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We describe recent progress toward defining neuronal cell types in the mouse retina and attempt to extract
lessons that may be generally useful in the mammalian brain. Achieving a comprehensive catalog of retinal
cell types now appears within reach, because researchers have achieved consensus concerning two funda-
mental challenges. The first is accuracy—defining pure cell types rather than settling for neuronal classes that
are mixtures of types. The second is completeness—developing methods guaranteed to eventually identify
all cell types, as well as criteria for determining when all types have been found. Case studies illustrate how
these two challenges are handled by combining state-of-the-art molecular, anatomical, and physiological
techniques. Progress is also being made in observing and modeling connectivity between cell types. Scaling
up to larger brain regions, such as the cortex, will require not only technical advances but also careful consid-
eration of the challenges of accuracy and completeness.
When President Obama announced his BRAIN Initiative, the

NIH enlisted a ‘‘dream team’’ of prominent neuroscientists to

formulate a plan. In its final report, these advisors proclaimed

that ‘‘[i]t is within reach to characterize all cell types in the

nervous system’’ and named this as the number one goal out

of seven for the BRAIN Initiative (http://www.nih.gov/science/

brain/2025/index.htm).

In this perspective piece, we describemethods currently being

used to identify cell types anddiscuss the prospects of extending

them to catalog all cell types in the nervous system. We will

restrict ourselves to neuronal cell types, though nonneuronal

cell types are important too. The term ‘‘cell type’’ will refer to clas-

sification at the finest granularity, analogous to ‘‘species’’ in bio-

logical taxonomy (Masland, 2004), and accordingly, the term

‘‘subtype’’ will be avoided. Ideally, one would also define higher

ranks for neuronal taxonomy, analogous to ‘‘genus’’ and so on.

In the absence of accepted terminology, we will use ‘‘class’’ to

refer to any level of the hierarchy above cell type (Masland, 2004).

Our exposition focuses on the example of the retina, a region

of the mammalian central nervous system in which cell types

have been intensively investigated for well over a century (Cajal,

1893). Wewill discuss only themouse retina, which has emerged

as an important model system due to the power of mouse ge-

netics. While mice have low visual acuity, they exhibit interesting

visually guided behaviors, and visual regions of the mouse brain

are being explored by many researchers (Huberman and Niell,

2011). The advances to be reviewed here build on previous

work with rabbits, cats, monkeys, and nonmammalian species,

but space does not permit inclusion of this previous literature.

Progress has been hindered not only by technical limitations

but also by two fundamental difficulties of methodology. The first

is accuracy: how do we know when we have found a true cell

type? The second is completeness: how can we identify all cell

types, and how will we know when we are done? As will be ex-

plained below, provisional answers to these two questions
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have emerged for the retina, so finishing the catalog of retinal

cell types does truly seem within reach. We will conclude this

piece by speculating about whether and how impending suc-

cess in the retina will generalize to the brain.

The retina is composed of three layers of cell bodies and two

layersof neurites (Figure1).Youcould imagine it asaclubsandwich

with somata as bread and neurites asmeat. The three bread layers

are the outer nuclear layer (ONL), inner nuclear layer (INL), and gan-

glion cell layer (GCL). The two meat layers are the outer plexiform

layer (OPL) and inner plexiform layer (IPL). The retina contains five

classes of neurons: photoreceptor, horizontal, bipolar, amacrine,

and ganglion cells. Photoreceptor and horizontal cells are divided

into just a handful of types and will not be discussed here. The

challenges of defining retinal cell types and determining their con-

nectivity mainly involve the bipolar, amacrine, and ganglion cells,

which synapse with each other in the IPL (Masland, 2012).

The intricate structure of the IPL depends on depth, which is

measured along the axis perpendicular to the retina. IPL depths

0 and 1 are conventionally placed at the IPL borders adjacent to

the INL andGCL, respectively. The IPL depth is divided at roughly

the halfway mark into Off and On zones that are adjacent to the

INL and GCL respectively. The IPL depth is more finely divided

into five (Cajal, 1893) or ten (Roska and Werblin, 2001) ‘‘strata.’’

A recent study has shown that the precision of IPL structure is

even finer than these conventional divisions (Sümbül et al., 2014).
What Is a Cell Type?
Roughly speaking, a cell type is defined as a population of cells

with similar molecular, anatomical, and physiological properties.

These three kinds of definition are illustrated by the starburst

amacrine cell (SAC), a class of retinal neuron that comes in On

and Off types (Figure 2):

d The SAC is molecularly defined as the only cholinergic

neuron in the mammalian retina (Masland and Tauchi,
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Figure 1. The Retina Is Composed of Three
Nuclear Layers, Containing Cell Bodies, and
Two Plexiform Layers, Containing Neurites
The inner and outer plexiform layers are sand-
wiched between the three layers of somata; the
ONL, the INL, and the GCL. The nuclear layers
contain the somata of the five classes of neurons
of the retina: photoreceptor, horizontal, bipolar,
amacrine, and ganglion cells. Figure adapted from
Masland (2012).
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1986). On SACs express semaphorin 6A (Sema6A), while

Off SACs do not (Sun et al., 2013).

d Anatomists define SACs as neurons that are almost planar,

with dendrites extending roughly radially and symmetri-

cally about the soma (Famiglietti, 1983). Off and On types

of SACs arborize in strata located at roughly 1/3 and 2/3

of the IPL depth, respectively.

d On SACs are activated when light turns on, while Off SACs

are activated when light turns off. Physiologists have

discovered that a SAC dendrite is more activated by out-

ward motion than inward motion. Here, ‘‘outward’’ refers

to visual stimuli that move from the soma toward the tip

of the dendrite (Euler et al., 2002; Hausselt et al., 2007).

The physiological definition is interesting because it is closely

related to the function of SACs, suggesting that SACs are

involved in the visual detection of motion. Indeed, ablation of

SACs results in loss of the optokinetic reflex (Yoshida et al.,

2001). However, it is difficult to arrive at the physiological defini-

tion without means of visualizing, recognizing, and manipulating

SACs. This is where the molecular and anatomical definitions

come in.

