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Background: Respiratory distress syndrome (RDS) of the newborn is one of the most common
causes of morbidity and mortality in preterm infants. Our objective was to determine the as-
sociation between Rho-kinase (ROCK1 and ROCK2) gene polymorphisms and RDS in preterm ne-
onates.
Methods: A total of 193 preterm infants with RDS and 186 preterm infants without respiratory
problems were included in this study. Polymorphisms were analyzed in genomic DNA using a
BioMark 96.96 dynamic array system.
Results: We observed that ROCK1 gene rs2271255 (Lys222Glu) and rs35996865 polymorphisms,
and ROCK2 gene rs726843, rs2290156, rs10178332, and rs35768389 (Asp601Val) polymorphisms
were associated with RDS. However, no associations were found with rs73963110, rs1515219,
rs965665, rs2230774 (Thr431Asn), rs6755196, and rs10929732 polymorphisms. Additionally, 12
haplotypes (6 in ROCK1 and 6 in ROCK2) were found to be markedly associated with RDS.
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Conclusion: This is the first study to examine the involvement of ROCK gene variation in the
risk of incident RDS. The results strongly suggest that ROCK gene polymorphisms may modify
individual susceptibility to RDS in the Turkish population.
Copyright ª 2016, Taiwan Pediatric Association. Published by Elsevier Taiwan LLC. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/
by-nc-nd/4.0/).
1. Introduction

Respiratory distress syndrome (RDS) of the newborn is the
most common cause of respiratory distress in premature
infants occurring as a result of surfactant deficiency and
underdeveloped lung anatomy. The clinical presentation of
respiratory distress in the newborn includes apnea,
cyanosis, grunting, inspiratory stridor, nasal flaring, poor
feeding, and tachypnea.1 Respiratory distress occurs in
approximately 7% of infants.2 The pathophysiology of RDS is
complex. Immature type II alveolar cells produce less sur-
factant, causing an increase in alveolar surface tension and
a decrease in compliance. The resulting atelectasis causes
pulmonary vascular constriction, hypoperfusion, and
ischemia in lung tissue.1

Rho-kinase (ROCK) is a serine/threonine kinase that is
activated by Rho proteins. Two ROCK isoforms have been
described: ROCK1 and ROCK2. The ROCK isoforms are
encoded by separate genes on human chromosomes 18q11
(ROCK1) and 2p24 (ROCK2). The Rho/ROCK pathway is
thought to participate in a wide range of fundamental
cellular functions including cell morphology, motility,
adhesion, migration, proliferation, differentiation, and
apoptosis.3 ROCK can also regulate macrophage phagocytic
activity and endothelial cell permeability, and it is known
to play a role in inflammatory mechanisms and endothelial
dysfunction.4,5 The Rho/ROCK pathway plays an important
role in the regulation of baseline tone and vasoconstrictor
responses of the pulmonary vascular bed, and vascular
remodeling occurring in pulmonary disorders.6e8 ROCK is
upregulated by inflammatory stimuli; inhibition of ROCK
increases expression of endothelial nitric oxide synthase
and inhibits inflammatory cell migration.3,9

There is considerable evidence indicating that me-
chanical stretch is essential for lung growth and devel-
opment.10e12 Mechanical stretch is also an important
stimulus for activation of small GTPases RhoA in fetal type
II epithelial cells.13 There is evidence that the Rho/ROCK
pathway plays an important role as mechanosensor acting
in vivo either directly or indirectly for transforming
increased distention into acceleration of lung growth.14 In
experimental studies, systemic administration of a ROCK
inhibitor, Y-27632, substantially reduced pulmonary
microvascular permeability, edema, and lung injury.15,16

