curien's notation [6]: $\mathcal{P}(M) = M$. $\mathcal{P}(M)$ denotes the term $\langle M \circ \text{Fst, Snd} \rangle$. $\mathcal{P}^m(M)$ denotes the term $\mathcal{P}(\mathcal{P}^{m-1}(M))$ for $m > 0$.

The following proposition explains how to compute $\mathcal{E}(A \circ B)$ out of $\mathcal{E}(A)$ and $\mathcal{E}(B)$.

2.11. Proposition. Let A and B be two terms in CCL. Then

$$\mathcal{E}(A \circ B) = \mathcal{E}(A)[u_i \leftarrow \mathcal{E}(F_i \circ \mathcal{P}^{u_i}(B))]$$

where the u_i are the leaves' occurrences of $\mathcal{E}(A)$. F_i denotes the leaf of $\mathcal{E}(A)$ at the occurrence u_i. The heights $|u_i|$ are measured in $\mathcal{E}(A)$.

Proof. We first prove the following:

$$(A \circ B) \rightarrow^* \mathcal{E}(A)[u_i \leftarrow \mathcal{E}(F_i \circ \mathcal{P}^{u_i}(B))] \equiv Y$$

by an easy calculation, which can be simulated by waving hands noticing that crossing pairings is mere distribution while crossing A increases the P counter. Now we prove that Y is indeed a \mathcal{E}-normal form: any leaf's anchor is a symbol A or a pairing, so it prevents any redex creation above it. \square

So we obtain the following result.

2.12. Corollary. Let $M = A \circ \text{Id}$. Then

$$\mathcal{E}(M) = \mathcal{E}(A)[u_i \leftarrow \mathcal{E}(F_i \circ \mathcal{P}^{u_i}(\text{Id}))]$$

where $\{u_i\} = U$ denotes the SDO of the leaves of $\mathcal{E}(A)$.

The possible critical pair $(A \circ \text{Id}, A)$ gives rise to a family of possible essential critical pairs:

$$(\mathcal{E}(F_i \circ \mathcal{P}^{u_i}(\text{Id})), F_i).$$

A leaf creates an essential critical pair if there exists an $m \geq 0$ such that $\mathcal{E}(F \circ \mathcal{P}^m(\text{Id}))$ is different from F.

To get rid of these essential critical pairs by adding rules, we should include rules of the form: $\text{App} \circ \mathcal{P}^m(\langle \text{Fst, Snd} \rangle) \rightarrow \text{App}$ in the \mathcal{E}-interpretation of (IdR). Remark that $\mathcal{P}(\text{Id}) = \langle \text{Fst, Snd} \rangle$! This interpretation must be included in $(SL)^*$. So we should add these rules to SL and then, because of (Ass) and (Dpair), either the infinite family of rules

$$\text{App} \circ (\mathcal{P}^m(\langle \text{Fst, Snd} \rangle) \circ x) \rightarrow \text{App} \circ x$$

or the (SP)-rule would be needed. We want to avoid this. Therefore the only solution is to forbid creations of such essential critical pairs by restricting the set of terms. In Examples 2.5 and 2.6, we have noticed that leaves such as $\text{Snd} \circ \text{Fst}^n$ should not lead to essential critical pairs unlike the leaves Id or App. In the following we define the notion of well-formed leaf: such a leaf should not create essential critical pairs.
2.13. Definition. A leaf F is said well-formed if

$$F = k_1 \circ (\ldots (k_p \circ (\text{Snd} \circ \text{Fst}^n) \ldots))$$

where $p \geq 0$, $n \geq 0$ and the k_i may be Fst, Snd or App. The "extremity" $\text{Snd} \circ \text{Fst}^n$ is denoted by $n!$.

2.14. Remark. An ill-formed leaf may have only the following forms: Id; App; $k_1 \circ (\ldots (k_n \circ \text{App}) \ldots)$; Fst^n; $k_1 \circ (\ldots k_p \circ (\text{App} \circ X))$ where $X = \text{Id}$ or Fst^n and where the constants k_i may be Fst, App or Snd.

2.15. Remark. If $F = k_1 \circ (\ldots (k_{n-1} \circ k_n) \ldots)$ is a leaf and if M is a term of CCL, then, by repetitive use of (Ass), we get

$$\mathcal{E}(F \circ N) = \mathcal{E}(k_1 \circ (\ldots (k_n \circ M) \ldots)).$$

The following proposition asserts that a well-formed leaf does not create an essential critical pair.

2.16. Proposition. (1) If F is a well-formed leaf, then $\forall m \geq 0$, $F = \mathcal{E}(F \circ \mathcal{P}^m(\text{Id}))$.

(2) Conversely, if there exists an $m_0 \in \mathbb{N}$ such that, for all $m \geq m_0$, the leaf F satisfies $\mathcal{E}(F \circ \mathcal{P}^m(\text{Id})) = F$, then F is well-formed.

(3) Let F be a leaf, if there exists an $m \in \mathbb{N}$ such that $\mathcal{E}(F \circ \mathcal{P}^m(\text{Id})) = X$ has only well-formed leaves, then F is also a well-formed leaf and $X = F$.

Proof. (1): Easy calculation noticing that if A is $\mathcal{E}(\text{Fst}^n \circ \mathcal{P}^m((\text{Fst}, \text{Snd})))$, then

$$A = \left\{ \langle \ldots \langle \text{Fst}^{m+1} \circ \text{Snd} \circ \text{Fst}^m \rangle \ldots \rangle, \langle \text{Snd} \circ \text{Fst}^n \rangle \right\} \quad n \leq m,$n \leq m,$

Now we have only to reduce the possible (Snd)-redex.

(2, 3): Suppose that F is ill-formed and compute the left members of the equations. They cannot satisfy the hypothesis. \square

Now we can describe \mathcal{D}. This subset of CCL is such that no term of \mathcal{D} can create essential critical pairs.

2.17. Definition. A term M of CCL belongs to \mathcal{D} iff any leaf of $\mathcal{E}(M)$ is well-formed.

2.18. Remark. Let M be a term in \mathcal{D} in \mathcal{E}-normal form such that $M = C[u, \leftarrow F_i]$ where the F_i are some leaves of M. Let M_i be some terms of \mathcal{D} in \mathcal{E}-normal form. Then $C[u, \leftarrow M_i] \in \mathcal{D}$ and this term is in \mathcal{E}-normal form.

2.19. Remark. Let M be a term of \mathcal{D}. In general, subterms of M are not in \mathcal{D}. \mathcal{D} is not stable by the subterm operation. This lack represents the most important difficulty of our study.
Now we extend the preceding results for leaves to a given term of \mathcal{D}.

2.20. Proposition. Any term M of \mathcal{D} satisfies

$$\forall m \geq 0, \; \mathcal{E}(M) = \mathcal{E}(M \circ \mathcal{P}^m(\text{Id})).$$

Conversely, if there exists an $m_0 \geq 0$ such that, for any $m \geq m_0$, M satisfies

$$\mathcal{E}(M) = \mathcal{E}(M \circ \mathcal{P}^m(\text{Id})).$$

then $M \in \mathcal{D}$.

Proof. With the notations and the conclusion of Proposition 2.11, we have

$$\mathcal{E}(M \circ \mathcal{P}^m(\text{Id})) = \mathcal{E}(M)[u_i \leftarrow \mathcal{E}(F_i \circ \mathcal{P}^{|u_i|+m}(\text{Id}))]$$

where F_i is a leaf of A, hence well-formed. With Lemma 2.43 below, we have

$$\mathcal{E}(F_i \circ \mathcal{P}^{|u_i|+m}(\text{Id})) = F_i.$$

Conversely, with Proposition 2.11, we have

$$\mathcal{E}(M \circ \mathcal{P}^m(\text{Id})) = \mathcal{E}(M)[u_i \leftarrow \mathcal{E}(F_i \circ \mathcal{P}^{m+|u_i|}(\text{Id}))].$$

So any leaf F of $\mathcal{E}(M)$ satisfies $F = \mathcal{E}(F \circ \mathcal{P}^{m+|u_i|}(\text{Id}))$.

By Lemma 2.43, F is well-formed. □

2.21. Proposition. Let M be a term of CCL. If there exists an $m \geq 0$ such that

$$\mathcal{E}(M \circ \mathcal{P}^m(\text{Id})) \in \mathcal{D},$$

then $M \in \mathcal{D}$.

Thus, if an (IdR)-redex belongs to \mathcal{D}, its reduction does not create essential critical pairs and its reduct also belongs to \mathcal{D}. Now we have to extend this result to a term M of \mathcal{D} being a context of an (IdR)-redex $(A \circ \text{Id})$: $M = C[u \leftarrow A \circ \text{Id}]$ where $u \neq \varepsilon$. As \mathcal{D} is not stable by the subterm operation, there is no reason for $(A \circ \text{Id})$ to belong to \mathcal{D}: look at the following examples:

$$\text{Snd} \circ (A \circ \text{App} \circ \text{Id}, \text{Fst}) \in \mathcal{D}, \quad (A \circ \text{App} \circ \text{Id}) \circ \text{Snd} \in \mathcal{D}.$$

We have to study the \mathcal{E}-normal forms of M and of its reduct. To prove our result, we shall use the Interpretation Method. When M is derived to $\mathcal{E}(M)$, this occurrence u may be duplicated, erased, ... These transformations of u will become precise with Proposition 2.25 on derivations of contexts. Moreover, as explained in Section 2.1, sticking the fragments $\mathcal{E}(A \circ \text{Id})$ and $\mathcal{E}(A)$ in the \mathcal{E}-normal forms of the contexts may create new redexes. Proposition 2.27 will give an analysis of these creations.
Interpretation of the contexts

We have to explain how a context is modified when it is derived to its %\$\$-$normal form and to analyze the splitting of the occurrences of the hole Ω during this derivation. This is done by an examination of the residuals of certain subsets of occurrences, called SDO, by iterated applications of the SL-rules.

2.22. **Definition.** U is a set of strictly disjoint occurrences (in brief, an SDO) in a term M if

$$\forall u, v \in U, \quad (u \neq v \Rightarrow \exists m, (u = m1n \text{ and } v = m2p \text{ and } M(m) = (,))).$$

The pairing at the occurrence m is said to be the separating pairing of u and v. Let $U = \{u_i\}_{i \in [1, n]}$ be an SDO. For all i and $j \in [1, n]$, p_{ij} is the occurrence of the separating pairing of u_i and u_j. For all $i \in [1, n]$, $\{p_{ij}\}_{j \in [1, n]}$ is a set of occurrences completely ordered by prefix ordering. Let $p_i = \text{sup}_j(p_{ij})$. The pairing at the occurrence p_i is called the buffer pairing of u_i. p_i1 or p_i2 is a prefix of u_i. This occurrence is called the buffer occurrence of u_i (or occasionally the buffer of u_i).

If the term is represented by a tree, the buffer pairing of u_i is the lowest pairing among the separating pairings of u_i and other occurrences u_j; the buffer occurrence of u_i is the occurrence of the buffer pairing's son which contains u_i (see Fig. 8). Note that the set of buffer occurrences of an SDO is still an SDO.

![Fig. 8. An SDO.](image)

2.23. **Example.** Let M be a term in %\$\$-$normal form. Then the set of the occurrences of its leaves is an SDO. Furthermore, if its anchor is a pairing, the occurrence of a given leaf is its own buffer occurrence.

2.24. **Remark.** Let U be an SDO in a term M. Suppose that the subterm of M at the occurrence α is $A \circ B$. Suppose that there exists one occurrence u of U which is $\alpha1\beta$; then no occurrence of U can be $\alpha2\gamma$.

2.25. Proposition. Let C be a context of an SDO $U = \{u_i\}_{i \in \{1, p\}}$ Suppose that the u_i are marked with "inert constants" Ω_i. Let

$$P_0 = C[u_i \leftarrow \Omega_i], \quad \forall i \in \{1, p\}.$$

For all $n \in \mathbb{N}$, let P_n be such that $P_0\text{SL}^{\eta} P_n$. If Ω_i is a subterm of P_n, let $\{u_{ij}\}_{j \in \{1, k_i\}}$ be the set of the occurrences of this constant in P_n: $P_n = C_n[u_{ij} \leftarrow \Omega_i]$. Let $U_n = \bigcup_{i \in \{1, p\}} \{u_{ij}\}$. Then, U_n is an SDO.

Proof. By induction on n. We examine all the possible positions of the occurrence of a given redex in P_n. We observe that the only duplicating rule is $(D\text{pair})$ and that after one application of this rule, the common ancestor of the duplicated residuals is a pairing node. For more details, see [9].

2.26. Remark. Let $V = \{v_i\}$ be an SDO in a term M. Let p_i be the father of v_i. Let

$$u_i = \text{if}(M(p_i) = \nu \text{ and } u_i = p_i 1) \text{ then } v_i \text{ else } u_i$$

Then $U = \{u_i\}$ is still an $S^\nu O$.