The molecular definition of SACs is useful for visualization by

antibody staining. SACs are selectively stained by antibodies

against choline acetyltransferase (ChAT), the enzyme that syn-

thesizes acetylcholine, or against vesicular acetylcholine trans-

porter (VAChT). The molecular definition is also useful for genetic

manipulations, for example, through transgenic mouse lines that

express Cre in ChAT-positive cells (Yonehara et al., 2011; Duan

et al., 2014). The ablation of SACsmentioned above was accom-

plished by genetic targeting of SACs based on their expression of

the mGluR2 receptor, another molecule characteristic of SACs

(Yoshida et al., 2001). In principle, a cell type is defined by its

entire transcriptomic or proteomic state. In practice, just a few

molecules are expected to be sufficient to distinguish any given

cell type from other cell types in its vicinity. For example, as ex-

plained above, acetylcholine and sema6A appear to be sufficient

to distinguish On and Off SACs from other retinal cell types.

The anatomical definition of SACswas used to recognize them

after intracellular dye fills, so that they could be targeted for the

physiological experiments that revealed direction selectivity of

SAC dendrites (Euler et al., 2002; Hausselt et al., 2007).

In our opinion, it is important to cross-validate these three def-

initions. We can be most sure of the validity of a cell type if it has

three independent definitions based on molecular properties

only, anatomical properties only, and physiological properties
only and these three definitions agree with each other. This ideal

situation has been partially achieved for SACs. A SAC can

currently be identified by purely molecular criteria or purely

anatomical criteria. The physiological property of direction selec-

tivity is not specific enough to stand on its own as an indepen-

dent definition of SACs, but one can imagine that further

research could yield a larger set of physiological properties

that fully define SACs.

Why do we expect that these definitions should agree for a

genuine cell type? If a cell type serves a function, then we expect

evolution to adapt the properties of the cell type to serve the func-

tion. It was already noted that the physiological property of

direction selectivity appears to serve visual behaviors like the

optokinetic reflex. Likewise, the anatomical properties of

SACs support their role in visual function. To understand this

point, it is helpful to consider the relation of SACs with another

class of retinal neuron, On-Off direction-selective ganglion cells

(ooDSGCs). Each ooDSGC is bistratified, meaning that its den-

drites stratify at two IPLdepths.Thesedepths correspondexactly

to those of SACs, so that ooDSGCs costratify with On and Off

SACs (Famiglietti, 1992). Costratification means that contact is

possible, and contact is a necessary (though not sufficient) con-

dition for synaptic coupling. Indeed, it turnsout thatSACsprovide

synaptic input to ooDSGCs (Fried et al., 2002), and the direction

selectivity of ooDSGCs is thought to be inherited from their SAC

inputs (Fried et al., 2002; Briggman et al., 2011). More generally,

stratification depth is an important constraint on the connectivity

of retinal circuits, which in turn is an important determinant of

visual function (Masland, 2004). Therefore, it makes sense for

stratification depth to be crucial for the anatomical definition of

not only SACs but also virtually every type of retinal neuron.

The anatomical properties of a neuron not only influence its

function by constraining its connectivity to inputs and outputs

but also by shaping the single-neuron biophysics underlying

input-output relations. Additional distinctive anatomical proper-

ties not mentioned above—the existence of both input and

output synapses on SAC dendrites, the lack of an axon, and

the small diameter of SAC dendrites (suggesting weak electrical

coupling)—were used as the basis for speculation that SAC den-

drites function independently (Miller and Bloomfield, 1983), as

was later confirmed by two-photon calcium imaging (Euler

et al., 2002; Hausselt et al., 2007).

Molecules expressed in SACs support their anatomical prop-

erties by participating in developmental processes. MEGF10 is

important for the regular spacing of SAC cell bodies across the

retina (Kay et al., 2012). Protocadherins are important for SAC
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Figure 2. SAC Dendrites Extend Roughly Radially about the Soma
and Are Activated by Outward Motion
(A) Projection of an Off SAC onto the plane tangential to the retina shows the
‘‘starburst’’ arrangement of its dendrites. The preferred directions of individual
dendrites are radially outward from the soma. Swellings of distal dendrites are
presynaptic boutons (inset), so that SAC dendrites are output elements as well
as input elements.
(B) Projection onto a plane perpendicular to the retina shows the thin stratifi-
cation of the Off SAC at a characteristic IPL depth, between the INL and GCL.
The neuron was reconstructed from a volume imaged by serial EM (Briggman
et al., 2011). Scale bar, 50 mm. Figure adapted from Kim et al. (2014).
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self-avoidance, the apparent repulsion between the dendrites of

a single SAC that is important for its characteristic ‘‘starburst’’

shape (Lefebvre et al., 2012). Sema6A, mentioned above, is

important for SAC stratification at 1/3 and 2/3 of the IPL depth

(Sun et al., 2013).

SAC molecules also support the intrinsic and synaptic physi-

ology of these cells. While this is the case, the link to function

is often nonobvious. Cholinergic transmission in SACs is thought

to exert excitatory influences on other cells, but its role in SAC

function has not been explained. Most accounts of direction

selectivity instead emphasize inhibitory GABAergic transmission

by SACs. The mGluR2 receptor is expressed in SACs, a fact

used for the genetically targeted ablation mentioned earlier

(Yoshida et al., 2001). Pharmacological manipulation of mGluR2

receptors appears to have an effect on direction selectivity, but

the mechanism and relevance for function are not altogether

clear (Jensen, 2006).