ROCK may play an important role in the pathogenesis of
lipopolysaccharide-induced lung injury; and ROCK inhibi-
tion could attenuate cytoskeletal rearrangement of endo-
thelial cells, leading to decreased neutrophil emigration
into the lung parenchyma.17 Exogenous human purified
surfactant protein (SP)-A induced stress fiber formation in
cultured human myometrial cells via a ROCK-related
aya G, et al., Association of Rho-
onatology (2016), http://dx.doi.
pathway. It was shown that pharmacological inhibition of
ROCK resulted in a clear reduction of stress fiber formation
induced by SP-A.18 Although there is a strong genetic sus-
ceptibility to development of RDS in preterm infants,19 no
study has assessed the impact of ROCK gene polymorphisms
on RDS development before. The purpose of this study was
to determine the role of ROCK1 and ROCK2 gene poly-
morphisms in the development of RDS in preterm
newborns.
2. Materials and methods

2.1. Patients

A total of 193 preterm infants with gestational age
under 37 weeks and birth weight <2500 g who were
admitted to the Neonatal Intensive Care Unit of Gaz-
iantep University Hospital and Gaziantep Children Hos-
pital between 2011 and 2012, were included in this
study. RDS was diagnosed according to the following
criteria: respiratory distress beginning in the first hours
of life and lasting at least 24 hours, need for mechan-
ical ventilation including continuous positive airway
pressure, presence of typical radiological findings in
chest X-ray, and abnormal arterial blood gas results.
Tachypnea (>60 breaths/min), chest retractions, nasal
flaring, grunting, need to maintain the oxygen satura-
tion at �86% with FiO2 � 0.40 in addition to the chest
radiograph results with �2 Grade 2 RDS findings
confirmed the diagnosis of RDS. Classification of pul-
monary X-ray findings for RDS was based on the
following criteria: Grade 1dslight reticular (slightly
granular) decrease in transparency of the lung with no
certain difference from normal findings; Grade 2dsoft
decrease in transparency with an air bronchogram,
which overlaps the heart; Grade 3dgradual stronger
decrease in transparency, as well as a blurry diaphragm
and heart; and Grade 4dpractically homogeneous lung
opacity.20 In the RDS group, duration of hospitalization,
mechanical ventilation and oxygen use, number of sur-
factants used, and mortality were recorded. Preterm
infants without respiratory problems constituted the
control group (n Z 186; gestational age, 27e36 weeks;
birth weight, 650e2700 g). The exclusion criteria were
presence of congenital anomalies, sepsis, intrauterine
infections, genetic disorders, and inherited metabolic
disorders. Patients and controls came from the same
ethnic group (Caucasians). This study was approved by
the local Ethics Committee, and informed consent was
obtained from all parents.
kinase Gene Polymorphisms with Respiratory Distress Syndrome in
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2.2. Blood samples and DNA isolation

Venous blood sample was obtained from all study partici-
pants into EDTA-containing tubes. Immediately after
collection, whole blood was frozen and stored at �20�C
until the time of analysis. Genomic DNA was extracted from
whole blood using the salting-out method and was stored at
�20�C.

2.3. Genotyping

The genotype was determined in all patients and controls
using the Fluidigm dynamic array system as previously
described.21,22 Polymorphisms were analyzed in genomic
DNA using a 96.96 dynamic array on the BioMark HD system
(Fluidigm, South San Francisco, CA, USA). The Digital PCR
Analysis software (Fluidigm) was used to process the data
after the reaction. Chambers that yielded signals were
detected and counted. Genotyping was conducted in a
blinded fashion.

The criteria for choice of single nucleotide poly-
morphisms analyzed in this study were as follows: (1)
relatively high frequency of minor alleles in the Caucasian
populations; (2) being located within the promoter region,
and exonic and intronic sites that could potentially impact
ROCK expression and function; and (3) suitability for the
Fluidigm dynamic array chip design, i.e., with no high G/C
levels. In the present study, 12 single nucleotide poly-
morphisms [ROCK1: rs2271255 (Lys222Glu) in exon 6,
rs73963110 in intron 1, and rs35996865 in 50 UTR; ROCK2:
rs1515219 in intron 5, rs726843 in intron 13, rs2290156 in
intron 29, rs965665 in intron 3, rs10178332 in intron 3,
rs2230774 (Thr431Asn) in exon 10, rs6755196 in intron 1,
rs10929732 in intron 1, rs35768389 (Asp601Val) in exon 16]
were analyzed for ROCK gene polymorphisms.