Sticking the fragments

Now we have a first piece of information: an occurrence of a constant Ω in a context in E-normal form may only be (see Fig. 9) one of the following:

1. A son of a λ or a pairing \langle, \rangle. Sticking a fragment in such an occurrence cannot create a redex.
(2) The right son of a composition. Then, the context has a leaf such that \(k_n = \Omega \) and the other constants in this leaf are different from \(\Omega \). Sticking the fragment may create some redexes but these creations cannot get further than the anchor of this leaf. Moreover, all the created redexes have a constant as left son.

(3) The left son of a composition. \(\Omega \) is a part of a chain or a part of a leaf: in the context, with the notations of Lemma 2.36 below, there is one constant \(h_i \) or one constant \(k_i \) (and only one) such that \(i \neq n \) that is equal to \(\Omega \). A redex, defined by the top-symbol of the fragment, will be created when the fragment is sticking. Its reduction can create other redexes: on the one hand, inside this fragment; on the other hand, in prefix occurrences as in the preceding case.

The following proposition gives all the information about the redex creations.

2.27. Proposition. Let \(R \) be a fragment. Let \(M = C[u \leftarrow R] \). Let \(P = C[u \leftarrow \Omega] \). Then the following hold.

1. There exists a context \(C' \) and terms \(Q_j \) in \(\varepsilon \)-normal form such that
\[
\varepsilon(P) = C'[u \leftarrow \Omega ; v_j \leftarrow \Omega \circ Q_j]
\]
such that \(\{u_i\} \cup \{v_j\} \) is an SDO. Moreover, no occurrences \(u_i \) are left sons of a composition.

2. Let \(M_i \) be \(C'[u \leftarrow R ; v_j \leftarrow R \circ Q_j] \). Redex creations may occur in the subterms \(R \circ Q_j \). Moreover there may be redex creations in prefix occurrences of \(u_i \) and \(v_j \) but only if the symbol at their father occurrence is a composition and these last redexes can only be (Fst), (Snd), (FiD) or (SiD) redexes.

(3) Let \(p_i \) be the buffer occurrences of \(u_i \), and \(p_j \) the ones of \(v_j \). \(C_p \) denotes the context of these buffer occurrences in \(\varepsilon(P) \). Then
\[
\varepsilon(M) = C_p[p_i \leftarrow \varepsilon(P|_{p_i}[\Omega \leftarrow R]) ; p_j \leftarrow \varepsilon(P|_{p_j}[\Omega \leftarrow R \circ Q_j])]
\]
i.e. no creations can appear "above" the buffer occurrences of the SDO.

(2): Let \(q_i \) be the father of \(u_i \). If \(C'(q_i) \) is not a composition, then there is no creation of redex in a prefix occurrence of \(q_i \) since the context \(C' \) is in \(\varepsilon \)-normal form. Else, \(u_i = q_i \). So the only creations are (Fst)-, (Snd)-redexes if the top-symbol of the fragment is a pairing, and (FiD)-, (SiD)-redexes if the fragments is \(Id \). Sticking a fragment at occurrences \(v_j \) creates an \(\varepsilon \)-redex, defined by the top-symbol of this fragment. The reduction of this redex may create other redexes inside the fragment. There may also be redex creations in a prefix occurrence of \(v_j \) but only of (Fst)-, (Snd)-, (FiD)- or (SiD)-redexes.

(3): By definition, the father of a buffer occurrence is a pair belonging to the context \(C' \) in \(\varepsilon \)-normal form so prevents any redex creation "above" itself. □

2.28. Remark. Let \(M = C[u \leftarrow R] \). Let \(P = C[u \leftarrow \Omega] \). From any derivation from \(P \) to \(\varepsilon(P) \), one gets a derivation from \(M \) to \(M_1 = \varepsilon(P)[\Omega \leftarrow R] \).
2.3.2. SL is confluent on \mathcal{D}

Now we are able to construct the ε-interpretation of the (IdR)-rule on \mathcal{D} expecting that the critical pairs between (DA) and (IdR) should disappear.

2.29. Proposition. Let $M \in \mathcal{D}$ contain an (IdR)-redex at occurrence u: $M = C[u \leftarrow A \circ \text{Id}]$. Let $N = C[u \leftarrow A]$. Then, $\varepsilon(M) = \varepsilon(N)$ and $N \in \mathcal{D}$. Moreover, the ε-interpretation of (IdR) on \mathcal{D} is the identity function.

Proof. First we make the fragments appear: Let

$$M_1 = C[u \leftarrow \varepsilon(A \circ \text{Id})] \quad \text{and} \quad N_1 = C[u \leftarrow \varepsilon(A)].$$

Next we interpret the context. Let P be the context of A in M: $P = C[u \leftarrow \Omega]$. By Proposition 2.27, we know that

$$\varepsilon(P) = C'[u_i \leftarrow \Omega \circ Q_i; v_j \leftarrow \Omega]$$

where $V = \{u_i\} \cup \{v_j\}$ is an SDO. Now we stick up the fragments at the occurrences of Ω in $\varepsilon(P)$. Using Remark 2.28 we can build, from a derivation from P to $\varepsilon(P)$, one derivation from M to M_2 and another from N to N_2 where

$$M_2 = C'[u_i \leftarrow (\varepsilon(A \circ \text{Id}) \circ Q_i); v_j \leftarrow \varepsilon(A \circ \text{Id})],$$

$$N_2 = C'[u_i \leftarrow \varepsilon(A) \circ Q_i; v_j \leftarrow \varepsilon(A)].$$

We have to reduce all the created ε-redexes. We begin by the ones at the occurrences of u_i getting the terms M_3 and N_3. Remark that

$$\varepsilon(\varepsilon(A \circ \text{Id}) \circ Q_i) = \varepsilon(A \circ (\text{Id} \circ Q_i)) = A \circ Q_i = \varepsilon(\varepsilon(A) \circ Q_i).$$

Therefore M_3 and N_3 may only differ by their subterms at their occurrences v_j:

$$M_3 = C''[v_j \leftarrow \varepsilon(A \circ \text{Id})], \quad N_3 = C''[v_j \leftarrow \varepsilon(A)].$$

Let q_j be the father of v_j. If $\varepsilon(P)(q_j) = (, ,)$ or Λ, then, with Proposition 2.27, we can put $\varepsilon(A \circ \text{Id})$ in ε-normal form without creating redexes in a prefix occurrence of v_j. Therefore, $\varepsilon(A \circ \text{Id})$ is effectively the subterm of $\varepsilon(M)$ at occurrence v_j. So its leaves are well-formed. Now,

$$\varepsilon(A \circ \text{Id}) = \varepsilon(\varepsilon(A) \circ \text{Id}).$$

With Proposition 2.21 we conclude that the leaves of $\varepsilon(A)$ also are well-formed and that $\varepsilon(A \circ \text{Id}) = \varepsilon(A)$.

If $\varepsilon(P)(q_j) = \circ$, then v_j is the right son of a composition. So it is the maximal occurrence of a leaf. Let x_j be the occurrence of this leaf:

$$\varepsilon(P)|_{x_j} = k_1 \circ (k_2 \circ (\ldots (k_n \circ \Omega)) \ldots).$$

Sticking $\varepsilon(A \circ \text{Id})$ in place of Ω cannot create redexes at a prefix occurrence of x_j because of the leaf's anchor. Therefore, by hypothesis,

$$\varepsilon(\varepsilon(P)|_{x_j}[v_j \leftarrow \varepsilon(A \circ \text{Id})]) = Y \in \mathcal{D}.$$
Now since $\mathcal{E}(P)|_{x_j}$ is a leaf, we lift the (IdR)-redex up to x_j by repetitive use of (Ass):

$$Y = \mathcal{E}(\mathcal{E}(k_1 \circ (k_2 \circ (\ldots (k_n \circ \mathcal{E}(A)) \ldots)) \circ Id),$$

that is,

$$Y = \mathcal{E}(\mathcal{E}(\mathcal{E}(P)|_{x_j}[[v_j \leftarrow \mathcal{E}(A)]) \circ Id).$$

With Proposition 2.21, we conclude that term $\mathcal{E}(\mathcal{E}(P)|_{x_j}[[v_j \leftarrow \mathcal{E}(A)])$ is in \mathcal{D} and is equal to Y. So we have $\mathcal{E}(M) = \mathcal{E}(N)$ and N belongs to \mathcal{D}. □

Now we obtain the confluence of SL by the aim of Fig. 10.

2.30. **Theorem.** The rewriting system SL is confluent on \mathcal{D}. $\forall M \in \mathcal{D}$, $SL(M) = \mathcal{E}(M)$.

Notations. If $M \in \mathcal{D}$, then $SL(M)$ denotes the SL-normal form of M: $\mathcal{D} = \{SL(M) | M \in \mathcal{D}\}$.

Now there is a simple way to go from CCL to \mathcal{D}.

2.31. **Proposition.** Let $M \in CCL$. Then, $M \circ \text{Snd} \in \mathcal{D}$.

Proof. Use Proposition 2.11 and remark that for any leaf F and for any $m \geq 0$, the term $F \circ \mathcal{P}^m(Snd)$ belongs to \mathcal{D}. □

2.4. **The subsystem $SL\beta$ is confluent on the subset \mathcal{D}**

As SL is confluent on \mathcal{D} we can manage the substitution in \mathcal{D}, but we also want to run the β-reduction in \mathcal{D}. We have already made a step by allowing the (IdR)-rule on \mathcal{D}: the critical pair between (Ass) and (Beta) is solved on \mathcal{D} as the one between (DA) et (IdR). So we only have to prove the confluence of $SL\beta$ on \mathcal{D}.

It seems that $SL\beta$ is only a straightforward translation of the relation β of λ-calculus. So we should expect that classical methods of λ-calculus are able to get confluence of $SL\beta$. But as will become more precise later, the β-reduction corresponds only to the choice of one strategy of $SL\beta$. $SL\beta$ is not terminating. Nevertheless, some methods of λ-calculus use strong normalization of labelled terms. To
find such a labelling for CCL terms could be a complicated task: with such a method
we should obtain the termination of Subst and probably the termination of $SL\beta$
with types. But our examples showing the difficulties for the termination of Subst
can be typed (see [10]). Another method for λ-calculus is the Axiomatic Method
of Tait and Martin-Löf: the relation defined by the reduction of some redexes using
an innermost strategy is shown to be strongly confluent. But (Ass) is a rule of $SL\beta$.
As we saw in Section 2, there exists no parallelization of $SL\beta$ which is strongly
confluent and the same example shows that a relation based on an innermost strategy
cannot be strongly confluent.

Therefore, we shall construct the ε-interpretation of $SL\beta$. It will be the relation
$(Sim\beta)^\ast$. Since we know that $SL\beta$ is confluent on D iff $Sim\beta$ is confluent on D
(Proposition 2.3 of Section 2.2), we only have to get the confluence of $Sim\beta$ to
obtain the result for $SL\beta$. This is an easier problem: terms in D are "regularized"
terms, whose shapes are very close to those of Λ_{e-r}-terms because their leaves are
well-formed: proving the confluence of $Sim\beta$ can be done with an axiomatic method,
inspired by the one of Tait and Martin-Löf.

2.4.1. The interpretation of $SL\beta$

First we have to prove that (Beta) is internal to D and then we have to build its
interpretation.

2.32. Definition. $(Sim\beta)$ is defined on D by

$$M(Sim\beta)N \text{ if } M \xrightarrow{\text{Beta}} N_1 \text{ and } N = SL(N_1).$$

Therefore an application of $(Sim\beta)$ consists of firstly performing a (Beta)-reduction
and secondly carrying out the so launched substitution. If the (Beta)-reduction is
internal to D, then $(Sim\beta)$ will be well-defined.

2.33. Proposition. Let $M \in D$, containing a (Beta)-redex at the occurrence u:

$$M = C[u \leftarrow \text{App } \circ (\Lambda (A), B)];$$

then

$$N = C[u \leftarrow A \circ (Id, B)] \in D.$$

Moreover, $SL(M) (Sim\beta)^\ast SL(N)$.

