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A graph may be formed from an n x n chessboard by taking the squares as the vertices and 

two vertices are adjacent if a chess piece situated on one square covers the other. In this paper 

we survey some recent results concerning domination parameters for certain graphs constructed 

in this way. 

1. Introduction 

The classical problems of covering chessboards with the minimum number of 
chess pieces were important in motivating the revival of the study of dominating 
sets in graphs, which commenced in the early 1970’s. These problems certainly 
date back to de Jaenisch [7] and have been mentioned in the literature frequently 
since that time (see e.g. [2,8,13]). 

A graph P,, may be formed from an n x n chessboard and a chess piece P by 
taking the n2 squares of the board as vertices and two vertices are adjacent if 
piece P situated at one of the squares is able to move directly to the other. For 
example the Queen’s graph Q, has the n2 squares as vertices and squares are 
adjacent if they are on the same line (row, column or diagonal). 

In this paper we survey recent results which involve various domination 
parameters for graphs which are constructed in this way. Outlines of some of the 
proofs are given, although most appear elsewhere. 

2. Domination of the queens’ graph 

2.1. An upper bound for the domination number of the queens’ graph 

The domination number y(G) (independent domination number i(G) of a graph 
G = (V, E) is the smallest cardinality of a subset (independent subset) D of V 

such that each vertex of V - D is adjacent to at least one vertex of D. Obviously 
y(G) s i(G) for any graph G. The determination of y(Q,), which is the minimum 
number of queens required to cover the entire n X n chessboard, is perhaps the 
best known chessboard covering problem. The following experimental values of 
y(Q,) for n 6 17 are due mainly to Kraitchik (see [S]). We have corrected (by 
computer) values for n = 5, 6, 7. 
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Fig. 1. Minimum dominating sets of Q, with 5 queens. 

n: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

y(Q,J: 1 1 1 2 3 3 4 5 5 5 5 6 7 8 9 9 9 

Two optimal queen coverings for the 8 x 8 chessboard are depicted in Fig. 1. 
Welch [15] has established an upper bound for y(Q,). 

Theorem 1 (Welch). Let n = 3q + r where 0 s r < 3. Then y(Q,) 6 2q + r. 

Proof. We first describe the placement of queens which shows that y(Q,) s 2n/3, 
for the case II = 3q. The IZ x rz board is divided into 9 q x q sub-boards 
(numbered 1 through 9 in Fig. 2). Queens are placed on the main diagonal of 
sub-board 3 and on the diagonal immediately above the main diagonal of 
sub-board 7. Finally a queen is placed in the bottom left hand corner of sub-board 
7. It is easily seen that these 2q queens cover the entire IZ x r~ board. If 
n = 3q + r, where r = 1 or 2, then consider the configuration of Fig. 2 augmented 
with r extra rows (~01s) added on the bottom (right) and place extra queen(s) at 
position(s) ((3q + i, 3q + i) 1 i = 1, r}. This covering by 2q + r queens completes 
the proof. Cl 
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Fig. 2. Example to show y(Qs,) s 2q. 
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2.2. An upper bound for the independent domination number of the queens’ graph 

In this section we consider i(Q,), the minimum number of queens which cover 
the entire n x n board, with the additional requirement that the queens do not 
cover each other. Spencer and Cockayne [6] have established the following upper 
bound for i(Q,). 

Theorem 2 (Spencer and Cockayne). For any n, i(Q,) < 0.705n + 0.895. 

Idea of Proof. Consider an infinite square chessboard. A queen placed on any 
square x covers the infinite set of squares which are collinear with x and 
completely covers the 3 X 3 board B1 which surrounds square x (see Fig. 3). The 
placement procedure is then continued iteratively. For each n > 1, a completely 
covered chessboard B, is found as follows. Let Al = {x}. Four queens are 
symmetrically placed on the set X, of squares. These four squares are not covered 
by the queens of B,_, and lie immediately outside the board B,_l. The new 
board B, is the largest square chessboard symmetrically containing B,_,, which is 
completely covered by queens placed on the set of squares A, = A,_, U X,. The 
construction implies that A, is an independent vertex subset of B,. The 9 x 9 
board Bz and the sets X2 and X3 are depicted in Fig. 3. In the diagram small dots 
denote squares covered by A2 = {x} U Xl. 