The physiological definition of SACs given above is based on

responses to visual stimuli. There is also considerable research

on the intrinsic and synaptic physiology of retinal neurons, and

such properties could potentially be distinctive enough to be

used in cell type definitions. This approach is popular in the phys-

iological definition of cortical cell types (Markram et al., 2004; As-

coli et al., 2008).
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Why Are Cell Types Important?
Identifying cell typesmight be denigrated as a tedious exercise in

‘‘descriptive’’ neuroscience, akin to stamp collecting. Indeed,

many publications on this subject have been relegated to

‘‘archival’’ journals with low impact factors. Why then have cell

types become so prominent a topic, as evidenced by the prior-

ities of BRAIN Initiative? One reason is the recent revolution in

applying genetic methods to systems neuroscience. Identifying

a cell type is now a prelude to manipulating it, enabling experi-

ments that rely on visualizing neurons with fluorescent reporters

or controlling their activity with optogenetics.

A second reason is conceptual rather than technological.

Without knowledge of cell types, one cannot even frame many

important questions of neuroscience. Ganglion cells are the out-

puts of the retina, the only class of neuron that extends axons

from the eye to the brain. According to textbook accounts, a

ganglion cell is the output of a computation that is well approx-

imated by a linear filter with center-surround structure. If this

simple picture were accurate, it would be hard to understand

why ganglion cells come in at least 20 types. It seems more

plausible that each ganglion cell type is the output of a distinct

visual computation performed by the retina (Gollisch and Meis-

ter, 2010). Once a cell type is defined, then retinal physiologists

can set to work characterizing the visual computation that it

serves. Before the cell type is defined, it would be difficult to

even formulate the question. Similarly, SACs must be anatomi-

cally defined before developmental neuroscientists can find

molecules that are important for establishing the starburst

shape (Lefebvre et al., 2012) and stratification depth (Sun

et al., 2013).

Third, neurodegenerative disorders may not affect all cell

types uniformly. For example, glaucoma researchers have

long known that ganglion cells degenerate in the disease, while

other classes of retinal neurons remain unaffected. A recent

study on a mouse model of the disease suggests that in-

dividual ganglion cell types may be affected differentially (Della

Santina et al., 2013), while a previous study of a different

mouse model failed to detect differences across types (Jakobs

et al., 2005).

Fourth, future therapies for diseases may depend on genetic

targeting of specific cell types. For example, optogenetic control

of On bipolar cells (BCs) (Lagali et al., 2008) has been explored as

a means of restoring visual function in a mouse model of retinal

degeneration.

BC Types
BC bodies are located in the INL. Their dendrites extend into the

OPL and axons into the IPL. BCs are the only conduit from the

OPL to the IPL and, therefore, the only way for signals to travel

from photoreceptors to ganglion and amacrine cells. BCs are

functionally classified into On and Off classes, which are acti-

vated by light and dark stimuli, respectively. While BCs have

been studied in many species, much recent work has focused

on the mouse due to the availability of genetic methods. The

classification of mouse BCs seems very close to complete,

with about a dozen types (Euler et al., 2014). There is a single

rod BC type, which receives its input from rod photoreceptors.

Cone BC types are more numerous.



Figure 3. BCs of the Same Type Tile the Retina with Little Overlap,
while Ganglion Cells of the Same Type Form an Overlapping Mosaic
Dots represent somata, and the polygons around them represent the hulls of
the arbors in an axial view. Somata of cells of the same type are arranged
quasi-periodically.
(A) Cartoon of BCs of a given type covering the area of the retina with little
overlap.
(B) Ganglion cells of a given type cover the retina with substantial overlap,
while their somata are arranged as if they repelled each other. The hull and the
soma location of one ganglion cell are highlighted.

Figure 4. Anatomical Classification of BCs Reconstructed via
Serial EM
BCs were anatomically classified based mainly on stratification depth (Helm-
staedter et al., 2013). The classification mostly agrees with a previous mo-
lecular classification (Wässle et al., 2009), except that a new type called XBC
was defined, and Type 5 appears to be a mixture of more than two types (not
shown). Figure adapted from Helmstaedter et al. (2013) by transposing types 1
and 2, following the classification in Kim et al. (2014).
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Ghosh et al. (2004) defined nine cone BC types in the mouse

retina based on anatomical criteria. They filled BCs by microin-

jection, imaged them with light microscopy (LM), and examined

the IPL depth at which the axons stratified. Roughly speaking,

Types 1 through 9 stratify progressively deeper in the IPL

(Figure 1).

Wässle et al. (2009) defined 11 cone BC types by the presence

and absence of certain molecules, as determined by a com-

bination of antibody staining and transgenic mouse lines. For

validation, cells were imaged using LM to reveal their anatomical

properties. This molecular classification mostly matched the

anatomical classification of Ghosh et al. (2004). However, two

of the anatomical types were further subdivided, as explained

below.

Ghosh et al. (2004) lumped Types 3a and 3b together in Type 3

because they stratify in the same IPL sublayer. Wässle et al.

(2009) distinguished between Types 3a and 3b using antibodies

against HCN4 and PKARIIb, following the lead of Mataruga et al.

(2007). Wässle et al. (2009) also argued that Type 5 should be

divided into Types 5a and 5b, but they provided no molecular

criteria by which the distinction could be made. Then they

declared victory, saying that ‘‘our proposed catalog of 11 cone

BCs and one rod BC is complete, and all major BC types of

the mouse retina appear to have been discovered.’’

This brings up an important methodological question. When

classifying cell types, how do we know when homogeneity is

achieved? For example, how do we know that Types 3a and

3b are the final answer? Perhaps they are also mixtures of types,

and should be further subdivided. It has become accepted that

the axons of a BC type cover the area of the retina with little over-

lap, a property known as ‘‘tiling’’ (Figure 3). Wässle et al. (2009)

showed that the axons of Type 3 BCs overlap heavily, violating

the tiling property. They also showed that Type 3a axons tile

the retina, and the same is true for Type 3b. Therefore, they

concluded that Types 3a and 3b are pure types rather than mix-

tures and should not be subdivided further. Similarly, Wässle

et al. (2009) showed that Type 5 cells overlap excessively and,

on this basis, proposed that they should be divided into Types

5a and 5b.
Ghosh et al. (2004) stained BCs by microinjection, while Wäs-

sle et al. (2009) used antibody staining and transgenic mouse

lines. These techniques could yield a biased sample of BCs,

causing some types to be missed. To test for this possibility,

Wässle et al. (2009) computed the density of each BC type

(i.e., cell bodies per square millimeter). When they added the

densities together, they found good agreement with the total

density of all BC types (Jeon et al., 1998) and concluded that

they had identified all ‘‘major BC types.’’ In other words, any hy-

pothetical missing type would have to be rare.