2.4. Statistical analysis

Descriptive statistics are expressed as mean � standard
deviation or percentage. Statistical analysis was performed
using GraphPad Instat (Version 3.05; GraphPad Software
Inc., San Diego, CA, USA) and the SPSS statistical package
(version 22.0; SPSS, Inc., Chicago, IL, USA). Gestational
Table 1 Demographic characteristics of infants in control and R

Control group
(n Z 186)

Gestational age (wk) 29.3 � 2.3
Birth weight (g) 1408.9 � 519.9
Sex (male/female) 97/89
Apgar score (5th min) 9.1 � 0.8
Mode of delivery (NSD/C/S) 22/164
Antenatal steroid use 24/162
Age of mother (y) 29.6 � 6.1
Incidence of intubation (n, %) 7 (3.8)
Exogenous surfactant use (n, %) d

Duration of ventilation (h) 14.6 � 11.9
Incidence of BPD (n, %) 1 (0.5)

BPDZ bronchopulmonary dysplasia; C/SZ cesarean section; NSDZ n
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age, birth weight, Apgar score, and mode of delivery were
adjusted in the binary logistic regression model for the
association of ROCK polymorphisms with RDS. The odds
ratio and 95% confidence intervals were also calculated
using logistic regression analysis. The multivariate regres-
sion analyses were used for calculation of the significance
of differences in genotype frequencies. For calculation of
the significance of differences in allele frequencies, the
Chi-square test (with Yate’s correction) or Fisher’s exact
test was used. A statistical comparison of two groups was
performed with unpaired Student t test. Apgar scores were
compared with ManneWhitney U test. The original signifi-
cance level was set at a p value of 0.05. Haplotype analysis
was performed using the online software, SHEsis (http://
analysis.bio-x.cn/myAnalysis.php). Bonferroni correction
for multiple testing was used for polymorphism studies, and
a p value of <0.0042 (0.05/12) was considered statistically
significant. All probability values were based on two-tailed
tests.
3. Results

The demographic characteristics of the groups are shown in
Table 1. Apgar score, mode of delivery, incidence of intu-
bation, duration of ventilation, and incidence of broncho-
pulmonary dysplasia were found to be significantly
different between patient and control groups. Average
gestational age, birth weight, sex, use of antenatal steroid,
and age of mother were similar in both groups.

Significant associations for genotype and allele fre-
quencies of ROCK1 gene polymorphisms are shown in
Table 2. ROCK1 gene polymorphisms rs2271255 (Lys222-
Glu) and rs35996865, but not rs73963110, were found to
be significantly associated with RDS development. There
were marked differences in both genotype (CC, 34.1%; TT,
37.2%) and allele (C, 48.5%; T, 51.5%) frequencies for the
rs2271255 (Lys222Glu) polymorphism in the RDS group
when compared to controls (CC, 66.7%; TT, 5.0%; C,
80.8%; T, 19.2%; p < 0.001). The presence of the TT ge-
notype and T allele were associated with a 9.93- and 4.48-
fold increased risk of RDS, respectively. GT genotype and
T allele frequencies of the rs35996865 polymorphism were
markedly high among cases with RDS (GT, 54.2%; T, 69.7%)
DS groups.

RDS group
(n Z 193)

p

29.5 � 2.9 0.4585
1339.1 � 526.1 0.1948
114/79 0.2107
6.4 � 1.4 <0.0001
42/151 0.0145
19/174 0.4185
29.4 � 5.8 0.7437
193 (100) <0.0001
192 (99.5)
81.2 � 75.8 <0.0001
8 (4.1) 0.0371

ormal spontaneous delivery; RDSZ respiratory distress syndrome.
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Table 2 Significant associations for genotype and allele frequencies of ROCK1 gene polymorphisms among the RDS cases and
controls.