The size of the board B, depends on the following pair of recursively defined 
integer functions: 

f (1) = g(l) = 1, 
f (n + 1) = the least integer greater than f (n) which does not equal 

f(k) + 2g(k) for any k c n, 

Fig. 3. Illustration of the construction used in proof of Theorem 2. 
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and 

g(n + 1) = the least integer greater than g(n) which does not equal 
f(k) + g(k) for any k s n. 

In fact the size of B, is 2(f(n) +g(n)) - 1 and we have 

i(Qqf(nj+g(nj)--l) =s 4n - 3. (1) 

The remainder of the proof is a lengthy estimation of f(n), g(n) and the details 
may be found in [6]. 

2.3. A lower bound for y( Q,) 

Theorem 3 (Spencer [14]). For any n, ~(12,) 3 (n - 1)/2. 

Proof. Consider a covering of the n x n board using y = v(Q,J queens. Suppose 
that the rows and columns are sequentially labelled 1, . . . , n from top to bottom 
and left to right respectively. A row or column is said to be occupied if it contains 
a queen. 

Let column a, (b) be the left most (right most) unoccupied column and let row 
c (d) be the unoccupied row closest to the top (bottom). Further we set 
6, = b - a and d2 = d - c and assume without lost of generality that 6i Z= 6,. 

Consider the sets Si and S, of squares in columns a and b respectively, which lie 
between rows c and c + 6, - 1 inclusive and let S = S1 U S,. Since 6,> &, no 
diagonal intersects both S, and S,. Hence every queen diagonally dominates at 
most two squares of S (i.e. at most one per diagonal). Further queens situated 
above row c or below row c + 6i - 1 do not dominate squares of S by row or 
column. 

By definition of c, there are at least c - 1 queens above row c. Each row below 
row d is occupied and d = c + a2 c c + 6,. Therefore all the n - c - 6i rows 
below row c + 6, are occupied. Hence there are at least n - c - 6, queens below 
row c + 6, - 1. 

It follows that at least (c - 1) + (n - c - 6,) = n - 6i - 1 queens dominate at 
most 2 squares of S. The remaining queens of which there are at most 

y - (n - &- I), may cover at most 4 squares of S. Since all the 26, squares of S 
must be dominated we have 

2(n - 6, - 1) + 4(y - (n - 61- 1)) a 261, 

which gives y 2 (n - 1)/2 as required. Cl 

2.4. The diagonal queens’ domination problem 

Inspection of Fig. 1 shows that one can cover the 8 x 8 board with a minimum 
number of queens by restricting the placement of queens to the main diagonal, 
hence the following definition: 

diag(n) = minimum number of queens which may be placed on the main 
diagonal of an n x n chessboard and which dominate the 
entire board. 
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Cockayne and Hedetniemi [5] have related diag(n) to the following difficult and 
well-studied number-theoretic function. Let r3(n) be the largest cardinality of a 
subset of N= (1,. . . , n} which contains no 3-term arithmetic progression. 

Theorem 4 (Cockayne and Hedetniemi). For any n, 

diag(n) =n -r3 5 (I 1) . 
Indication of Proof. This theorem is proved by way of the following lemma. 
Define KG N to be diagonal dominating if queens placed in the positions 
{(k, k): k E K} on the main diagonal cover the entire board. A subset of N is 
called midpoint-free if it contains no 3-term arithmetic progression. Finally a 
subset of N is called even-summed if all its elements have the same parity. 

Lemma 1. K c N is diagonal dominating if and only if N - K is midpoint-free and 

even-summed. 

Theorem 3 is easily deduced from this lemma. Several estimates for r3(n) have 
appeared in the literature [l, 9-121 and Roth [ll] has proved lim,,, (r,(n)/n) = 

0. The latter result implies the following corollary. 

Corollary 1. 

lim,,, (diag(n)/n) = 1. 

Using Theorem 1 we deduce the following: 

Corollary 2. For n sufficiently large, y(Q,) < diag(n). 