To summarize, declaring victory in cell type classification in-

volves two claims, one of accuracy and the other of complete-

ness. Accuracy means that cell types are pure rather than

mixtures, and pure types are not further split into multiple clus-

ters. Completeness means that no types are missing. For BCs,

Wässle et al. (2009) verified accuracy using the tiling property

and completeness by counting cells.

More recently, Helmstaedter et al. (2013) used serial electron

microscopy (EM) to reconstruct all BCs in a (0.1 mm)2 patch of

mouse retina and classified the cells into types based purely

on anatomical criteria. They mostly reproduced the molecular

classification of Wässle et al. (2009), with a few differences

(Figure 4). A new BC type called XBC was defined, and Type 5

was subdivided into two groups, of which one, 5a, was a pure

type. The other group most likely comprised two more types.

So the number of cone BC types increased yet again, in spite

of prior claims of accuracy and completeness. Kim et al. (2014)

mostly reproduced the Off BC classification of Helmstaedter

et al. (2013) using a different serial EM data set, except that

Types 1 and 2 were transposed.

Some general lessons about classification can be drawn. First,

if serial EM can be used to reconstruct all cells, it has some

advantage in achieving completeness compared to LM, which

relies on sampling of cells. Second, if LM is used to combine mo-

lecular and anatomical information, it can be superior to EM for

accuracy. Molecular reporters exist for EM but are far more

limited at the present time. Third, the molecular definition of a

cell type should be validated by anatomical data. Fourth, the po-

wer of the anatomical approach is enhanced by the application

of quantitative methods. For example, Helmstaedter et al.

(2013) were able to distinguish between Types 3a and 3b using

purely anatomical criteria by utilizing arbor width as well as IPL

depth in their classification scheme.
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Efforts are also being made to define mouse BC types using

physiological criteria. Baden et al. (2013) imaged calcium signals

while illuminating with a full-field square-wave. They applied an

automated clustering algorithm to separate the responses of

53 BCs into eight clusters. The use of calcium imaging was

important because it also enabled the visualization of axonal

arbors, and hence the cross-validation of physiology with anat-

omy. The physiological clusters had some correspondence to

the anatomical types, though there were some discrepancies.

This approach seems promising, but it may be important to

widen the ensemble of visual stimuli. For example, it may be

helpful to add chromatic stimuli, which have already been used

to make some distinctions between BC types (Breuninger

et al., 2011).

Ganglion Cell Types
Ganglion cells are the only retinal neurons that project to the

brain through the optic nerve. Each type of ganglion cell is

believed to be the output of a distinct visual computation by

the retina (Gollisch and Meister, 2010). Characterizing the visual

responses of each type of ganglion cell would give us a complete

specification of what the eye tells the brain. This goal is obviously

important for visual neuroscience but depends on our ability to

classify ganglion cells into types.

Many efforts at anatomical classification have beenmade (Sun

et al., 2002; Badea and Nathans, 2004; Kong et al., 2005;

Coombs et al., 2006; Völgyi et al., 2009). These started out

with LM imaging of neurons sparsely labeled by microinjection,

transgenic mouse lines, or biolistics. The dendritic arbors of

the cells were reconstructed by manually tracing their dendrites

through the images. Finally, the reconstructions were classified

into cell types. These studies yielded 12 to 22 ganglion cell

types, showing that a purely anatomical approach had difficulty

achieving consensus.

The genetic approach has shown promise for resolving these

disagreements, as illustrated by recent progress in defining

types of ooDSGCs. Physiologists originally divided this neuron

class into four types with anterior, posterior, superior, and infe-

rior preferred directions (Oyster and Barlow, 1967). For a long

time, it was not possible to distinguish between these types us-

ing molecular or anatomical properties. Huberman et al. (2009)

showed that DRD4-expressing ganglion cells constitute an

ooDSGC type that prefers posterior motion, and Rivlin-Etzion

et al. (2011) showed that TRHR-expressing ganglion cells

also prefer posterior motion. The BD transgenic line defines

another ooDSGC type that prefers superior motion (Kim

et al., 2010; Kay et al., 2011), and the same type was subse-

quently defined by expression of Hb9 (Trenholm et al., 2011,

2013a, 2013b).

Other successes at defining ganglion cell types based on

expression of a single gene include CB2 (Huberman et al.,

2008) and JAM-B (Kim et al., 2008). The latter case was espe-

cially interesting because it revealed a cell type that had not

been previously defined by anatomical or physiological means.

Other ganglion cell types have been defined using transgenes

containing Thy1 regulatory elements and are not necessarily

definable by the expression of an endogenous gene. For

example, the W3 type was defined as the brightly labeled cells
1266 Neuron 83, September 17, 2014 ª2014 Elsevier Inc.
in a Thy1 mouse line (Kim et al., 2010; Zhang et al., 2012), and

the BD type was already mentioned above.

Why are the above examples regarded as pure cell types,

rather than mixtures? To rule out the latter possibility, it would

be helpful to have a criterion like the tiling property, which was

used for defining pure BC types. The dendritic arbors of a pure

ganglion cell type typically do not tile but rather overlap heavily.

(See Borghuis et al., 2008 for an information theoretic explana-

tion of how this overlap might contribute to visual function.)