Genotypes/alleles Controls
n (%)

RDS
n (%)

p OR (95% CI)

rs2271255 (Lys222Glu) n Z 159* n Z 164*

C/C 106 (66.7) 56 (34.1)
C/T 45 (28.3) 47 (28.7) 0.423 1.423 (0.601e3.371)
T/T 8 (5.0) 61 (37.2) 0.001 9.927 (3.094e31.849)
C 257 (80.8) 159 (48.5)
T 61 (19.2) 169 (51.5) 0.001 4.478 (3.145e6.376)
rs35996865 n Z 184* n Z 190*

G/G 80 (43.5) 6 (3.2)
G/T 32 (17.4) 103 (54.2) 0.001 82.578 (15.314e445.292)
T/T 72 (39.1) 81 (42.6) 0.001 46.857 (8.863e247.721)
G 192 (52.2) 115 (30.3)
T 176 (47.8) 265 (69.7) 0.001 2.514 (1.863e3.392)

CI Z confidence interval; OR Z odds ratio; RDS Z respiratory distress syndrome.
* Numbers do not always add up to total numbers because of missing values on the BioMark dynamic array system.
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when compared to the control group (GT, 17.4%; T, 47.8%,
p < 0.001). However, GG genotype (3.2%) and G allele
(30.3%) were found to be low in the RDS group when
compared to controls (GG, 43.5%; G, 52.2%). High odds
ratios were observed with this polymorphism. The pres-
ence of GT genotype and T allele increased the risk of RDS
by 82.58- and 2.51-fold, respectively (Table 2).
Table 3 Significant associations for genotype and allele frequ
controls.

Genotypes/alleles Controls
n (%)

RDS
n (%

rs726843 n Z 159* n Z
T/T 71 (44.7) 23 (1
T/C 31 (19.5) 115
C/C 57 (35.8) 31 (1
T 173 (54.4) 161
C 145 (45.6) 177
rs2290156 n Z 139* n Z
C/C 78 (56.1) 19 (1
C/G 20 (14.4) 80 (5
G/G 41 (29.5) 57 (3
C 176 (63.3) 118
G 102 (36.7) 194
rs10178332 n Z 139* n Z
A/A 120 (86.3) 40 (2
A/C 18 (12.9) 128
C/C 1 (0.7) 5 (2.
A 258 (92.8) 208
C 20 (7.2) 138
rs35768389 (Asp601Val) n Z 177* n Z
T/T 124 (70.1) 39 (2
T/A 19 (10.7) 99 (5
A/A 34 (19.2) 41 (2
T 267 (75.4) 177
A 87 (24.6) 181

CI Z confidence interval; OR Z odds ratio; RDS Z respiratory distre
* Numbers do not always add up to total numbers because of missi

Please cite this article in press as: Kaya G, et al., Association of Rho-
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Significant associations for genotype and allele fre-
quencies of ROCK2 gene polymorphisms are presented in
Table 3. Although there were marked changes in genotype
distribution of the rs726843 polymorphism (TT, 44.7%; TC,
19.5% in the control group vs. TT, 13.6%; TC, 68.1% in the
RDS group; pZ 0.001), no significant differences were noted
in allele frequency. The risk of RDS increased 16.73-fold in
encies of ROCK2 gene polymorphisms among RDS cases and

)
p OR (95% CI)

169*

3.6)
(68.1) 0.001 16.728 (5.597e49.997)
8.3) 0.083 2.746 (0.875e8.612)
(47.6)
(52.4) 0.098 1.312 (0.965e1.783)
156*

2.2)
1.3) 0.001 8.082 (2.593e25.193)
6.5) 0.001 6.588 (2.314e18.752)
(37.8)
(62.2) 0.001 0.353 (0.252e0.493)
173*

3.1)
(74.0) 0.001 13.750 (5.589e33.828)
9) 0.428 2.874 (0.212e39.052)
(60.1)
(39.9) 0.001 8.559 (5.174e14.159)
179*

1.8)
5.3) 0.001 20.696 (6.910e61.986)
2.9) 0.001 8.151 (2.705e24.560)
(49.4)
(50.6) 0.001 3.138 (2.282e4.316)

ss syndrome.
ng values on the BioMark dynamic array system.
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Table 4 Insignificant associations for genotype and allele frequencies of ROCK1 and ROCK2 gene polymorphisms in RDS and
control groups.