2.5. Domination of Q, by queens in a single column 

Denote by col(n), the minimum number of queens on any single column which 
are required to dominate the entire n x n chessboard. (It is easy to see that a 
column nearest the centre is as good as any other.) Cockayne, Gamble and 
Shepherd [3] have related col(n) to the same function r3(n) mentioned in Section 
2.4. 

Let 

A(n)=n-r t 
(1 1) 

and 

B(n) = n - .+,=,nn,H~~l) +Gl)l. max 

k.130 

(3) 
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Theorem 5 (Cockayne, Gamble and Shepherd). 

col(n) = min[A(n), B(n)] (n 5 2). 

The proof of this theorem is highly technical and we give no details here. 
However, one may deduce from the proof: 

Corollary 3. For any n, col(n) 2 diag(n). 

2.6. Unsolved problems concerning queens 

Problem 1. Is y(Q,) s y(Q,+,) for all n? 

We now refer to equations (2) and (3) of Section 2.5. The computer has 
determined that A(n) 3 B(n) for n c 150 and we therefore ask: 

Problem 2. Is A(n) 3 B(n) for all n? 

Finally, could (3) be simplified by evaluation of the maximum? 

Problem 3. Find 

3. Domination parameters for the bishops’ graph 

The bishops’ graph D, has the n2 squares for vertices and two squares are 
adjacent if they lie on the same diagonal. In [4], Cockayne, Gamble and 
Shepherd have calculated three parameters for 0,. 

3.1. Domination and independent domination numbers 

Theorem 6 (Cockayne, Gamble and Shepherd). For any n, y(Dn) = i(Dn) = n. 

Indication of Proof. The set of squares of a nearest column to the centre is an 
independent dominating set of D, hence 

y(D,J s i(DJ s n 

and it remains to show y(D,) Z= n. 
The North-West to South-East running diagonals are labelled sequentially 

1 , . . 1 > 2n - 1 in the North-East direction, and w (and b) are the labels of the 
white (black) diagonal closest to the main diagonal which has no bishop. Without 
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losing generality, one may assume {w, b} E (1, . . . , n}. Diagonal w has w 
squares and these must be dominated. Further by definition of w, there are 
bishops on each diagonal strictly between w and 2n - w. Hence n, the number of 
white bishops in any dominating set satisfies 

rr,smax(w,n-w-1). (4) 

Similarly, 

nb 2 max(b, 12 - b - 1). (5) 

The result is simply deduced from (4) and (5). 0 

3.2. The total domination number 

The total domination number t(G) of a graph G = (V, E) is the minimum 
cardinality of a subset T of vertices, such that each vertex of V is adjacent to at 
least one vertex of T. 

Theorem 7 (Cockayne, Gamble and Shepherd). For any n 5 3, t(D,J = 2[5(n - 

111. 

Outline of Proof. II,, is the disjoint union of the white bishops graph W, and the 
black bishops graph B,. We summarize only the proof that t(B,) = [$(n - 1)1 for 
n even. Notice that a total bishop dominating set of B, is precisely a total rook 
dominating set of the diamond shaped chessboard S,, which has n rows and n - 1 
columns. We exhibit S, in Fig. 4. For ease of presentation, we use rooks, rows 
and columns, rather than bishops and diagonals. •i 

Lemma 1. For any n, S,, has a minimum total rook dominating set with the rooks 
on consecutive rows and columns. 

Proof. See [4]. Cl 

It follows from Lemma 1 that some minimum total rook dominating set of S, 
may be used to construct a total rook dominating set of an m x p rectangular 
board with property REL, i.e. a rook on every fine (row or column). It is shown 

Fig. 4. The diamond-shaped chessboard S,. 
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that such a board satisfies m +p an - 1 and hence, if s(m, p) = minimum 
number of rooks in an REL total dominating set of an m x p board, we have 

t(B,) = min s(m, p). 
m+pzvz-1 

(6) 

Lemma 2. 

1 

[$(m+p)l pSmC2p+2, 
s(mp)= m m>2p+2. (7) 

Proof. By establishing and solving a recurrence for s(m, p). For details see 

PI* q 

One may deduce from (6) and (7) that t(B,) 3 [$(n - 1)1 and the final part of 
the proof exhibits a total rook dominating set of 5, with [%(?I - l)] rooks. This 
completes the outline of the proof of Theorem 6. 
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