Proof. Let $P = C[u \leftarrow \Omega]$ be the context of this (Beta)-redex in M. With Proposition
2.27, we get

$$\varepsilon(P) = C'[u \leftarrow \Omega \circ Q_1; v_j \leftarrow \Omega].$$

Now, by deriving M and N the fragments appear:

$$M_1 = C[u \leftarrow \varepsilon(App \circ (\Lambda (A), B))], \quad N_1 = C[u \leftarrow \varepsilon(A \circ (Id, B))].$$
From a derivation from P to $\mathcal{E}(P)$, with Proposition 2.27, one gets a derivation from M_1 to M_2 and another from N_1 to N_2:

$$M_2 = C[u_i \leftarrow \mathcal{E}(\text{App} \circ \langle \Lambda(A), B \rangle) \circ Q_i]$$

$$v_j \leftarrow \mathcal{E}(\text{App} \circ \langle \Lambda(A), B \rangle)),$$

$$N_2 = C[u_i \leftarrow \mathcal{E}(A \circ (\text{Id}, B)) \circ Q_i]$$

$$v_j \leftarrow \mathcal{E}(A \circ (\text{Id}, B))).]$$

As the patterns $\text{App} \circ \langle \cdot, \cdot \rangle$ prevent any redex creation in a prefix occurrence of u_i or v_j, the following term is the SL-normal form of M:

$$SL(M) = C[u_i \leftarrow \text{App} \circ \langle \Lambda(\mathcal{E}(A \circ \mathcal{P}(Q_i)), \mathcal{E}(B \circ Q_i)) \rangle]$$

$$v_j \leftarrow \text{App} \circ \langle \Lambda(\mathcal{E}(A)), \mathcal{E}(B))].$$

Now we construct the \mathcal{E}-normal form of N and first, the following reduct of N:

$$N_3 = C[u_i \leftarrow \mathcal{E}(A \circ (\text{Id}, B)) \circ Q_i]$$

$$v_j \leftarrow \mathcal{E}(A \circ (\text{Id}, B))).]$$

Then, by Proposition 2.27, if the symbol at the father occurrence of u_i or v_j is a composition, N_3 contains possibly (Fst)-, (Snd)-, (Fid)- or (SiD)-redexes but only "under" the buffer occurrences of u_i and v_j. In order to study these creations, we make these buffer occurrences appear with the following notations: if $k \in [1, n + p]$, then

$$\alpha_k = \text{if } k \leq n \text{ then } u_k \text{ else } v_{k-n},$$

$$w_k = \text{the buffer occurrence of } \alpha_k,$$

$$A_k = \text{if } k \leq n \text{ then } SL(A \circ \mathcal{P}(Q_k)) \text{ else } SL(A),$$

$$B_k = \text{if } k \leq n \text{ then } SL(B \circ Q_k) \text{ else } SL(B),$$

$$Q_k = \text{if } k = n \text{ then } SL(Q_k) \text{ else } \text{Id},$$

$$T_k = SL(P)|_{w_k}.$$

With these notations, we have

$$SL(M) = C[\alpha_k \leftarrow \text{App} \circ \langle \Lambda(A_k), B_k \rangle]$$

and

$$N_3 = C[\alpha_k \leftarrow \mathcal{E}(A \circ (Q_k, B_k))].$$

As $M \in \mathcal{D}$, we have

$$\forall k \in [1, n + p], \quad A_k \in \mathcal{D}, \quad B_k \in \mathcal{D}.$$
Now we use Proposition 2.27 to study redex creations. Let \(q_k \) be the father occurrence of \(\alpha_k \).

1. \(\mathcal{E}(P)(q_k) = \) \(\omega \) or \(\Lambda \): then we replace \(\Omega \) by and element of \(\mathcal{D} \). Therefore,
\[
\mathcal{E}(T_k[\Omega \leftarrow A \circ (Q_k, B_k)]) \in \mathcal{D}.
\]

2. \(\mathcal{E}(P)(q_k) = \cdot \). Then \(\alpha_k \) is the maximal occurrence of a leaf \(F \). Let \(x_k \) be the occurrence of \(F \). We have \(w_k \leq x_k \leq q_k \leq \alpha_k \). Let \(F \) be
\[
F \equiv T_k \mid x_k \equiv c_1 \circ (c_2 \circ (\ldots (c_n \circ \Omega) \ldots)).
\]

With Lemma 2.35 below, we obtain that
\[
\mathcal{E}(c_1 \circ (c_2 \circ (\ldots (c_n \circ A \circ (Q_k, B_k)) \ldots)) \in \mathcal{D}.
\]
As the anchor of \(F \) prevents any creation of redexes in a prefix occurrence of \(x_k \), we obtain
\[
\mathcal{E}(T_k[\omega \leftarrow A \circ (Q_k, B_k)]) \in \mathcal{D}
\]
since, by the buffer's definition, there exists one and only one occurrence of \(\Omega \) in \(T_k \).

Furthermore,
\[
\mathcal{E}(N) = C'[w_k \leftarrow A \circ (\Lambda(A_k), B_k)]
\]
so we may conclude \(\mathcal{E}(N) \in \mathcal{D} \).

Now we have to build the interpretation of \(SL \beta \). In \(SL(M) \), the fragment coming from the (Beta)-redex may be modified or duplicated but the occurrences of such modifications are "well-separated" since they are strictly disjoint. Furthermore, these modifications still are (Beta)-redexes: we have
\[
SL(M) = C'[w_k \leftarrow \mathcal{E}(T_k[\omega \leftarrow A \circ (\Lambda(A_k), B_k)])].
\]
Now, since \(N \in \mathcal{D} \), we have
\[
SL(N) = C'[w_k \leftarrow SL(T_k[\omega \leftarrow A \circ (\Lambda(A_k), B_k)])].
\]
The interpretation of (Beta) is obtained by successively applying the relation \(Sim\beta \) at each occurrence \(\alpha_k \). Let \(M_k \) for \(k \in [0, n + p] \) be the term
\[
M_0 = SL(M), \quad M_{k-1}(Sim\beta) M_k,
\]
the \(k \)th application of \(Sim\beta \) being intended to reduce the (Beta)-redex at occurrence \(\alpha_k \) so that
\[
M_k = C'[w_s \leftarrow SL(T_s[\Omega \leftarrow A \circ (\Lambda(A_s), B_s)])]
\]
\[
w_s \leftarrow T_s[\Omega \leftarrow App \circ (\Lambda(A_s), B_s)]
\]
where \(s \in [1, k] \). We prove that \(M_k \) is in \(\mathcal{D} \) in the same way as we proved that \(N \in \mathcal{D} \). Remark that \(SL(A_s \circ (\Lambda, B_s)) = SL(A \circ (Q_s, B_s)) \) by part (3) of Lemma 2.36 below. Furthermore,
\[
M_{n+p} = C'[w_k \leftarrow SL(T_k[\omega \leftarrow SL(A_k \circ (\Lambda, B_k)))]].
\]
Therefore,
\[
M_{n+p} = SL(N) \quad \text{and} \quad SL(M)(Sim\beta)^{n+p} SL(N).
\]
\(\square \)
2.34. Remark. Proposition 2.33 becomes false if one uses the relation Subst instead of the relation SL as seen with the following example. Let P be a (Beta)-redex in Subst-normal form and Q its reduct. Let $M = \langle Fst \circ P, Snd \circ P \rangle$. N is obtained by reducing the (Beta)-redex P in the left son of M.

$$\text{Subst}(M) = P, \quad \text{Subst}(N) = \langle \text{Subst}(Fst \circ Q), Snd \circ P \rangle.$$

We do not have the following: $\text{Subst}(M) \ (\text{Sim})^* \text{Subst}(N)$.

Now we give the necessary lemmas for the previous theorem.

2.35. Lemma. If $M \in \mathcal{D}$, then $M \circ P^n(Fst^n) \in \mathcal{D}$ for all $m, n \geq 0$. If F is a leaf and if $M \in \mathcal{D}$, then $F \circ M \in \mathcal{D}$.

Proof. Using Proposition 2.11, we have

$$\mathcal{E}(M \circ P^n(Fst^n)) = SL(M) [u_i \leftarrow F_i \circ P^{[n]}(Fst^n)].$$

The result follows, by an easy calculation, noticing that F_i is a well-formed leaf. □

2.36. Lemma. (1) If F is a well-formed leaf and if $m \geq 0$, then

$$B \in \mathcal{D} \Rightarrow F \circ P^m((Id, B)) \in \mathcal{D}.$$

(2) Let A and $B \in \mathcal{D}$. Then, for all $m \geq 0$,

$$X = A \circ P^m((Id, B)) \in \mathcal{D}.$$

(3) Let A, B, Q be terms in CCL. If

$$(A \circ P(Q)) \in \mathcal{D} ; (B \circ Q) \in \mathcal{D},$$

then

$$Y = A \circ (Q, B \circ Q) \in \mathcal{D}.$$

Furthermore,

$$\mathcal{E}(Y) = \mathcal{E}((A \circ P(Q)) \circ (Id, B \circ Q)).$$

Proof. (1): Easy calculation using the following result. Let $F \equiv K \circ (Snd \circ Fst^n)$. We get

$$SL(F \circ P^m((Id, B))) = \begin{cases} K \circ (Snd \circ Fst^n) & \text{if } n < m, \\ K \circ (Snd \circ Fst^{n-1}) & \text{if } n > m, \\ SL(K \circ (B \circ Fst^n)) & \text{if } n = m. \end{cases}$$

As $B \circ Fst^m \in \mathcal{D}$ (Lemma 2.35), we get $SL(K \circ (B \circ Fst^m)) \in \mathcal{D}$.

(2): By Lemma 2.51 below, part (1) of this lemma and the following equality:

$$\mathcal{E}(X) = \mathcal{E}(A)[u_i \leftarrow \mathcal{E}(F_i \circ P^{[n]}(\langle Id, B \rangle))] .$$
With the second part of this lemma, we get

\[X = \left(A \circ \mathcal{P}(Q) \right) \circ (\text{Id}, B \circ Q) \in \mathcal{D}. \]

Now the following term \(Y \) is an \(\mathcal{E} \)-reduct of \(X \):

\[Y = A \circ (Q \circ \text{Id}, B \circ Q). \]

Here is the crucial point: \(Y \) contains an \(\text{(IdR)} \)-redex. Using Proposition 2.29, we get

\[A \circ (Q, B \circ Q) \in \mathcal{D}. \]

We conclude with the following theorems.

2.37. \textbf{Theorem.} \textit{Let} \(N \in \mathcal{D} \).

\[N(SL\beta)^* P \Rightarrow SL(N) (Sim\beta)^* SL(P). \]

\textbf{Proof.} By the diagram in Fig. 11. \(\square \)

2.38. \textbf{Theorem.} \(SL\beta \) is confluent on \(\mathcal{D} \).

\textbf{Proof.} The interpretation \((Sim\beta) \) on \(\mathcal{P} \mathcal{D} \) of \(SL\beta \) will be proved confluent below. We can conclude with the diagram in Fig. 12. \(\square \)
2.4.2. Confluence of (Simβ)

We define the relation \(\mathcal{R} \) as an iteration of (Simβ) based on an innermost strategy:

2.39. Definition. \(\mathcal{R} \) is defined on \(\mathcal{H} \) by induction as follows:

1. \(M \mathcal{R} M \).
2. If \(M_1 \mathcal{R} N_1 \), then
 1. \((M_1, M_2) \mathcal{R} \langle N_1, N_2 \rangle \),
 2. \(\text{App} \circ M \mathcal{R} \text{App} \circ N \),
 3. \(\text{Fst} \circ M \mathcal{R} \text{SL}(\text{Fst} \circ N) \),
 4. \(\text{Snd} \circ M \mathcal{R} \text{SL}(\text{Snd} \circ N) \),
 5. \(\Lambda(M) \mathcal{R} \Lambda(N) \).
3. \(\text{App} \circ \langle \Lambda(M_1), M_2 \rangle \mathcal{R} \text{SL}(\langle \text{Id}, N_1 \rangle \circ \langle \text{Id}, N_2 \rangle) \).

2.40. Proposition. \(\mathcal{R} \) is internal to \(\mathcal{H} \) and satisfies (Simβ) \(\subseteq \mathcal{R} \subseteq (\text{Simβ})^* \).

Proof. By first giving an axiomatic version of the definition of (Simβ) and then by induction on the length of the proof tree of \((M \mathcal{R} N) \). \(\Box \)

2.41. Theorem. \(\mathcal{R} \) is strongly confluent.

Proof. Let \(M \mathcal{R} P \). We search \(N \) such that \(Q \mathcal{R} N \) and \(P \mathcal{R} N \). The proof is done by induction on the length of the proof tree of \(M \mathcal{R} Q \), for all \(P \). This proof needs the two following lemmas.

2.42. Lemma. If \(M \mathcal{R} N \), then, for all \(m \geq 0 \) and for all \(n \geq 0 \), one has

\[
\text{SL}(M \circ \mathcal{P}^m(\text{Fst}^n)) \mathcal{R} \text{SL}(N \circ \mathcal{P}^m(\text{Fst}^n)).
\]

The second lemma is called Substitution Lemma by reference to the substitution lemma of \(\lambda \)-calculus.

2.43. Lemma (Substitution Lemma of SLβ). If \(M \mathcal{R} N \) and if \(P \mathcal{R} Q \), then for any \(m \), we have

\[
\text{SL}(M \circ \mathcal{P}^m(\langle \text{Id}, P \rangle)) \mathcal{R} \text{SL}(N \circ \mathcal{P}^m(\langle \text{Id}, Q \rangle)).
\]

The proof of these lemmas are done by induction on the length of the proof tree of \((M \mathcal{R} N) \) for all \(P, Q \), and any proof tree of \((P \mathcal{R} Q) \) for all \(m \). For more details, see [9]. \(\Box \)
Using Proposition 2.40 and Theorem 2.41, we get the following theorem.

2.44. Theorem. $(\text{Sim}\beta)$ is confluent on \mathcal{D}.

2.5. $\text{SL}\beta\eta$ is confluent on the subset \mathcal{D}

The following rules (AI) and (SA) are now added to $\text{SL}\beta$:

\[(\text{AI})\quad \lambda(App) \rightarrow \text{Id},\]
\[(\text{SA})\quad \lambda(App \circ (x \circ \text{Fst}, \text{Snd})) \rightarrow x.\]

The system so obtained is called $\text{SL}\beta N$.