Fortunately, the tiling property can be generalized to the ‘‘mosaic

property’’ (Figure 3). Namely, the somas of a pure cell type are

assumed to be arranged quasiperiodically, something like the

atoms of a crystal. In such an arrangement, somas should

behave as if they repel each other. This is quantified by

computing the autocorrelogram of the soma positions. For a

pure cell type, the autocorrelogram should vanish as the separa-

tion approaches zero. On the other hand, the somas of different

cell types appear not to repel each other but rather are statisti-

cally independent (Rockhill et al., 2000). Therefore, for a mixture

of cell types, the autocorrelogram should approach a nonzero

value at zero separation. (It should be noted that ‘‘mosaic’’ is a

misleading name, because it sounds like ‘‘tiling.’’ As noted

above, many cell types satisfy the mosaic property but are non-

tiling.) Five of the examples above (DRD4, TRHR, CB2, JAM-B,

and bright W3) have been verified as pure cell types using the

autocorrelogram.

In addition to these pure cell types, many other ganglion

cell classes have been genetically defined. For example,

PV-expressing ganglion cells come in at least eight types

(Münch et al., 2009; Farrow et al., 2013). Although the PV class

is a mixture of types, it has been useful, as specific types

have been targeted for physiological studies using anatomical

criteria.

All of these developments demonstrate that the genetic and

anatomical approaches are complementary. If a pure cell type

is genetically defined, it should be validated by anatomical

criteria, and vice versa. Genetically defining a heterogeneous

class of neurons makes it easier to distinguish the pure cell types

in the class via anatomical criteria. Because genetics is facili-

tating fine distinctions between cell types that are anatomically

similar, it has become important to modernize anatomy by mak-

ing it more quantitative using modern computational techniques.

This is illustrated by Sümbül et al. (2014), who undertook a more

systematic attempt at cross-validation through anatomical clas-

sification of ganglion cells imaged from a number of transgenic

lines. Two aspects of their computational approach are worth

noting here: arbor density and alignment.

The arbor density is an answer to an old methodological ques-

tion: on what anatomical features should distinctions between

cell types be based? The arbor density is a spatially blurred

version of the arbor (Figure 5). Blurring preserves the overall

shape of the arbor but effectively discards detailed information

about individual dendrites, including many classical anatomical

properties such as tortuosity and branch angle. The arbor den-

sity was previously used to classify invertebrate neurons (Jefferis

et al., 2007). It is motivated by theoretical work on the idea that

overlap between arbor densities is a good estimate of contact

between neurons (Kalisman et al., 2003; Stepanyants and



Figure 5. The Arbor Density Is Obtained by Blurring the Neuronal
Arbor
(A and B) RGC arbor reconstructed from LM image (A), and RGC arbor density
produced by blurring (B), shown as projections onto the plane tangential to the
retina (large) and projections onto two orthogonal planes perpendicular to the
retina. The blurring is anisotropic, effective only in the tangential plane. No
blurring is applied along the axis perpendicular to the retina, to preserve IPL
depth information. The overall shape of the arbor and its IPL depth are
preserved, but detailed information about individual dendrites is effectively
discarded. Scale bar, 40 mm. Figure adapted from Sümbül et al. (2014).
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Chklovskii, 2005). Since contact means potential for synaptic

coupling, overlap between arbor densities is said to be propor-

tional to the number of ‘‘potential synapses.’’ In other words,

the arbor density of a neuron is a predictor of its connectivity

with other neurons.

We prefer the term ‘‘anatomy’’ over the more commonly used

‘‘morphology,’’ because the latter is inappropriate for classifying

cell types. Morphology refers to shape, which is mathematically

defined as those geometric properties that are independent of

the location, orientation, and size of an object. In other words,

the shape of an object has to do with the relations of its parts

with each other, rather than the relations between different

objects.

Knowing the shape of a neuronal arbor is not enough for

classifying it. The connectivity between neurons depends on

the relations between their arbors, which are lost if information

about location and orientation is discarded. To retain information

about spatial relations, it is crucial to align all arbors to a common

coordinate system.

Accordingly, Sümbül et al. (2014) paid careful attention to the

problem of alignment. On and Off SACs were stained for ChAT

and used as landmarks to define the depth coordinate, following

previous work (Manookin et al., 2008; Siegert et al., 2009).

Computational methods were used to flatten the two SAC layers

in every image stack, which resulted in aligning every ganglion

cell to a common depth coordinate (Figure 6). Because of this

reliance on computational flattening, there was no effort made

to physically flatten the retina by coverslip pressure before

imaging.

The payoff of careful alignment became evident when exam-

ining the stratification depth of genetically defined types of

neurons. The SD of the depth across neurons of a given type

from multiple retinas was typically less than a micron. This

outstanding reproducibility enabled most ganglion cell types to

be distinguished based only on the stratification profile, the pro-

jection of the arbor density onto the depth axis. However, in

some cases, cell types had very similar stratification profiles,
so they could only be distinguished based on the full arbor den-

sity. In all, 15 types of ganglion cells were anatomically defined.

This is encouraging but is still not a complete classification.

Helmstaedter et al. (2013) identified 12 ganglion cell types us-

ing the same serial EM data set that they used to classify BCs.

They demonstrated the potential of EM, but only the smallest

types of ganglion cells could be fully reconstructed due to the

limited size of the retinal patch studied, about (0.1 mm)2. There-

fore, this classification is still provisional, but it at least placed a

lower bound on the number of ganglion cell types.

Farrow andMasland (2011) reported a physiological clustering

of ganglion cells based on their responses to four classes of vi-

sual stimuli. This study rejected the null hypothesis of a few phys-

iological ganglion cell types by providing a 12-cluster partitioning

and set another lower bound on the number of ganglion cell

types. The study used a multielectrode array to record visual

responses, which did not allow cross-validation of physiology

with anatomy. Future work would ideally use calcium imaging

and rich stimulus ensembles to arrive at physiological definitions

of ganglion cell types that correspond to the molecular and

anatomical definitions.