Gene
SNP

Genotypes/alleles Controls n* RDS n* p value

ROCK1 CC/CT/TT 39/97/9 145 71/84/18 173 0.0044
rs73963110 C/T 175/115 226/120 0.2256
ROCK2 CC/CT/TT 55/102/27 184 55/89/37 181 0.2978
rs1515219 C/T 212/156 199/163 0.5200
ROCK2 GG/GC/CC 111/70/5 186 114/78/1 193 0.2219
rs965665 G/C 292/80 306/80 0.8618
ROCK2 CC/CA/AA 52/96/38 186 51/90/52 193 0.3242
rs2230774 (Thr431Asn) C/A 200/172 192/194 0.3006
ROCK2 GG/GA/AA 138/36/11 185 135/42/16 193 0.5348
rs6755196 G/A 312/58 312/74 0.2421
ROCK2 GG/GA/AA 123/54/9 186 128/61/4 193 0.3134
rs10929732 G/A 300/72 317/69 0.6673

RDS Z respiratory distress syndrome; SNP Z single nucleotide polymorphism.
* Numbers do not always add up to total numbers because of missing values on the BioMark dynamic array system.
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the presence of TC genotype. CG genotype (51.3%) and G
allele (62.2%) of rs2290156 polymorphism were more
frequent among the RDS cases compared to controls (CG,
14.4%; G, 36.7%; p Z 0.001). There were lower frequencies
of the CC genotype (12.2%) and C allele (37.8%) in the RDS
group when compared to controls (CC, 56.1%; C, 63.3%,
p Z 0.001). AC genotype (74.0% vs. 12.9%, p Z 0.001) and C
allele (39.9% vs. 7.2%, p Z 0.001) of the rs10178332 poly-
morphism were more frequent in the RDS group. The pres-
ence of the AC genotype and C allele were associated with a
13.75- and 8.56-fold increased risk for RDS, respectively. For
the rs35768389 (Asp601Val) polymorphism, high frequencies
of TA genotype (55.3% vs. 10.7%) and A allele (50.6% vs.
24.6%) were noted in the patient group. TT genotype (21.8%)
and T allele (49.4%) frequencies were lower in the RDS group
when compared to controls (TT, 70.1%, T, 75.4%, pZ 0.001).
The presence of TA genotype and A allele increased the risk
of RDS by 20.70- and 3.14-fold, respectively (Table 3).
However, no associations were found with rs1515219,
rs965665, rs2230774 (Thr431Asn), rs6755196, and rs10929732
polymorphisms (Table 4).

Haplotypes based on the ROCK1 gene polymorphisms
were constructed, and six haplotypes (CCG, CCT, CTG,
TCT, TTG, and TTT) were detected to have significant
association with RDS (Table 5). CCT, TCT, TTG, and TTT
haplotype frequencies were higher in the RDS group.
However, CCG and CTG haplotype frequencies were lower
in cases with RDS (p < 0.0001). There were no marked
associations between the CTT and TCG haplotype fre-
quencies and RDS. Haplotypes based on the studied
ROCK2 gene polymorphisms were constructed, and 12
haplotypes with high frequency were detected (Table 5).
Only six of these haplotypes were markedly associated
with RDS. CCAT and TCAT haplotypes were less frequent,
whereas CCAA, CGAA, TGCA, and TGCT haplotypes were
more frequently found among cases with RDS compared to
controls. Interestingly, TGCA and TGCT haplotypes were
only observed among RDS cases. Although none of the
controls had TGCT haplotype, it was seen in 26% of the
infants with RDS.
Please cite this article in press as: Kaya G, et al., Association of Rho-k
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4. Discussion

In this case-control study, we showed that ROCK1 gene
rs2271255 (Lys222Glu), rs35996865, and ROCK2 gene
rs726843, rs2290156, rs10178332, rs35768389 (Asp601Val)
polymorphisms were significantly associated with RDS, and
that they could be a risk factor for development of neonatal
RDS. Our results suggest that polymorphisms may increase
the susceptibility to RDS. Additionally, significant associa-
tions between ROCK1 and ROCK2 haplotypes and RDS were
observed. To the best of our knowledge, this is the first
study to examine the association of the ROCK gene poly-
morphisms with the risk of RDS development.