As we recalled in the Section 1.3, Curien showed that the theories $\text{CCL}\beta\eta SP$ (that is, $\text{SL}\beta N + \text{(SP)}$) and $\beta\eta SP$ are equationally equivalent. This result needs the rules (AI) and (SA) which in a certain sense (see below) have to do with the η-rule. Moreover, in typed CCL, these rules assert the uniqueness of the exponentiation in Cartesian Closed Categories.

The system $\text{CCL}\beta\eta SP$ is not weakly confluent. Therefore, we only examine the \mathcal{E}-interpretation of the rewriting relation associated with (AI) and (SA) on the subset \mathcal{D} of CCL. It is called $(\text{Sim}\eta)$. The relation $(\text{Sim}\eta) \cup (\text{Sim}\beta)$ will be proved to be confluent on \mathcal{D} and so is $\text{SL}\beta\eta$, extension of $\text{SL}\beta N$, on \mathcal{D}.

2.5.1. Interpretation of (AI) and (SA)

We replace the expression “the leaf F at the occurrence u” by $(F;u)$.

2.45. Definition. A leaf $(F;u)$ in a term M in SL-normal form, is said to be η-accessible in M if $n!$, being its extremity, $n = (|u|, M)$. If $n = (|u|, M)$, F is said free in M. The leaf F^1 is obtained by replacing F’s extremity $n!$ by $(n - 1)!$. The leaf F is said to be decremented. This operation can be performed only if $n \geq 1$.

2.46. Example. In the term $A(\text{Snd})$, the height of the leaf Snd is 1. It is not accessible.

Let N be the term

\[N = \lambda(A((\text{Snd} \circ \text{Fst}^2, \text{Snd} \circ \text{Fst}^3))).\]

The leaf $\text{Snd} \circ \text{Fst}^2$ is η-accessible; the leaf $\text{Snd} \circ \text{Fst}^3$ is free and is not η-accessible.

2.47. Definition. A term M of \mathcal{D} satisfies condition $C(\eta)$ if it has no η-accessible leaves. The term M^1 is obtained from M by decrementing all the free leaves of M.

2.48. Remark. Let M be a term of \mathcal{D} satisfying condition $C(\eta)$. Then the extremities $n!$ of the free leaves of M verify $n \geq 1$, so the term M^1 is well-defined as we have

1. $n > (|u|, M)$ since F is free in M;
2. $n \neq (|u|, M)$ since F is not η-accessible.

So $n > (|u|, M) \geq 0$ and then $n \geq 1$.
The following relation, called \((SA_{SD})\) justifies this terminology: condition \(C(\eta)\) is the equivalent of the condition \(x \not\in FV(M)\) for the \(\eta\)-rule of \(\lambda\)-calculus.

2.49. Definition. The relation \((SA_{SD})\) is the compatible closure of the relation (still called \((SA_{SD})\)) defined on \(\mathcal{D}\) as follows: if \(M\) verifies condition \(C(\eta)\), then
\[
\Lambda(App \circ (M, Sn)) (SA_{SD}) M^1.
\]
If \((M(SA_{SD})N)\), then \(M\) is said to contain an \(SA_{SD}\)-redex and \(N\) is said to be its reduct. In general \(N\) is not an element of \(\mathcal{D}\). We will prove that it belongs to \(\mathcal{D}\). The relation performing first the reduction of an \(SA_{SD}\)-redex and then putting the reduct in \(\mathcal{E}\)-normal form is called \((Sim_{\eta})\) and is defined as follows.

2.50. Definition. The relation \((Sim_{\eta})\) is defined on \(\mathcal{D}\) as follows: \(M \rightarrow (Sim_{\eta}) N\) if there exists an \(N_1 \in CCL\) such that
\[
M \rightarrow (SA_{SD}) N_1 \quad \text{and} \quad N = \mathcal{E}(N_1).
\]
\((Sim_{\eta})\) will be shown to be the interpretation of the rewriting relation defined by the rules \((AI)\) and \((SA)\) on \(\mathcal{D}\). The following lemma gives the key point of the following proofs.

2.51. Lemma. If \(M \circ Fst \in \mathcal{D}\), then \(M \in \mathcal{D}\). Furthermore, \(SL(M \circ Fst)\) verifies condition \(C(\eta)\).

Proof. Suppose \(M\) is in \(\mathcal{E}\)-normal form. With Proposition 2.11, we have
\[
SL(M \circ Fst) = M[u_i \leftarrow SI (F_i \circ \mathcal{E}^{(|u_i|, M)}(Fst))]
\]
where the \((F_i; u_i)\) are the leaves of \(M\). It suffices to prove that if the leaf \(F_i\) is ill-formed, then the leaves of the term \(SL(F_i \circ \mathcal{E}^{(|u_i|, M)}(Fst))\) are also ill-formed. This is done by a simple calculation. Now let \(n!\) be the extremity of the leaf \((F; u)\) in \(M\). The extremity of the corresponding leaf in \(SL(M \circ Fst)\) is
\[
\begin{align*}
(1) & \quad \text{if } n < (|u|, M), \quad \text{then } SL(F \circ \mathcal{E}^{(|u|, M)}(Fst)) = n!; \\
(2) & \quad \text{if } n \geq (|u|, M), \quad \text{then } SL(F \circ \mathcal{E}^{(|u|, M)}(Fst)) = n + 1!.
\end{align*}
\]
In this case \(F\) is free in \(M\). As \((|u|, M) = (|u|, SL(M \circ Fst))\), no leaf of \(SL(M \circ Fst)\) can be \(\eta\)-accessible. □

2.52. Proposition. Let \(M\) be a term of \(\mathcal{D}\) containing an \((AI)\)-redex or \((SA)\)-redex. Let \(N\) be its reduct:
\[
M = C[u \leftarrow \Lambda(App)], \quad N = C[u \leftarrow Id]
\]
\[M = C[u \leftarrow \Lambda(\text{App} \circ (A \circ \text{Fst}, \text{Snd}))], \quad N = C[u \leftarrow A]. \]

Then \(N \) is a term of \(\mathcal{D} \). Moreover,

\[SL(M) \xrightarrow{(\text{Simv}^*)} SL(N). \]

Proof. We begin with the (AI)-redex. Let \(P = C[u \leftarrow \Omega] \). Then

\[Q = SL(P) = C'[u_i \leftarrow \Omega \circ Q_i; v_j \leftarrow \Omega] \]

where \(v_j \) is never the left son of a composition. Let \(M_1 \) be the following reduct of \(M \):

\[M_1 = C'[u_i \leftarrow \Lambda\text{(App)} \circ Q_i; v_j \leftarrow \Lambda\text{(App)}]. \]

The top-symbol \(\Lambda \) of the fragment prevents any redex creation in the prefix occurrences of \(u_i \) and \(v_j \). Therefore,

\[SL(M) = C'[u_i \leftarrow \Lambda(\text{App} \circ \langle SL(Q_i \circ \text{Fst} \rangle, \text{Snd})) ; v_j \leftarrow \Lambda(\text{App})]. \]

From the hypothesis \(M \in \mathcal{D} \), one deduces firstly that \(\{v_j\} = \emptyset \) and then \(SL(Q_i \circ \text{Fst}) \in \mathcal{D} \). By Lemma 2.51, none of the leaves of these above fragments are \(\eta \)-accessible and moreover the terms \(Q_i \) belong to \(\mathcal{D} \).

Let \(p_i \) be the buffers of the \(u_i \). With the method already used for Proposition 2.29 in Section 2.3, we show

\[SL(M) \xrightarrow{(\text{Simv}^*)} C'[p_i \leftarrow SL(Q_{p_i}[u_i \leftarrow (SL(Q_i \circ \text{Fst}))])]. \]

Let \(X \) be the right member of the previous equation. Let \(N_1 \) be the following reduct of \(N \):

\[N_1 = C'[u_i \leftarrow \text{Id} \circ Q_i]; \]

then

\[\varepsilon(N) = C'[p_i \leftarrow SL(Q_{p_i}[u_i \leftarrow SL(Q_i)])]. \]

As the terms \(Q_i \) belong to \(\mathcal{D} \), \(N \) itself is in \(\mathcal{D} \) (Lemma 2.60 below). Now we have to prove \(X = SL(N) \). It suffices to obtain, for any \(i \), the following identity:

\[SL(Q_{p_i}[u_i \leftarrow (SL(Q_i \circ \text{Fst}))]) = SL(Q_{p_i}[u_i \leftarrow SL(Q_i)]). \]

Calculations of Lemma 2.51 are used for this last equality.

The second point is proved by examining the subterms at the buffer occurrences. With the same notations as above, we get

\[SL(M)_{p_i} = C'|_{p_i}[u_i \leftarrow \Lambda(\text{App} \circ \langle SL(A \circ (Q_i \circ \text{Fst})), \text{Snd})]), \]

Because

\[SL(\Lambda(\text{App} \circ \langle SL(A \circ \text{Fst})), \text{Snd}) \circ Q_i) \]

\[= \Lambda(\text{App} \circ \langle SL(A \circ (Q_i \circ \text{Fst})), \text{Snd})]. \]
With the relation \((Sim_\eta)\), we get
\[
X\mid_{\eta_i} = C'\mid_{\eta_i}[u_i \leftarrow SL(A \circ (Q_i \circ Fst))].
\]
Now,
\[
SL(N)\mid_{\eta_i} = C'\mid_{\eta_i}[u_i \leftarrow SL(A \circ Q_i)].
\]
We conclude with Lemma 2.51.
The proof is the same for the occurrences \(\eta_i\).

2.5.2. **Confluence of SL_\eta on \(\mathcal{N}\)**
First we prove the confluence of the relation \((Sim_\eta)\). The following lemma contains the technical points of this proof.

2.53. **Lemma.** Let \(R = C[v \leftarrow \Lambda(App \circ (T, Snd))]\). If \(R\) and \(T\) satisfy condition \(C(\eta)\), then
\[
\begin{align*}
(1) & \ R^1 \ contains \ an \ (SA_{SD})\text{-redex \ at \ the \ occurrence \ } v; \\
(2) & \ R_1 = C[v \leftarrow T^1] \ satisfies \ condition \ C(\eta).
\end{align*}
\]

Proof. (1): By definition we have
\[
R^1 = C[v \leftarrow \Lambda(App \circ (T^1, Snd))].
\]
A leaf is free in \(T\) iff the leaf at the same occurrence is free in \(T^1\): let \(F\) be a free leaf in \(T\) and \(\alpha\) its occurrence. Its extremity is \(p\).
\[
p \neq (|v021\alpha|, C) \quad \text{and} \quad p \neq (|\alpha|, T).
\]
(a) Suppose \(p < (|v021\alpha|, C)\). Then \(F\) is not free in \(R\) so is not modified in \(R^1\) and is still free in \(T^1\).
(b) Suppose \(p > (|v021\alpha|, C)\). Then the extremity of the leaf at the occurrence \(\alpha\) in \(T^1\) is \(p-1\)!. As
\[
(|v021\alpha|, C^1) \geq (|\alpha|, T^1) + 1,
\]
we have \(p-1 > (|\alpha|, T^1)\).
If \(F\) is not free in \(T\), it satisfies \(p < (|\alpha|, T)\), so it is not free in \(R\) either.

(2): Let \(F\) be a free leaf of \(R_1\) (extremity \(p\!), occurrence \(\alpha\) in \(R_1\)). If \(v\) is not a prefix of \(\alpha\), then \(F\), as a leaf of \(C\), verifies \(C(\eta)\) by hypothesis. Now a leaf of \(T^1\) at the occurrence \(v\beta\) in \(R_1\) is issued from a leaf of \(T\) with occurrence \(v021\beta\) in \(R\), and with extremity \(q\!).
(a) \(q < (|\beta|, T)\): then \(q = p\) and \(p < (|v\beta|, R_1)\).
(b) \(q > (|\beta|, T)\): then \(p = q - 1\). As
\[
p \neq (|v021\beta|, R) \quad \text{and} \quad (|v021\beta|, R) = 1 + (|v\beta|, R_1),
\]
we have \(p - 1 \neq (|v\beta|, R_1)\).

\(\square\)
2.54. Proposition. The relation \(\text{Sim}_\eta \) is strongly confluent.