Amacrine Cell Types
The project of dividing amacrine cells into types is farthest from

completion, compared to bipolar and ganglion cells. Yet ama-

crine cells are crucial for understanding the complexity of IPL cir-

cuitry. Using the CreER technique for sparse labeling, Badea and

Nathans (2004) distinguished between 23 types of amacrine cells

in the mouse retina. Zhu et al. (2014) identified additional ama-

crine cell types by combining viral sparse labeling with Cre driver

lines originally created for classes of cortical GABAergic neu-

rons. In their serial EM study of the mouse retina, Helmstaedter

et al. (2013) were able to distinguish between at least 40 ama-

crine cell types. Extension of this approach to a larger patch

should yield a complete classification of narrow-field and me-

dium-field cells in the near future. However, the arbors of wide-

field amacrine cells extend for millimeters—and sometimes

over virtually the entire retina (Lin andMasland, 2006). Identifica-

tion of such cell types will have to depend on LM rather than EM

in the foreseeable future. Larger retinal cells are generally less

numerous, so it will be difficult to know when the catalog is com-

plete.

Rules of Connectivity
Cell types simplify the study of neural connectivity, because

there are fewer cell types than cells. To understand this point,

consider two neurons i and j of cell types ti and tj, and let Wij

be some measure of the strength of connectivity from neuron j

to neuron i. We expect Wij to fluctuate randomly about some

mean value given by

E½Wij�=Uti tj (1)

The randomness is due to biological variation across the ner-

vous systems of different individuals, and E denotes an average

across individuals. The variability around the mean is expected

to be small in some sense, if cell types are indeed a useful

concept. If there are N cells and n cell types, Equation 1 implies
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Figure 6. Aligning Ganglion Cells to a
Common IPL Depth Coordinate Reveals a
Remarkable Reproducibility of
Stratification Depth within a Cell Type
(A) The arbor traces in the top row were obtained
from transgenic lines in which a relatively homo-
geneous class of cells was labeled (Kim et al.,
2008, 2010; Huberman et al., 2008; Osterhout
et al., 2011). The ones in the bottom row were
obtained by sampling from highly heterogeneous
classes labeled in GFP-M, YFP-H, and YFP-12
mice (Feng et al., 2000). The dashed lines indicate
the positions of the On and Off SAC layers after
alignment. Scale bars, 40 mm.
(B) Stratification properties of all 15 types. Colors
of cell types match with the colors of the re-
presentative traces in (A). Stratification distance
refers to the distance of peak stratification plane
to the On SAC layer. Figure adapted from Sümbül
et al. (2014).
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that the N 3 N matrix E[Wij] reduces to an n 3 n matrix W. If

n � N, this is a drastic reduction in the number of parameters,

meaning that fewer observations are required to characterize

connectivity.

The model of Equation 1 is applicable to a small nervous sys-

tem like that ofC. elegans, in which each neuron is identified, and

every normal individual has the same number of neurons, since

the neurons of any two worms can be placed in one-to-one cor-

respondence and averaging Wij over individuals is well-defined.

White et al. (1986) divided the 302 neurons ofC. elegans into 118

cell types. The introduction of cell types does help to reduce

complexity, but not by much, because cell types are almost as

numerous as neurons.

Cell types are much more essential for grappling with the

complexity of the large nervous systems of mammals. However,

Equation 1 should not be interpreted as an average over individ-

uals, because neurons of different individuals cannot be placed

in one-to-one correspondence. Instead, one could regard this as

an average over neuron pairs drawn from the same cell types,

and this average could be within a single individual.

Furthermore, to model the connectivity of certain sheet-like

structures, like the retina and neocortex, the model should be

modified so that each neuron has not only a cell type but

also a 2D location in the sheet (Seung, 2009). The ‘‘location’’

of a neuron most commonly refers to its cell body, but might

also refer to its dendritic or axonal arbor. If two neurons i

and j are of cell types ti and tj and are located at ri and rj, Wij

is expected to fluctuate randomly about some mean value

given by

E½Wij�=Fti tj ðri � rjÞ (2)

This depends on the locations of the cells only through their

separation ri � rj. This dependence is equivalent to the assump-

tion of translation invariance, which is a reasonable first approx-

imation for a nonfoveal retina like that of the mouse.

Most commonly, the dependence on separation is treated in a

qualitative, binary fashion. Nearby neurons obey rules like Equa-

tion 1, while distant neurons are not connected at all, because

their arbors do not overlap. This sort of model is left implicit in
1268 Neuron 83, September 17, 2014 ª2014 Elsevier Inc.
much experimental work on connectivity, but can be explicitly

formalized by adding a distance-based cutoff to Equation 1,

E½Wij�=Uti tj H
�
qti tj �

��ri � rj
��� (3)

where H is the Heaviside step function. Note that the threshold

qtitj depends on the cell types, as the arbor of each cell type

has a characteristic size. However, the more general depen-

dence on separation given in Equation 2 is likely to be important

for function. For example, Kim et al. (2014) proposed that the

connectivity between an Off SAC and a BC depends on the dis-

tance of the latter from the SAC soma. More specifically, one BC

type prefers to connect close to the SAC soma, and the other

prefers to connect further from the soma. This wiring specificity

can be modeled by Equation 2 but not by Equation 3 and is

potentially important for function, as it could support the direc-

tion selectivity of SAC dendrites (Kim et al., 2014).

Fried et al. (2002) found physiological evidence that an

ooDSGC preferentially receives input from SACs on its null

side. This rule can be expressed in the form of Equation 2, pro-

vided that the function F depends on the direction of the sepa-

ration, not only its magnitude. Note that F depends on the

preferred direction of the ooDSGC through its dependence on

the type of the ooDSGC.

Briggman et al. (2011) found anatomical evidence that the

connectivity of a SAC dendrite and an On-Off direction-selective

ganglion cell depends more on the direction of the SAC dendrite

than on the location of the SAC soma. This connectivity rule

cannot be expressed in the form of Equation 2, demonstrating

the need for models of connectivity that are more sophisticated.

In particular, since the dendrites of a single SAC can function

independently, connectivity between subcellular units rather

than between neurons may have to be modeled.