It has been demonstrated that cytoskeletal tension
controlled by the Rho/ROCK pathway is a critical develop-
mental regulator of branching morphogenesis in fetal mice
lungs during the pseudoglandular phase.23,24 ROCK2 protein
levels were shown to be rapidly elevated following an in-
crease in lung distension induced by tracheal occlusion,
which suggests that ROCK2 plays a major role in the forma-
tion of the gas exchange units.14 It has been reported that
stretch-induced surfactant protein C gene expression is
further enhanced when RhoA or ROCK activity are attenu-
ated, suggesting that inactivation of the RhoA pathway may
promote type II cell differentiation.13 Hypoxia is often pre-
sent in RDS.1 Hypoxia also increases ROCK activity and
downregulates endothelial nitric oxide synthase expres-
sion.25,26 Collectively, these findings suggest that the RhoA/
ROCK pathway is involved in the pathogenesis of RDS.

There are few studies related to ROCK gene poly-
morphisms in humans. rs35996865, rs2290156, rs10178332,
and rs35768389 (Asp601Val) polymorphisms have been
shown to be associated with colorectal cancer development
and metabolic syndrome.27,28 rs35768389 (Asp601Val)
polymorphism was reported to be associated with Behçet’s
disease.21 So far, rs2271255 (Lys222Glu) and rs726843
polymorphisms have not been associated with any disease.
The structure or function of the ROCK enzymes affected by
these polymorphisms is currently unknown, and further
studies are necessary in order to clarify this issue.
inase Gene Polymorphisms with Respiratory Distress Syndrome in
rg/10.1016/j.pedneo.2015.12.006



Table 5 Distribution of haplotype frequencies of ROCK1 and ROCK2 gene polymorphisms in RDS cases and controls.

ROCK1
rs2271255

rs73963110 rs35996865 Control n (%) RDS n (%) p value

C C G 66 (25.4) 15 (5.3) <0.0001

C C T 54 (20.7) 97 (33.1) 0.0010

C T G 68 (26.1) 11 (3.6) <0.0001

C T T 25 (9.4) 11 (3.9) 0.0086
T C G 18 (6.9) 16 (5.5) 0.4906
T C T 17 (6.7) 67 (22.9) <0.0001

T T G 8 (3.2) 48 (16.5) <0.0001

T T T 4 (1.7) 27 (9.2) 0.0001

ROCK2
rs726843

rs2290156 rs10178332 rs35768389 Control n (%) RDS n (%) p value

C C A A 9 (4.6) 75 (27.7) <0.0001

C C A T 55 (27.1) 2 (0.9) <0.0001

C G A A 3 (1.4) 20 (7.3) 0.0023

C G A T 14 (6.7) 23 (8.3) 0.4554
C G C T 5 (2.6) 14 (5.2) 0.1398
T C A A 9 (4.2) 7 (2.5) 0.3202
T C A T 72 (35.2) 2 (0.6) <0.0001

T C C T 0 (0.0) 9 (3.2) 0.0153
T G A A 5 (2.2) 9 (3.2) 0.4977
T G A T 28 (13.8) 18 (6.6) 0.0108
T G C A 0 (0.0) 11 (3.9) 0.0038

T G C T 0 (0.0) 71 (26.2) <0.0001

Frequencies <0.03 in both controls and cases have been dropped from analysis.
RDS, Respiratory distress syndrome.
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In conclusion, the findings of the present study show that
ROCK1 and ROCK2 gene polymorphisms might be a risk
factor for RDS development. Rho/ROCK signaling plays an
important role in pulmonary circulation, and ROCK in-
hibitors may be potential therapeutic applications in the
treatment of RDS. Our findings show that ROCK gene may
have a role in the pathogenesis of RDS, but further studies
are required to validate these results.
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