Proof. Let \(M \) be a term of \(\mathcal{D} \) with two \((S\Lambda_{SD}) \)-redexes at the occurrences \(u \) and \(v \). The only nontrivial case is \(u \) a prefix of \(v \), i.e., \(v = uw \). Let

\[
M = C[u \leftarrow \Lambda(App \circ (R, \text{Snd}))],
\]

\[
R = C[w \leftarrow \Lambda(App \circ (S, \text{Snd}))],
\]

\[
P = C[u \leftarrow R^1],
\]

\[
N = C[u \leftarrow \Lambda(App \circ (S\Lambda(C[w \leftarrow S^1]), \text{Snd}))].
\]

By the preceding lemma, \(N \) still has a \((S\Lambda_{SD}) \)-redex at the occurrence \(u \). Let

\[
Q = SL(C[u \leftarrow SL(C[w \leftarrow S^1]^1)]);
\]

so

\[
N \xrightarrow{\text{Sim}_\eta, u} Q.
\]

We prove the following point:

\[
P \xrightarrow{\text{Sim}_\eta', v} Q.
\]

We have

\[
R^1 = C[w \leftarrow \Lambda(App \circ (S^1, \text{Snd}))].
\]

Let \(X = C[u \leftarrow \Omega] \). Let \(p \) be the occurrence of the leaf of \(X \) which contains \(\Omega \). Let

\[
X|_p = k_1 \circ (k_2 \circ \ldots k_n \circ \Omega) \ldots.
\]

We get

\[
P|_p = SL(k_1 \circ (k_2 \circ \ldots k_n \circ C[w \leftarrow \Lambda(App \circ (S^1, \text{Snd}))]) \ldots),
\]

\[
Q|_p = SL(k_1 \circ (k_2 \circ \ldots k_n \circ SL(C[w \leftarrow S^1]^1)) \ldots)).
\]

Since \(R^1 \) is a term of \(\mathcal{D} \), the derivation performed to get \(P \) contains only applications of projection rules. Therefore, \(P \) has at most one occurrence of \(App \circ (S^1, \text{Snd}) \). If this derivation erases the occurrence \(w \) of \(C^1 \), then it is also erased in \(Q \); else we have to prove the following equality:

\[
C[w \leftarrow (S^1)^1] \equiv (C[w \leftarrow S^1]^1)^1.
\]

It is done by a simple calculation. \(\square \)
Now we recall Hindley-Rossen Lemma.

2.55. Proposition. Let \(R \) and \(S \) be two relations on a set \(X \). If these two relations commute and if they are confluent, then \(R \cup S \) is confluent.

So we only have to prove the following proposition.

2.56. Proposition. Relations \((Sim\eta)^*\) and \((Sim\beta)^*\) commute.

Proof. This is a consequence of the following property (see [1, p. 65]):

\[
\begin{align*}
M & \xrightarrow{(Sim\eta)} P \\
& \Downarrow \\
N & \xrightarrow{(Sim\beta)^*} Q
\end{align*}
\]

First we prove that if \(M \) satisfies \(C(\eta) \), then \(N \) itself satisfies it. This result is given by Lemma 2.59 below. Then we get the existence of the term \(Q \) by examining the following cases:

1. the \((SA_{SD})\)-redex contains the \((Beta)\)-redex: see Lemma 2.60;
2. the "function part" of the \((beta)\)-redex contains the \((SA_{SD})\)-redex: see Lemma 2.61;
3. the "argument part" of the \((beta)\)-redex contains the \((SA_{SD})\)-redex: see Lemma 2.62.

2.57. Proposition. The relation \((Sim\beta) \cup (Sim\eta)\) is confluent on \(\mathcal{D} \).

But \((Sim\eta) \not\subseteq (SL\beta N)^*\). Therefore, let \(SL\beta\eta = SL\beta N \cup (SA)_D \), where \(M (SA)_D N \) if \(M, N \in D \) and \(M = N \circ \mathcal{F}. (Sim\eta) \) is the interpretation of \((SA)_D\) and \((Sim\eta) \subseteq (SL\beta\eta)^*\). So, we get the following theorem.

2.58. Theorem. The rewriting system \(SL\beta\eta \) is confluent on \(\mathcal{D} \).

Technical lemmas of Section 2.5.2

2.59. Lemma. Let \(A \) and \(B \) be two terms of \(\mathcal{D} \).

1. If \(X = App \circ \langle A(A), B \rangle \) satisfies \(C(\eta) \), then \(Y = SL(A \circ \langle Id, B \rangle) \) also satisfies it.
2. If \(A \) satisfies \(C(\eta) \) and if \(B \) belongs to \(\mathcal{D} \), then if \(m \geq 1 \), \(A \circ \mathcal{P}^m(\langle Id, B \rangle) \) also satisfies it.
3. Let \(M \in \mathcal{D} \) be the context of a \((Beta)\)-redex and \(N \) its reduct:

\[
M = C[\alpha \leftarrow App \circ \langle A(A), B \rangle] \quad \text{and} \quad N = SL(C[\alpha \leftarrow SL(A \circ \langle Id, B \rangle)]).
\]

If \(M \) satisfies \(C(\eta) \), then \(N \) also satisfies it.
Proof. (1): Let \((F;u)\) be a leaf of \(A\). Let \(p!\) be its extremity. This leaf is also a leaf of \(X\). Its occurrence in \(X\) is \(v = 210u\). Hence we have \(p \neq \langle |v|, X \rangle\), so \(p \neq \langle |u|, A \rangle + 1\). Let \((G;v)\) be a leaf of \(B\). Let \(q!\) be its extremity. We have \(q \neq \langle |2|v|, X \rangle\), so \(q \neq \langle |v|, B \rangle\). From Proposition 2.11, we get

\[Y = A[F_i \leftarrow SL(F_i \circ \mathcal{G}^{|u|, A}(B))] \]

where the \((F_i;u_i)\) are the leaves of \(A\).

We now examine the term \(SL(F \circ \mathcal{G}^{|u|, A}(B))\).

(1) \(p < \langle |u|, A \rangle\): Then \(SL(F \circ \mathcal{G}^{|u|, A}(B))\) is a leaf of \(Y\). Its occurrence in \(Y\) is still \(u\). It satisfies

\[SL(F \circ \mathcal{G}^{|u|, A}(B)) = F. \]

Now, we know that \(\langle |u|, A \rangle = \langle |u|, X \rangle\). So this leaf is not \(\eta\)-accessible in \(Y\).

(2) \(p > \langle |u|, A \rangle\): Then \(SL(F \circ \mathcal{G}^{|u|, A}(B))\) is still a leaf of \(Y\). Its occurrence is \(u\) and its extremity is \((p - 1)!\). Now, \(\langle |u|, A \rangle = \langle |u|, X \rangle\) and \(p \neq \langle |u|, A \rangle + 1\), so \(p - 1 \neq p\langle |u|, X \rangle\). This leaf is not \(\eta\)-accessible in \(X\).

(3) \(p = \langle |u|, A \rangle\): Then

\[SL(F \circ \mathcal{G}^{|u|, A}(B)) = SL(B \circ F_{st}^{|u|, A}) = B[G_j \leftarrow G_j \circ \mathcal{G}^{|v|, B}(F_{st}^{|u|, A})] \]

where \(G_j\) denotes the leaf at the occurrence \(v_j\) in \(B\).

We examine the following term where \(G\) is a leaf: \(G' = SL(G \circ \mathcal{G}^{|v|, B}(F_{st}^{|u|, A}))\).

(a) If \(q < \langle |v|, B \rangle\), then \(G'\) is a leaf. Its height in \(Y\) is \(|u| + |v|\) and its extremity is \(q!\). This leaf is not \(\eta\)-accessible in \(Y\).

(b) If \(q > \langle |v|, B \rangle\), then \(G'\) is still a leaf. Its height in \(Y\) is \(|u| + |v|\) and its extremity is \((q + |u|)!\). This leaf is not \(\eta\)-accessible in \(Y\).

(c) By hypothesis, \(q \neq \langle |v|, B \rangle\).

So none of \(Y\)'s leaves are \(\eta\)-accessible.

(2,3): The second and third statements are straightforward. Only remark that redex creations in a prefix of \(\alpha\) in \(N\) do not modify occurrence heights of the remaining leaves in \(N\). \(\square\)

2.60. Lemma. Let \(M\) be a term in \(\mathcal{F}\mathcal{D}\) containing an \((SA_{sl})\)-redex. Suppose that this redex itself contains a \((B)\)-redex:

\[M \equiv C_i[v \leftarrow \Lambda(App \circ \langle R, Snd \rangle)] \]

where

\[R \equiv C[\alpha \leftarrow App \circ \langle \Lambda(A), B \rangle). \]

Let

\[S \equiv SL(C[\alpha \leftarrow A \circ \langle Id, B \rangle]), \quad N \equiv C_i[v \leftarrow \Lambda(App \circ \langle S, Snd \rangle)], \]
\[P \equiv SL(C_i[v \leftarrow R^1]), \quad Q \equiv SL(C_i[v \leftarrow S^1]). \]

Confluence results for CCL
Then
\[M \xrightarrow{(\text{Sim})^\beta} N \quad \text{and} \quad M \xrightarrow{(\text{Sim})^\gamma} P; \]
\[P \xrightarrow{(\text{Sim})^\gamma} Q \quad \text{and} \quad N \xrightarrow{(\text{Sim})^\gamma} Q. \]

Proof. Let \(X = C_1[v \leftarrow \Omega] \). As \(X \in \mathcal{F}_\mathcal{D}, \) \(\Omega \) may only be the extremity of one leaf of \(X \). Let \(p \) be this leaf's occurrence. We only have to examine the following subterms: \(N|_p, P|_p \) and \(Q|_p \). Let
\[X|_p = k_1 \circ (k_2 \circ (\ldots k_n \circ \Omega) \ldots). \]

By hypothesis, no leaf in \(R \) is \(\eta \)-accessible. By Lemma 2.59, \(S \) satisfies also condition \(C(\eta) \). Therefore, \(N \) still contains an \((SA_{SD})\)-redex. \(Q \) is obtained by reducing it:
\[Q = SL(C_1[v \leftarrow S^I]). \]

A \((\text{Beta})\)-redex may be present in \(P \) since
\[P|_p = SL(k_1 \circ (k_2 \circ (\ldots k_n \circ (C[\alpha \leftarrow \text{App} \circ (\Lambda(A), B)]^I)))) = SL(k_1 \circ (k_2 \circ (\ldots k_n \circ (C^I[\alpha \leftarrow \text{App} \circ (\Lambda(A^I), B^I)])))) \]
where \(C^I \) denotes the context \(C \) being decremented. If this \((\text{Beta})\)-redex does not disappear by applications of a projection rule, then let \(P_i \) be obtained by reducing it:
\[P_i|_p = SL(k_1 \circ (k_2 \circ (\ldots k_n \circ C^I[\alpha \leftarrow A^I \circ (\text{Id}, B^I)] \ldots))). \]

Now
\[Q|_p = SL(k_1 \circ (k_2 \circ (\ldots k_n \circ SL(C[\alpha \leftarrow A \circ (\text{Id}, B)]^I) \ldots))), \]
so it suffices to prove the following equality:
\[SL((C[\alpha \leftarrow A \circ (\text{Id}, B))]^I) = SL(C^I[\alpha \leftarrow A^I \circ (\text{Id}, B^I)] \]
which is made by a simple examination of the leaves. We use the following equality:
\[SL((A \circ (\text{Id}, B))^I) = SL(A^I \circ (\text{Id}, B^I)). \]

2.61. Lemma. Let \(M \) be a term containing a \((\text{Beta})\)-redex and \(N \) its \((\text{Sim})^\beta\)-reduct:
\[M = C[\alpha \leftarrow \text{App} \circ (\Lambda(A), B)] \quad \text{and} \quad N = SL(C[\alpha \leftarrow A \circ (\text{Id}, B)]). \]
Suppose that \(A \) contains an \((SA_{SD})\)-redex. Let \(P \) be the following \((\text{Sim})^\gamma\)-reduct of \(M \):
\[A = C_1[u \leftarrow \Lambda(\text{App} \circ (K, \text{Snd}))], \]
\[P = C[\alpha \leftarrow \text{App} \circ (\Lambda(SL(C_1[u \leftarrow R^I])), B)]. \]

Let
\[Q = SL(C[\alpha \leftarrow SL(C_1[u \leftarrow R^I] \circ (\text{Id}, B))). \]
Then

\[P \xrightarrow{(\text{SimP})} Q \quad \text{and} \quad N \xrightarrow{(\text{Sim})} Q. \]

Proof. Let \(X \) be the term \(C[\alpha \leftarrow \Omega] \). As \(M \) is in \(\mathcal{D} \), \(\Omega \) may only be the extremity of a leaf \((F; p)\) of \(X \). We only have to examine the terms \(M|_p, N|_p, P|_p \) and \(Q|_p \). Let \(X|_p = k_1 \circ (k_2 \ldots \circ (k_n \circ \Omega) \ldots) \).