Methods for Observing Connectivity
Many experimental methods have been used to extract rules of

connectivity governing retinal neurons. The electrophysiological

approach is to observe synaptic coupling with two intracellular

electrodes, simultaneously stimulating one cell and recording re-

sponses from another, and anatomically identify the cell types



Neuron

Perspective
with LM after dye filling. This approach was used, for example, to

investigate connectivity between SACs (Zheng et al., 2004). As

cell types come under genetic control, it is becoming possible

to extend this approach by combining optogenetic stimulation

of one cell with intracellular recording from another (Yonehara

et al., 2011; Duan et al., 2014).

Anatomical evidence for connectivity can be gained through

LM and various techniques for marking neurons. Transsynaptic

tracing with viruses has become popular recently. Beier et al.

(2013) used a pseudotyped vesicular stomatitis virus to examine

connectivity between SACs and ganglion cell types. Cruz-Martı́n

et al. (2014) used a modified rabies virus to demonstrate the ex-

istence of a disynaptic pathway from direction-selective retinal

ganglion cells to the superficial layers of mouse V1. Alternatively,

one can look for appositions of neurites and colocalization with

synaptic markers (Schwartz et al., 2012). A putative synapse

can be further verified by targeted EM (Bleckert et al., 2013), in

a correlative LM-EM approach.

Serial EM has long been used to discover rules of retinal con-

nectivity. In recent years, this technique was used to examine

synaptic partners of the AII amacrine cell (Anderson et al.,

2011) and of the SAC (Briggman et al., 2011; Kim et al., 2014).

It should be noted that synaptic coupling can be electrical

rather than chemical. Electrical synapses have been investigated

by methods similar to those mentioned above, as illustrated by

the case of the AII amacrine cell (see review byDemb and Singer,

2012). Transsynaptic tracing has been accomplished by dye in-

jections rather than viruses, and electrical synapses have also

been visualized via high resolution images from serial EM.

All techniques above have generally been applied piecemeal,

probing only a few cell types at a time. Serial EM offers the

exciting prospect of reconstructing the connectivity between

all neurons in a retinal sample (i.e., finding the retinal connec-

tome). The feasibility of this approach was demonstrated by

Helmstaedter et al. (2013), who reconstructed all neurons with

cell bodies contained in a small patch of mouse retina. As

mentioned earlier, this study lacked full reconstructions of large

cells, because the patch was only about (0.1 mm)2 in area.

Another deficiency was the use of an unconventional staining

technique that marked extracellular space, but left intracellular

organelles like vesicles and postsynaptic densities invisible.

This made it impossible to positively identify synaptic connec-

tions. Instead, the researchers quantified contact between the

roughly 1,000 neurons in the study, resulting in a ‘‘contactome.’’

Although this work fell short of delivering the retinal connectome,

it demonstrated that the goal is within reach.

One might question whether a connectome is a worthwhile

goal. If retinal connectivity is governed by a relatively small

number of rules, as in Equations 1, 2, and 3, then piecemeal ob-

servations should be enough for discovering the rules. One

answer is that the number of observations might still have to

be large to average out biological variability, in which case,

high-throughput techniques are desirable. Some criticize serial

EM as slow, because reconstruction of neural circuits currently

requires significant human labor for image analysis. Recon-

struction speed is expected to increase, owing to ongoing im-

provements in image quality and artificial intelligence. But it

should be noted that even with the current throughput, serial
EM is competitive with other techniques. For example, Kim

et al. (2014) investigated contact between 195 BCs and 97

SACs, for a total of 15,405 BC-SAC pairs. For comparison,

one could point to a physiological study like that of Lee and

Zhou (2006), who performed dual intracellular recordings from

26 SAC-SAC pairs to study the dependence of SAC-SAC con-

nectivity on distance.

More data about connectivity will be useful not only for

averaging out biological variability but also for enabling more so-

phisticated techniques for modeling connectivity, as will be ex-

plained in the following.

Cell Types from Connectivity
In the traditional approach, neuronal cell types are defined using

information other than connectivity, such as molecular markers

or the anatomy of single cells. Consequently, cell types and their

rules of connectivity are extracted from distinct sources of infor-

mation.

Alternatively, cell types can be defined using connectivity in-

formation, using the principle that cells of the same type have

similar connectivity with other cells, as implied by the models

of Equations 1, 2, and 3. This approach was previously used to

define cell types using the C. elegans connectome (White

et al., 1986). It may seem dangerously circular to both define

cell types and discover their rules of connectivity using the

same source of information. Inferring cell type from connectivity

amounts to regarding cell type as a latent variable (Seung, 2009),

rather than a directly observable variable. The field of latent var-

iable modeling is well-established, and it should be possible to

learn models like Equations 1, 2, and 3, given sufficient amounts

of connectivity data. The only danger of circularity lies in model

selection (i.e., in deciding on the number of cell types).

In the traditional approach, the anatomy of single cells can be

regarded as a proxy for information about connectivity (Masland,

2004). In line with this idea, Sümbül et al. (2014) used arbor den-

sities to classify ganglion cells, because overlap between arbor

densities predicts contact, or the potential for connectivity (Ka-

lisman et al., 2003; Stepanyants and Chklovskii, 2005). If con-

nectomic information becomes more plentiful than information

about the anatomy of single neurons, then it will become advan-

tageous to base the definitions of cell types mainly on the former

(Seung, 2012).

For example, Helmstaedter et al. (2013) were unable to subdi-

vide Type 5 BCs based on single cell anatomy, and Wässle et al.

(2009) were unable to find molecular markers that could do this.