Then

\[M|_p = k_1 \circ (k_2 \ldots \circ (k_n \circ \text{App} \circ (\Lambda(A), B)) \ldots), \]
\[P|_p = k_1 \circ (k_2 \ldots \circ (k_n \circ \text{App} \circ \Lambda(SL(C[u \leftarrow R^\dagger]), B)) \ldots). \]

We apply the relation \((\text{SimP})\) to \(P \) at the occurrence \(\alpha \) and we get the term \(Q \) such that

\[Q|_p = SL(k_1 \circ (k_2 \ldots \circ (k_n \circ (C_1[u \leftarrow R^\dagger] \circ (\text{Id, B})) \ldots)). \]

Now by an easy calculation we obtain

\[Q|_p = SL(k_1 \circ (k_2 \ldots \circ (k_n \circ ((C_1[u \leftarrow R^\dagger] \circ (\text{Id, B})) \ldots)), \]
\[F_j \leftarrow F_i \circ \mathcal{G}^{([u\alpha]|C_1^{i+1})}((\text{Id, B})) \ldots) \]

where the leaves \(F_j \) appearing in the above term are the leaves of \(A \) such that their occurrences \(v_j \) are strictly disjoint from \(u \).

\[N|_p = SL(k_1 \circ (k_2 \ldots \circ (k_n \circ (A \circ (\text{Id, B}))) \ldots)), \]

so

\[N|_p = SL(k_1 \circ (k_2 \ldots \circ (k_n \circ C_1[u \leftarrow \Lambda(\text{App} \circ (R, \text{Snd})) \circ (\text{Id, B})) \ldots)) \]
\[= SL(k_1 \circ (k_2 \ldots \circ (k_n \circ C_1[u \leftarrow A(\text{App} \circ (R \circ \mathcal{G}^{([u\alpha]|C_1^{i+1})}((\text{Id, B}), \text{Snd})), \ldots)) \]
\[F_j \leftarrow F_i \circ \mathcal{G}^{([u\alpha]|C_1^{i+1})}((\text{Id, B})) \ldots) \]

where the occurrences \(v_j \) are all the occurrences of leaves \(F_j \) of \(A \), which are strictly disjoint from \(u \). The \((\text{SA}_{\alpha_{\text{red}}}^-\text{-redex})\) may disappear by putting \(N \) in \(\text{SL} \)-normal form. Let

\[Z = SL(k_1 \circ (k_2 \ldots \circ (k_n \circ (C_1[u \leftarrow \Omega]) \ldots)). \]

There is at most one occurrence of \(\Omega \) in \(Z \) since \(A \) is a term of \(\mathcal{D} \). If \(Z \) has no occurrence of \(\Omega \), then \(N = Q \). Else it suffices to prove the following equality:

\[SL(R \circ \mathcal{G}^{([u\alpha]|C_1^{i+1})}((\text{Id, B})) \dagger = SL(R^\dagger \circ \mathcal{G}^{([u\alpha]|C_1^{i+1})}((\text{Id, B}))) \]

to conclude that \(N \xrightarrow{(\text{SimP})} Q \). \(\square \)

2.62. **Lemma.** Let \(M \) be a term containing a (Beta)-redex and \(N \) its (SimP)-reduct:

\[M = C[\alpha \leftarrow \text{App} \circ (\Lambda(A), B)] \quad \text{and} \quad N = SL(C[\alpha \leftarrow A \circ (\text{Id, B})]). \]
Suppose that B contains and $(S\alpha_{SD})$-redex and that P is the following (Sim_η)-reduct of M:

$$B = C_t[u \leftarrow \Lambda(App \circ \langle R, \text{Snd} \rangle)],$$

$$P = C[\alpha \leftarrow \Lambda(App \circ \langle A \rangle, SL(C_t[u \leftarrow R^\perp])).]$$

Let

$$Q = SL(C[\alpha \leftarrow SL(A \circ \langle \text{Id}, C_t[u \leftarrow R^\perp])]).$$

Then

$$P \xrightarrow{(\text{Sim}_\beta)} Q \quad \text{and} \quad N \xrightarrow{(\text{Sim}_\eta)} Q.$$

Proof. Use Proposition 2.11 to obtain the following equalities:

$$N = SL(C[\alpha \leftarrow A[F_t \leftarrow F_t \circ \beta_{\alpha\beta}(\langle \text{Id}, C_t[u \leftarrow \Lambda(App \circ \langle R, \text{Snd} \rangle)] \rangle)]]),$$

$$Q = SL(C[\alpha \leftarrow A[F_t \leftarrow F_t \circ \beta_{\alpha\beta}(\langle \text{Id}, SL(C_t[u \leftarrow R^\perp]) \rangle)]]). \quad \Box$$

3. $(\mathcal{D}, SL\beta_\eta)$: a confluent conservative extension of λ-calculi

We have now to relate the different λ-calculi and this subset \mathcal{D} of CCL. In this section, we describe a bijection between Λ and a subset \mathcal{D}_Λ of \mathcal{D} which is extended as a bijection between β_η-derivations of Λ and derivations of \mathcal{D}_Λ by the relation $(\text{Sim}_\beta) \cup (\text{Sim}_\eta)$. Then these results are extended to $(\Lambda_{e,I}, \beta_\eta P)$.

3.1. \mathcal{D} and Λ

We rewrite the translation $(\cdot)^{DB}_{x_{0}, ..., x_{n}}$ from $\Lambda(V)$ to CCL into a translation from Λ to CCL.

3.1. **Definition.** Let $M \in \Lambda$. The translation $M_\mathcal{D}$ of M into CCL is inductively defined as follows.

1. If $M = n$, then $M_\mathcal{D} = \text{Snd} \circ \text{Fst}^n$ (denoted by $n!$).
2. If $M = NP$, then $M_\mathcal{D} = \text{App} \circ \langle N_D, P_D \rangle$ (denoted by $\theta(N_D, P_D)$).
3. If $M = \Lambda(N)$, then $M_\mathcal{D} = \Lambda(N_D)$.

The subset \mathcal{D}_Λ is defined by $\mathcal{D}_\Lambda = \{M_\mathcal{D} | M \in \Lambda\}$.

Let $P \in \mathcal{D}_\Lambda$. The translation P_Λ of P into Λ is defined inductively as follows.

1. If $P = n!$, then $P_\Lambda = n$.
2. If $P = \text{App} \circ \langle S, T \rangle$, then $P_\Lambda = S_\Lambda T_\Lambda$.
3. If $P = \Lambda(N)$, then $P_\Lambda = \Lambda(N_\Lambda)$

The subset \mathcal{D}_Λ of \mathcal{D} is defined by $\mathcal{D}_\Lambda = (SL\beta_\eta)^*(\mathcal{D}_\Lambda)$.

T. Hardin
3.2. Proposition. \((\text{Sim}\beta)\) and \((\text{Sim}\eta)\) are internal relations of \(\mathcal{P}_\lambda\). If \(P \in \mathcal{D}_\lambda\), then \(SL(P) \in \mathcal{P}_\lambda\).

Proof. The first part is straightforward. The second part is as follows. By definition, there exists an \(M \in \mathcal{P}_\lambda\) such that \(P = (SL\beta\eta)^n(M)\). Using Proposition 2.11, we obtain
\[
M \ (\text{Sim}\beta)^* \cup (\text{Sim}\eta)^* \ SL(P).
\]

Now we have a bijection between \(\Lambda\) and \(\mathcal{P}_\lambda\).

3.3. Proposition
\[
\forall M \in \Lambda, \quad M_D \in \mathcal{P}_\lambda \quad \text{and} \quad (M_D)_\lambda = M;
\]
\[
\forall P \in \mathcal{P}_\lambda, \quad P_\lambda \in \Lambda \quad \text{and} \quad (P_\lambda)_D = P,
\]
where \(=\) is the identity.

The position of a subterm \(P\) in the term \(M\) of \(\mathcal{P}_\lambda\) is by definition the occurrence of \(P\) as a subterm of \(M\) written on the alphabet \(\{\theta, \Lambda, n!\}\).

We extend the previous bijection to derivations.

3.4. Theorem. Let \(M\) and \(N\) be two terms of \(\Lambda\). If \(M \beta*\eta* N\), then
\[
\frac{M_D \ (\text{Sim}\beta) \cup (\text{Sim}\eta)^*}{N_D}.
\]

Let \(P\) and \(Q\) be two terms of \(\mathcal{P}_\lambda\). If
\[
\frac{P \ (\text{Sim}\beta)^* \cup (\text{Sim}\eta)^*}{Q},
\]
then \(P_\lambda \beta^*\eta^* Q_\lambda\).

Moreover an occurrence is the one of a \(\beta\text{-redex}\) (resp. \(\eta\text{-redex}\)) if and only if the corresponding position is the one of a \((\text{Beta})\text{-redex}\) (resp. \((\text{Sim}\eta)\text{-redex}\)).

Proof. Let \(P = C[u \leftarrow \text{App} \circ (A(A), B)]\) and \(Q = C[u \leftarrow SL(A \circ (Id, B))].\) We have
\[
P_\lambda = C_\lambda[u \leftarrow \lambda(A_\lambda)B_\lambda].
\]

Let \(Q'\) be obtained by reducing the \(\beta\text{-redex}\) at the occurrence \(u\) of \(P_\lambda:\)
\[
Q' = C_\lambda[u \leftarrow \sigma_0(A_\lambda, B_\lambda)].
\]
To get \(Q' = Q_\lambda\), we only have to prove
\[
\sigma_0(A_\lambda, B_\lambda) = (SL(A \circ (Id, B)))_\lambda.
\]
We prove for any \(n, A\) and \(B \in \mathcal{D}_\lambda,\)
\[
\sigma_n(A_\lambda, B_\lambda) = (SL(A \circ \partial^n((Id, B))))_\lambda.
\]
by induction on \(SL(A) \). The only nontrivial case is \(A = m! \). We get

\[
(SL(m! \circ \emptyset^n(\langle Id, B \rangle)))_\lambda = \begin{cases} (m-1) & m > n, \\ m & m < n, \\ (SL(B \circ Fst^n))_\lambda & m = n. \end{cases}
\]

It remains to prove

\[
\forall n \in \mathbb{N}, \forall B \in D_\lambda, \quad \tau^*_\eta(B_\lambda) = (SL(B \circ \emptyset^i(Fst^n)))_\lambda.
\]

This is done by induction on \(SL(B) \), for all \(n \).

The converse result and the one for \(\eta \)-reduction are obtained in the same way. Just note that the height in \(\lambda \) of an occurrence in a \(\lambda \)-term is the same as the height of the corresponding position in its translation. □

3.5. **Theorem.** \((\emptyset, SL, \beta \eta) \) is a conservative confluent extension of \((\Lambda, \beta \eta) \).

Proof. We only have to collect the previous results. \((\text{Id})_D \) is an injection of \(\Lambda \) into \(\emptyset \), such that the two points required in Definition 1.2 are fulfilled. □

Note that the relations \((\text{Sim}_\beta) \) and \((\text{Sim}_\eta) \) reproduce exactly the relations \(\beta \) and \(\eta \). So all the classical results of \(\lambda \)-calculus theory—finite developments, standardization, normalization, . . . —may be carried over to CCL as properties of the relations \((\text{Sim}_\beta) \) and \((\text{Sim}_\eta) \):

3.2. \(\Lambda_{ef} \) and CCL

We now add to \(\Lambda \) the coupling operator which will be translated into CCL by the pairing operator.

3.6. **Definition.** Let \(M \in \Lambda_{ef} \). The translation \(M_D \) of \(M \) is defined as an extension of the translation \(M_D \) of \(\Lambda \) by adding the following points:

1. If \(M = \langle N, P \rangle \), then \(M_D = \langle N_D, P_D \rangle \).
2. If \(M = \text{fst}(N) \), then \(M_D = \text{Fst} \circ N_D \).
3. If \(M = \text{snd}(N) \), then \(M_D = \text{Snd} \circ N_D \).

3.7. **Remark.** If \(M \in \Lambda_{ef} \), \(M_D \) is in general not a term in \(SL \)-normal form, due to the possible projection redexes of \(M \). Here we have two possibilities: either we add labellings to \(\text{Fst} \) and \(\text{Snd} \) to study the correspondence between \(\Lambda_{ef} \) and CCL or we use the \(c \)-normal form of \(M \), that is, the normal form of \(M \) for the rewriting system \((\text{Fst}), (\text{Snd}) \). We first examine this point.

3.8. **Definition.** Let \(\mathcal{D}_{p_h} \) be the subset of \(\mathcal{D} \) defined by

\[
\mathcal{D}_{p_h} = \{ c(M)_D | M \in \Lambda_{ef} \}.
\]
Let $P \in \mathcal{F}_P$. The translation P_λ of P into Λ_{cf} is an extension of the translation P_λ of \mathcal{F}_P obtained by adding the following points:

1. If $P = \langle S, T \rangle$, then $P_\lambda = \langle S_\lambda, T_\lambda \rangle$.
2. If $P = \text{Fst} \circ N$, then $P_\lambda = \text{fst}(N_\lambda)$.
3. If $P = \text{Snd} \circ N$, then $P_\lambda = \text{snd}(N_\lambda)$.

\mathcal{D}_{P_λ} is the subset of \mathcal{D} defined by $\mathcal{D}_{P_\lambda} = (\text{SL}_\beta \eta)^*(\mathcal{F}_P)$.

3.9. Proposition. The relations (Sim_β) and (Sim_η) are internal to \mathcal{F}_P. If $P \in \mathcal{D}_{P_\lambda}$, then $\text{SL}(P) \in \mathcal{D}_{P_\lambda}$.

3.10. Proposition.

\begin{align*}
\forall M \in \Lambda_{cf}, & \quad c(M)_D \in \mathcal{F}_P \quad \text{and} \quad (c(M)_D)_\lambda \equiv c(M); \\
\forall P \in \mathcal{F}_P, & \quad P_\lambda \in \Lambda_{cf} \quad \text{and} \quad (P_\lambda)_D = P.
\end{align*}

3.11. Theorem. Let M and N be two terms of Λ_{cf}. If $M \rightarrow^\beta^* \eta^* N$, then

\[
\frac{}{c(M)_D \rightarrow^*(\text{Sim}_\beta)^* \cup (\text{Sim}_\eta)^*} c(N)_D.
\]

Let P and Q be two terms of \mathcal{F}_P. If

\[
P \rightarrow^*(\text{Sim}_\beta)^* \cup (\text{Sim}_\eta)^* Q,
\]

then $P_\lambda \rightarrow^\beta^* \eta^* Q_\lambda$.

Moreover an occurrence is one of a β-redex (resp. η-redex) if and only if the corresponding position is one of a (Beta)-redex (resp. (Sim_η)-redex).

Now we become precise about labellings. We add to CCL two constants Fst_1 and Snd_1 and the corresponding rules. We may reproduce the previous work: \mathfrak{E} is still a confluent system on CCL.

Let $M \in \mathfrak{E}$ iff $\mathfrak{E}(M)$ has only well-formed leaves. Then we can easily describe this term M: replacing Fst_1 and Snd_1 by App in M must lead to a term in \mathfrak{E}. Let SL_η be the rewriting system defined by the rules of $\text{SL}_\beta \eta$ on CCL.

The \mathfrak{E}-interpretation of $\text{SL}_\beta \eta_0$ is now a relation $(\text{Sim}_\beta)_0 \cup (\text{Sim}_\eta)_0$ defined as $(\text{Sim}_\beta) \cup (\text{Sim}_\eta)$. It does not reduce $(\text{Fst})_1$- and (Snd_1)-redexes. Moreover, the \mathfrak{E}-interpretation of the rewriting relation defined by $((\text{Fst}_1) \cup (\text{Snd}_1))^*$ is itself: this point is easily proved by examining the redex creations during the sticking of the fragments.

Let $\text{SL}_\beta \eta_1$ be $\text{SL}_\beta \eta_0 \cup (\text{Fst}_1) \cup (\text{Snd}_1)$. Its \mathfrak{E}-interpretation, called $\text{Sim}_\beta \eta P$ is the union of $((\text{Sim}_\beta)_0 \cup (\text{Sim}_\eta)_0)^*$ and $((\text{Fst}_1) \cup (\text{Snd}_1))^*$.

3.12. Definition. The translation M_{D_1} from Λ_{ef} into \mathfrak{E} is defined by replacing, in the definition of M_D, Fst by Fst_1 and Snd by Snd_1 in points (2) and (3). Let $\mathcal{F}_P_{A_1}$ be the subset of \mathcal{F}_P defined by

\[
\mathcal{F}_P_{A_1} = \{ M_{D_1} \mid M \in \Lambda_{ef} \}.
\]
Let $P \in \mathcal{P}_{\alpha_1}$. The translation P_{α_1} of P into Λ_{α_1} is also an extension of the translation P_α of \mathcal{P}_α obtained by adding the following points:

1. If $P = (S, T)$, then $P_\alpha = (S_\alpha, T_\alpha)$.
2. If $P = \text{FST}_1 \circ N$, then $P_\alpha = \text{fst}(N_\alpha)$.
3. If $P = \text{SNDF}_0 \circ N$, then $P_\alpha = \text{snd}(N_\alpha)$.

\mathcal{P}_{α_1} is the subset of \mathcal{P}_1 defined by $\mathcal{P}_{\alpha_1} = (\text{SLB}_\eta)^*(\mathcal{P}_{\alpha_1})$.

The proofs of the following propositions are identical to the corresponding ones in the previous section.

3.13. Proposition. The relation $\text{Sim}_{\beta_\eta}P$ is internal to \mathcal{P}_{α_1}. If $P \in \mathcal{D}_{\alpha_1}$, then $\mathcal{E}(P) \in \mathcal{P}_{\alpha_1}$.

3.14. Proposition

$$\forall M \in \Lambda_{\alpha_1}, \quad M_{\alpha_1} \in \mathcal{P}_{\alpha_1} \quad \text{and} \quad (M_{\alpha_1})_{\alpha_1} = M,$$

$$\forall P \in \mathcal{P}_{\alpha_1}, \quad P_{\alpha_1} \in \Lambda_{\alpha_1} \quad \text{and} \quad (P_{\alpha_1})_{\alpha_1} = P.$$

3.15. Theorem. Let M and N be two terms of Λ_{α_1}. If $M \rightarrow^{\beta_\eta P^*} N$, then $M_{\alpha_1} \rightarrow^{\text{Sim}_{\beta_\eta P}} N_{\alpha_1}$.

Let P and Q be two terms of \mathcal{P}_{α_1}. If

$$P \xrightarrow{\text{Sim}_{\beta_\eta P}} Q,$$

then $P_{\alpha_1} \rightarrow^{\beta_\eta P^*} Q_{\alpha_1}$.

3.16. Remark. Suppose that $P_1 \in \mathcal{D}_{\alpha_1}$. Let P be obtained by erasing the labels in P_1. Suppose that Q is derived from P by SLB_η in CCL. Then there exists a labelled derivation of P_1 leading to Q_1 such that Q is obtained from Q_1 by erasing the labels: we only have to label the applications of projection rules when the involved projection is labelled.

3.17. Theorem. $(\mathcal{D}, \text{SLB}_\eta)$ is a confluent conservative extension of $(\Lambda_{\alpha_1}, \beta_\eta P)$.

Proof. First, we prove that point (1) of the Definition 1.2 is fulfilled. Let M a $N \in \Lambda_{\alpha_1}$. (α) is (α) followed by an erasing of labels, is clearly an injection from Λ_{α_1} into \mathcal{D}. Erasing the labels on terms and rules leads to SLB_η-derivations of CCL, so if $M \beta_\eta P N$ in Λ_{α_1} then $M_{\alpha_1} \text{SLB}_\eta N_{\alpha_1}$. Conversely, suppose that $M_D \text{SLB}_\eta N_D$. Then M_{D_1} is a labelling of M_D and we can construct a labelled derivation from M_{D_1} to N_{D_1} such that N_{D_1} is a labelling of N_D. Moreover, $N_{D_1} \in \mathcal{D}_{\alpha_1}$ therefore in \mathcal{P}_{α_1}. Then N_{D_1} is also a $(\text{Sim}_{\beta_\eta P})$-derived of M_{D_1}. By using Theorem 3.15 we get $M \beta_\eta P N$.

Now we get the second point of Definition 1.2. Let $M \in \Lambda_{\alpha_1}$ and suppose that $M_D \text{SLB}_\eta Q$. Then the labelling M_{D_1} provides a labelling Q_1 of Q such that $M_{D_1} \text{SLB}_\eta Q_1$. Then, $\mathcal{E}(Q_1) \in \mathcal{P}_{\alpha_1}$. □
4. **CCL@SP is not confluent**

4.1. **Yet another counter-example for \(A_{e,s} \)**

Our counter-example is an improvement of the one by Klop. We construct a term \(B \) which has a normal form \(I \) and a reduct \(C I \). By a simple examination of derivations of \(C I \) eventually leading to \(I \), we prove that \(I \) cannot be a reduct of \(C I \).

Notations. Let \(P = \lambda x \lambda y.((x x)y) \). Let \(Y_T = P P \) be the Turing fixed point. Let

\[U = \lambda x \lambda y. D(F(\lambda z.z(xy))(S(\lambda z.zy))(\lambda z.I)) \]

where \(I = \lambda x.x \). Let \(C = Y_T U \) and \(B = Y_T C \).

4.1. **Lemma.** \(I \) and \(C I \) are two reducts of \(B \).

Proof. The typical derivations are

\[C \xrightarrow{\beta^*} U C, \quad B \xrightarrow{\beta^*} C B. \]

For any \(M \) in \(A_{e,s} \),

\[C M \xrightarrow{\beta^*} D(F(\lambda z.z(C M)))(S(\lambda z.z M))(\lambda z.I) = X. \]

Therefore,

\[B \xrightarrow{\beta^*} C B \xrightarrow{\beta^*} D(F(\lambda z.z(C B)))(S(\lambda z.z B))(\lambda z.I) \]

\[\xrightarrow{(SP)} (\lambda z.z(C B))(\lambda z.I) \xrightarrow{\beta} (\lambda z.I)(C B) \xrightarrow{\beta} I \]

and

\[B \xrightarrow{\beta^*} C(C B) \xrightarrow{D} C I. \]

4.2. **Lemma.** Let \(M \in A_{e,s} \) have a normal form distinct from \(I \). If \(\beta SP \) (resp. \(\beta \eta SP \)) satisfies the uniqueness property for normal forms, then \(C M \) and \(M \) have no common reduct.

Proof. The term \(X \) of the previous lemma is a reduct of \(C M \). If \(M \) and \(C M \) have a common reduct \(A \), then \(X \) can be rewritten on

\[D(F(\lambda z.z A))(S(\lambda z.z A))(\lambda z.I) \]

and then on \(I \).

4.3. **Definition.** A rewriting system \(R \) satisfies Property (NF) if the following holds. Let \(M \) be a term in \(R \)-normal form. Let \(N \) be equal to \(M \). Then \(M \) can be obtained from \(N \) by an \(R \)-derivation.
4.4. Proposition. The theories $(\Lambda_{\text{set}}, \beta_{SP})$ and $(\Lambda_{\text{set}}, \beta_{\eta SP})$ are not confluent: property (NF) is not satisfied.

Proof. We prove that $C I$ cannot be reduced on I. We do it for β-derivations. The same holds for β_{η}-derivations. Let (R) be a derivation from $C I$ to I. $C I$ contains only one redex: the one in Y_T. So (R) begins by performing the following reduction step leading to the term A_1:

$$A_1 = ((\lambda y \cdot y(Y_T y))U)I.$$

(R) may go on by deriving the subterm $Y_T y$. But, necessarily, (R) should perform the leftmost-redex's reduction in order to reach I. So (R) contains a term A_2:

$$A_2 = U(Red(Y_T y)[y \leftarrow U])I = U(Red(Y_T U))I = U(Red(C))I.$$

where the notation $Red(X)$ indicates a reduct of X or the term X. (R) may continue by deriving the subterm $Red(C)$ but should necessarily reduce the leftmost-redex (defined by the top-λ of U). So R contains a term A_3:

$$A_3 = (\lambda y \cdot (D(F(\lambda z z(Red(C)y))(S(az.zy)))(az.I))I.$$

There is a subterm $D(F\ldots)(S\ldots)$ in A_3. This context can only disappear by an (SP)-reduction. If (R) contains such a step before the reduction of the top-redex, then (R) contains one derivation from Cy to y. This is impossible (Lemma 4.2) since if β_{SP} is confluent, then it has the uniqueness property for normal forms. So, before removing this context, (R) has to reduce the top-redex: (R) contains a term A_4:

$$A_4 = D((F(\lambda z z(Red(C)y))(S(az.zI)))(az.I))I.$$

We define the length of a derivation as the number of (SP)-steps it contains. Let R_{min} be a derivation from $C I$ to I of minimal length. R_{min} has to remove the context $DF(\ldots)S(\ldots)(az.I)$. So it contains a derivation from $C I$ to I and is not of minimal length.

To obtain a counter-example for Λ_{set}, it suffices to replace in the preceding proof the term U by the term W:

$$W = \lambda x\lambda y(\langle \text{fst}(\lambda z z(x y)), \text{snd}(\lambda z z y)\rangle(\lambda z I)).$$

4.2. The relation β_{SP} is not confluent

4.5. Definition

$$\beta_{SP} = (\text{Sim} \beta) \cup (\text{SP}), \quad \beta_{\eta SP} = \beta_{SP} \cup (\text{Sim}\eta).$$

This definition is correct since the rewriting relation (SP) is proved to be internal to \mathcal{F}: reducing an (SP)-redex in a term of \mathcal{F} gives a reduct still in \mathcal{F}.

We use the translation M_{D} to reproduce the counter-example for $A_{<,D}$ into CCL. The derivations become an iteration of the relation $βSP$, so either a $(Simβ)$-step or an (SP)-step. The translations keep the name of the corresponding terms:

\[P = Λ(θ(0₁, θ(θ(1₁, 1₁), 0₁))), \]
\[Y_7 = θ(P, P), \quad I = Λ(0₁), \]
\[U = Λ(θ((Fst ◦ Λ(θ(0₁, θ(2₁, 1₁)))), \text{Snd} \circ Λ(θ(0₁, 1₁))), Λ(I))), \]
\[C = θ(Y_7, U), \quad B = θ(Y_7, C). \]

4.6. Remark. All these terms belong to $\mathcal{P}D$.

Necessary lemmas are as follows.

4.7. Lemma. (1) For any term M of CCL, the following holds:

\[θ(Y_7, M) βSP* θ(M, θ(Y_7, M)). \]

(2) We get $B βSP* θ(C, B)$.