Instead, Helmstaedter et al. (2013) distinguished Type 5a BCs

from other Type 5 BCs based on the ratio of contact with two

types of ganglion cells. They validated this anatomical criterion

by showing that it was consistent with tiling of Type 5a dendritic

arbors and also predicted contact with a type of amacrine

cell. Ideally, this approach would be extended to define all

neuronal cell types in the retina. However, the approach is still

data-limited, because Helmstaedter et al. (2013) used an uncon-

ventional stain that does not allow positive identification of

connectivity and because the reconstructed volume is still rela-

tively small. Once these barriers are overcome, computational

methods for learning latent variable models like Equations 1, 2,

and 3 will become useful (Jonas and Kording, 2014).
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Discussion
What are the prospects for finally completing the catalog of

neuronal cell types in the retina? As mentioned earlier, it has

not yet been possible to define all types of On-Off direction se-

lective ganglion cells based on expression of single genes. How-

ever, Kay et al. (2011) used a combination of transgenic and

endogenous molecular markers to define four ooDSGC types

corresponding to four preferred directions. Similarly, identifying

all ganglion cell types may require definitions involving combina-

torial expression of two or more genes, rather than a single gene.

This may also be the case for amacrine cell types.

On the anatomical front, over the next few years, serial EM

should be able to deliver the retinal connectome, at least on the

scale of a (0.5 mm)2 patch. This will require improvements in

the quality of the serial EM images (Briggman and Bock, 2012),

as well as in the accuracy of the artificial intelligence used (Jain

et al., 2010). The retinal connectome will make it possible to

define many cell types based on connectivity. However, LM will

remain essential for reconstructing large cells, such aswide-field

amacrine cells, in sufficiently large numbers. LM will also be

important for comparing anatomical and molecular definitions

of cell types, and the adoption of computational methods for

image analysis will make LM-based anatomy more quantitative.

The physiological classification of ganglion cells and cross-

validation with anatomical classification will be achieved by

combining two-photon calcium imaging with structural imaging

by LM and/or serial EM. This goal is technically more difficult

for bipolar and amacrine cells, because the somata are often

nonspiking and may not exhibit strong calcium signals.

Can lessons from classifying retinal cell types be applied to

other regions of the mammalian brain? Many GABAergic neuron

classes have been genetically defined in the cortex (Taniguchi

et al., 2011), but these are generally mixtures of cell types. For

example, the widely studied PV-expressing class of cortical neu-

rons includes at least two anatomically distinct cell types, large

basket cells andchandelier cells. These are known tomake inhib-

itory synapses on the somata and axon initial segments of pyra-

midal neurons, respectively, and thus may have very different

physiological effects (Kubota, 2014). Such heterogeneity may

not matter for some experiments, because chandelier cells are

less numerous than basket cells but could be problematic under

other circumstances. It seems safe to say that researchers of

cortical cell types should focus on identifying accurate cell types,

as retinal researchers have been doing for some time.

Skeptics say that lessons from the retina will not generalize to

the cortex, because the retina is highly ordered, whereas the cor-

tex looks more random (Braitenberg and Schüz, 1998). It is

commonly believed that cortical neurons of the same type

displaymore anatomical variability than retinal neurons. Actually,

retinal neurons display a surprising degree of variability when

projected onto the plane tangential to the retina. This is demon-

strated for the mouse by Figure 5 and the Supplementary Infor-

mation of Sümbül et al. (2014), though the variability is said to be

much less for the rabbit.

The anatomic stereotypy of mouse retinal neurons only be-

comes obvious after precise registration and projection of arbors

onto the axis perpendicular to the retina. The resulting stratifica-

tion profile is outstandingly reproducible for neurons of the same
1270 Neuron 83, September 17, 2014 ª2014 Elsevier Inc.
type, to within submicron resolution (Sümbül et al., 2014). This is

the case not only for thinly stratified cell types but also for thickly

stratified ones. It is possible that cortical neurons, which are

thickly stratified, may also possess a comparable degree of pre-

cision. To reveal such precision, it will be important to register

cortical neurons to a common coordinate system based on their

arbors, as Sümbül et al. (2014) did for retinal neurons. Previous

efforts have generally used the cell bodies for registration (Ober-

laender et al., 2012), consistent with the traditional identification

of the cell type of a pyramidal neuron based on the layer in which

its cell body is situated.

In an 1857 letter, Charles Darwin wrote, ‘‘Those who make

many species are the ‘splitters,’ and those who make few are

the ‘lumpers.’’’ The same can be said for those who study

cortical cell types. In the lumper camp, Braitenberg and Schüz

(1998) recognize only pyramidal neurons and two types of non-

pyramidal neurons in the cortex, for a total of just three cell types.

Markram et al. (2004) divided nonpyramidal neurons in the cortex

into over 50 types. Stevens (1998) speculated that eventually

more than 500 cortical cell types would be identified.

The divergence between lumpers and splitters shows that one

cannot succeed in cataloging cortical cell types without also

solving the more fundamental problem of defining a cortical

cell type. In the retina, the mosaic property plays a pivotal role

in verifying the accuracy of a cell type. There is also evidence

that cell types in the avian tectum and the cerebellum are orga-

nized in mosaics (Cook and Chalupa, 2000). An intriguing possi-

bility is that the mosaic property will hold for cortical cell types. It

is critical to test this idea or to identify some other defining char-

acteristic of an accurate cell type in the cortex.

Discreteness is central to the notion of cell types. However,

there is increasing awareness of the interplay between discrete

cell types and continuous variation across the retina. Mouse

ganglion cells of the On alpha type exhibit a nasal-to-temporal

gradient in cell density and arbor size (Bleckert et al., 2014).

Most JAM-B ganglion cells exhibit a remarkable asymmetry,

with the dendritic arbor extending downward from the cell

body. However, those cells at the dorsal and ventral margins

of the retina have more symmetric arbors than the majority of

JAM-B cells (Kim et al., 2008).

Are cell types more like the seven colors (ROYGBIV) of the

rainbow, discrete categories used by convention to describe a

physical variable (wavelength) that is actually continuous? Or

are cell types more like the entries of the periodic table, which

seem objectively discrete? These questions have to do with

the concept of ‘‘natural kinds’’ introduced by analytic philoso-

phers and should be addressed by them. Our practical viewpoint

is that cell types are variables in models like Equations 1, 2, and

3, which are used to predict some properties of neurons given

other properties. Ultimately, cell types are useful only insofar

as they enable us to make accurate predictions.
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