(3) Hence,

\[θ(C, M) βSP* θ((Fst ◦ Λ(θ(0₁, θ(C, SL(M ◦ Fst)))), \text{Snd} \circ Λ(θ(0₁, SL(M ◦ Fst)))), Λ(I))). \]

4.8. Lemma. If $βSP$ is confluent, then I is the CCL$βSP$-normal form of $θ(C, I)$.

Now the lemma corresponding to Lemma 4.2. Note that the hypothesis on M is replaced by the same hypothesis on $M ◦ Fst$, due to the previous lemma.

4.9. Lemma. If $βSP$ is confluent, and if there exists a common reduct of the two terms $SL(M ◦ Fst)$ and $θ(C, SL(M ◦ Fst))$ then I is the $βSP$-normal form of $SL(M ◦ Fst)$.

4.10. Lemma (Substitution Lemma for $βSP$). Let $M ∈ \mathcal{P}D$. If $M βSP N$, then

\[SL(M ◦ \mathcal{P}^m((Id, U))) βSP* SL(N ◦ \mathcal{P}^m((Id, U))). \]

Note that this lemma is no longer satisfied if we replace the relation $βSP$ by the relation which consists in first reducing a (Beta)-redex and then putting the reduct in Subst-normal form.

4.11. Theorem. The relations $βSP$ and $βηSP$ are not confluent.

Proof. The method is the one of $A_{<,D}$. We give it as an example. There is only one redex in $θ(C, I)$: the one of $θ(P, P)$. Its reduction gives the following term A_1:

\[A_1 = θ(θ(Λ(θ(0₁, θ(Y_7, 0₁))), U), I). \]
Let $X_1 = \theta(Y_T, 0!)$. We get $A_1 = \theta(\Lambda(\theta(0!, X_1)), U), I)$. X_1 contains redexes, but in order to get I, the top-redex must be reduced, so we get the following term:

$$A_2 = \theta(\theta(U, SL(\betaSP^*(X_1)) \circ (\text{Id}, U))), I).$$

By Lemma 4.10,

$$SL(X_1 \circ (\text{Id}, U)) \betaSP^* SL(\betaSP^*(X_1)) \circ (\text{Id}, U),$$

so

$$A_2 = \theta(\theta(U, \betaSP^*(\theta(Y_T, U))), I) \quad \text{and} \quad A_2 = \theta(\theta(U, \betaSP^*(C)), I).$$

Let $X_2 = \betaSP^*(C)$. This subterm contains redexes but $\theta(U, X_2)$ must be reduced. This leads to the following term X_3:

$$X_3 = \Lambda(\theta(\langle\text{Fst} \circ \Lambda(\theta(0!, \theta(X_2, 1!))\rangle)), \text{Snd} \circ \Lambda(\theta(0!, 1!))), \Lambda(I))).$$

and hence, to $A_3 = \theta(X_3, I)$. This term X_3 contains the following subterm $\langle\text{Fst} \circ \text{Snd} \circ \rangle$. If βSP is confluent, then this subterm cannot disappear by an application of (SP): by Lemma 4.9, $1!$ is not a reduct of $\theta(C, 1!)$ since I is not equal to $1!$. Therefore, any derivation must reduce the top-redex of A_3, so it contains

$$A_4 = \theta(\langle\text{Fst} \circ \Lambda(\theta(0!, X_4)), \text{Snd} \circ \Lambda(\theta(0!, 1!))), \Lambda(I)).$$

where

$$X_4 = SL(\betaSP^*(\theta(C, 1!)) \circ \betaSP^*(\langle\text{Id}, 1!))).$$

By Lemma 4.10, we get $X_4 = \betaSP^*(\theta(C, I))$ and we obtain

$$A_4 = \theta(\langle\text{Fst} \circ \Lambda(\theta(0!, \betaSP^*(\theta(C, I))))\rangle), \text{Snd} \circ \Lambda(\theta(0!, 1!))), \Lambda(I)).$$

We conclude with the method of λ_{cr}. \square

4.12. Remark. $(\text{Sim} \beta) \cup (\text{Sim} \eta) \cup (\text{SP})$ is not confluent either.

4.3. $\text{CCL} \betaSP$ is not confluent

$\text{CCL} \betaSP$ is a weakly confluent system. We show that this relation βSP is the β-interpretation of the rewriting relation of $\text{CCL} \betaSP$ on \mathcal{D}, so we can prove that this system is not confluent. But when restricted to \mathcal{D}_λ this system $\text{CCL} \betaSP$ is indeed confluent. Moreover, the nonweakly confluent system $\text{CCL} \betaSP$ is confluent on \mathcal{D}_λ.

First we interpret the rewriting relation $(\text{SP}) \cup (\text{FSI})$ on \mathcal{D}.

4.13. Proposition. Let $M \in \mathcal{D}$. If $M \rightarrow^{(\text{SP}) \cup (\text{FSI})} N$, then $SL(M) \rightarrow^{(\text{SP})^*} SL(N)$. Proof. Let $P = C[u \leftarrow \Omega]$ and $SL(P) = C'[a_p \leftarrow \Omega \circ Q_p ; b_q \leftarrow \Omega]$. For all i, if $i = p$, then X_i denotes $SL(X \circ Q_p)$ and $u_i = a_p$; if $i = q$ then X_i denotes $SL(X)$ and $u_i = b_q$. Now the following term is a reduct of M:

$$M_1 = C'[u_i \leftarrow \langle SL(\text{Fst} \circ X_i), SL(\text{Snd} \circ X_i)\rangle].$$

Let α_i be the father of u_i. There are two cases.
Confluence results for CCL

(1) α_i is not an occurrence of a redex in M_1. The pairing at the occurrence u_i cannot disappear. The term X_i has two possible forms:

(a) $X_i = (X_{i1}, X_{i2})$. Let v_j be such an occurrence u_i. We have

$$\langle SL(Fst \circ X_i), SL(Snd \circ X_i) \rangle = \langle X_{i1}, X_{i2} \rangle.$$

(b) $\langle SL(Fst \circ X_i), SL(Snd \circ X_i) \rangle = \langle Fst \circ X_{i1}, Snd \circ X_{i2} \rangle$.

Let γ_i be such an occurrence u_i. The other occurrences u_i will be indexed by k.

(2) Sticking up the fragment into the interpretation of the context can create redexes

$$M_2|_{\alpha_k} = Fst \circ \langle SL(Fst \circ X_k), SL(Snd \circ X_k) \rangle$$

or

$$M_2|_{\alpha_k} = Snd \circ \langle SL(Fst \circ X_k), SL(Snd \circ X_k) \rangle$$

(we suppose that this created redex is always an (Fst)-redex). The pairing at occurrence u_k disappears by reduction of this redex and there is no redex creation "under" the buffer occurrence. Let w_k be the buffer occurrence of u_k.

By Lemma 2.60, we get

$$SL(M) = C'[\gamma_1 \leftarrow \langle Fst \circ X_1, Snd \circ X_1 \rangle,\ v_j \leftarrow X_j,\ w_k \leftarrow SL(C'|_{w_k}[\alpha_k \leftarrow Fst \circ X_k])].$$

From $SL(M) \in \mathcal{D}$, we deduce $Fst \circ X_1$ and $Snd \circ X_1 \in \mathcal{D}$. From these hypothesis we prove by induction that $X_i \in \mathcal{D}$. Moreover, reducing (SP)-redexes cannot create (SL)-redexes in a prefix occurrence of γ_i since $(X_i \neq Id)$.

From a derivation from P to $SL(P)$, we build one from N to N_i:

$$N_i = C'[\gamma_i \leftarrow X_i,\ v_i \leftarrow X_i,\ w_k \leftarrow SL(C'|_{w_k}[\alpha_k \leftarrow Fst \circ X_k])].$$

Now $N_i = SL(N)$ so we get

$$SL(M) \xrightarrow{(SP)^*} SL(N) \text{ and } SL(N) \in \mathcal{D}. \quad \square$$

Now we give the interpretations of $CCL\beta SP$ and of $CCL\beta \eta SP$: they are βSP and $\beta \eta SP$.
4.14. Theorem. Let \(M \in \mathcal{D} \). Then:

\[
M \xrightarrow{CCL\beta SP} SL(M) \beta SP \ast SL(N);
M \xrightarrow{CCL\beta \eta SP} SL(M) \beta \eta SP \ast SL(N).
\]

Proof. We only have to construct the diagram in Fig. 13. \(\square \)

4.15. Theorem. \(CCL\beta SP \) is not a confluent system.

Proof. Use Proposition 2.3. \(\square \)

Now these negative results do not restrict calculations on terms translated from \(\lambda \)-calculus: the systems \(CCL\beta SP \) and \(SL\beta \eta SP \) (\(SL\beta \eta + SP \)) are confluent on \(\mathcal{D}_\lambda \).

4.16. Theorem. \(CCL\beta SP \) and \(SL\beta \eta SP \) are confluent on \(\mathcal{D}_\lambda \).

Proof. Examine the diagram of Theorem 4.14. If \(M \in \mathcal{D}_\lambda \), then \(SL(M) \in \mathcal{D}_\lambda \) and contains no \((SP) \)-redex. So the induced steps \((SP)^* \) on \(\mathcal{D}_\lambda \) are only identity steps and the \(\mathcal{E} \)-interpretation of \(SL\beta \eta SP \) (\(CCL\beta SP \)) on \(\mathcal{D}_\lambda \) is the relation \((Sim\beta)^* \cup (Sim\eta)^* \). Therefore, \(SL\beta \eta SP \) (\(CCL\beta SP \)) is confluent on \(\mathcal{D}_\lambda \). \(\square \)

4.17. Remark. From a term in \(\mathcal{D}_\lambda \) we can derive a term containing an \((SP) \)-redex. It is due to the "implicit" representation of the environment by tuples. Such instances of \((SP) \)-redexes can be reduced safely: this is the previous theorem. So nonconfluence is explicitly due to the construction of the couple of two terms by the aim of the pairing operator. Moreover, note that a term of \(\mathcal{D}_{\lambda 1} \) does not contain nonlabelled \((SP) \)-redexes: \(SL\beta \eta SP \) remains confluent on \(CCL_1 \). Nonconfluence arrives with the labelled Surjective Pairing Rule.

Fig. 13.
4.18. Theorem. $SL\beta\eta SP$ is a conservative extension of $(\Lambda_{cf}, \beta\eta SP)$.

Proof. $(\cdot)_D$ is an injection of Λ_{cf} in CCL such that the two points of Definition 1.2 are easily verified, with $CCL\beta\eta SP$. We have to prove that this extension is conservative.

Let $\Lambda(V)c$ be the λ-calculus with explicit couples, defined on a set V of variables. A denumerable list of variables $x_1, \ldots, x_n \ldots$ being given, there exists an isomorphism, denoted by M^1 for $M \in \Lambda_{cf}$, between $\Lambda(V)c$ and Λ_{cf} such that $M_D = M_DB(x_0, \ldots, x_n)$ (see Mauny's thesis [17]).

Let M and $N \in \Lambda_{cf}$ and suppose that $M_D = CCL\beta\eta SP N_D$. We have $M^1_{DB(x_0, \ldots, x_n)} = N^1_{DB(x_0, \ldots, x_n)}$; therefore, $M^1_{CCL} = N^1_{CCL}$. Then by using Curien's Equivalence Theorem, we get $M^1 = \beta\eta SP N^1$ and hence $M = \beta\eta SP N$. \square

Conclusion

Combinators have been widely studied since Schönfinkel and Curry's results: among them one may notice the works of Hindley, Scott, Meyer, Lambek, Koymans, Curien and Poigné which developed both the semantical aspects and the syntactical points of view.

This work proves that Strong Categorical Logic is the good language to choose as an intermediate between machine languages and high-level languages. We may reproduce not only the weak β-reduction (as is done in the Classical Combinatory Logic) but also full β-reduction and η-reduction. Moreover, as we can perform calculations between several substitutions being evaluated, CCL appears more powerful than the Lambda-calculus. All the strategies of the Lambda-calculus may be straightforwardly translated into derivations of CCL. We are currently studying other strategies using the new capabilities for substitution. A first approach of this problem may be found in [9].

Related works

Yokouchi [20] develops another approach. He deals with λ-calculus with variables. His translation from λ-calculus to CCL is essentially the one defined by $(\cdot)_{DB(x_1, \ldots, x_n)}$. His translation from CCL to λ-calculus is completely different from our translation $(\cdot)_\lambda$. A CCL term F is seen as a function, say M. Let N be a λ-term. With F and N a λ-term $F^*\eta[N]$ is associated which is intended to represent $M[x \leftarrow N]$ and which is the translation of F in λ-calculus. Now, if $F \rightarrow^{SL\beta} G$, then $F^*\eta[N] \rightarrow^{\beta} G^*\eta[N]$. Any term H of CCL such that $H_{DB(x,y)} = H^*_{DB(x,y)}$ and such that any subterm App appears in the pattern $App \circ (\cdot)$ is said to be regular. This set is different from \mathcal{D}. $SL\beta$ is shown confluent on the set of regular terms by using the Church–Rosser Property for λ-calculus.
However, these translations do not define a bijection between A(V) and a subset of CCL and between β-derivations and a subset of SLβ-derivations.

References

[20] H. Yokouchi, Relationship between λ-calculus and rewriting systems for categorical combinators, Preprint, IBM Research Center, Tokyo.