order to better understand the pathogenesis of UTI and renal scarring.

MAILIS SVENSSON, H. IRJALA, P. ALM, B. HOLMOVIST, A-C LUNDSTEDT, and CATHERINA SVANBORG
Lund, Sweden

Correspondence to Majlis Svensson, University of Lund, Institute of Laboratory Medicine, Department of Microbiology, Immunology and Glycobiology, Söllvegatan 23, S-223 62 Lund, Sweden.
E-mail: majlis.svensson@mig.lu.se

Pharmacologic intervention to prevent hemodialysis vascular access thrombosis: The next generation of treatment?

To the Editor: We would like to extend our congratulations to Dr. Masaki et al [1] for their excellent work. Their delivery system offers great promise for evaluation of drugs for the local use of antineoplastic drugs, like paclitaxel in the prevention of intimal hyperplasia in hemodialysis vascular accesses. We would like to note, however, that there are many more classes of drugs that might be beneficial other than strictly antiproliferative drugs [2]. Drugs that improve endothelial function, antimitigatory agents, as well as those that affect the glycocalyx formation should be studied. Even among antiproliferative drugs, we found that systemic administration of non-antineoplastic antiproliferative drugs like angiotensin-converting enzyme (ACE) inhibitors seemed to be of most benefit in grafts (as Dr. Masaki notes), while antineoplastic antiproliferative agents such as paclitaxel seemed of most benefit in endogenous fistulas [3]. A more recent multicenter study [4] confirmed the beneficial properties of ACE inhibitors. Certainly, if antineoplastic agents are proven to be the most beneficial agents for survival in all vascular accesses, then a local delivery system such as described by Dr. Masaki would be a great advance; however, there is such potential myocardial benefit to the systemic use of ACE inhibitors in patients with ischemic heart disease or cardiomyopathies that systemic administration may prove simpler, more beneficial, and cost effective. Nevertheless, we see Dr. Masaki’s work as a great advance, and we applaud their continued efforts.

CHARLES J. DISKIN
Opelika, Alabama

Correspondence to Charles J. Diskin, Auburn University, Division of Hypertension, Department of Nephrology, Dialysis and Transplantation, Opelika, AL.
E-mail: hndt512@bellsouth.net

REFERENCES

Locking hemodialysis catheters with cefotaxime instead of gentamicin to avoid potential ototoxicity

To the Editor: McIntyre et al compared gentamicin (5 mg/mL) and heparin-locked, tunneled hemodialysis catheter group with that of catheter-restricted filling of standard heparin (5000 IU/mL) alone; gentamicin-locked group recorded significantly lower catheter-related bloodstream infections catheter-related bloodstream infections (CRBSI) episodes compared with heparin group (0.3/1000 vs. 4/1000 catheter days, \(P = 0.02 \)) [1].

Dogra et al observed significantly lower incidence of CRBSI (0.03 vs. 0.42 per 100 catheter days, \(P = 0.003 \)), and considerably higher mean infection-free catheter survival in the gentamicin group (catheter-restricted filling of gentamicin/citrate, 40 mg/mL, and 3.13% citrate) compared with heparin group (282 days vs. 181 days, \(P = 0.002 \)). However, authors cautioned to establish the safety of ‘locked’ dose of gentamicin for ototoxicity before the technique was adopted because predialysis plasma gentamicin levels were significantly higher in patients randomized to gentamicin group compared with heparin group (2.8 mg/L vs. <0.2 mg/L, \(P = 0.008 \)) [2].

In view of recently reported ototoxicity [3, 4] regardless of reasonably lower amount of aminoglycosides being used for ‘locking’ catheters, a prospective case-controlled study was carried out at our center using cefotaxime (10 mg/mL) in combination with heparin (5000 U/mL) to examine the lock’s efficacy in the prevention of CRBSI [5]. Cefotaxime was chosen because of its broad antimicrobial spectrum and lack of ototoxic potentials. The lock was applied two/three times a week postdialysis. A significant relative-risk reduction in the incidence of HD-tunneled catheter thromboses (1.340–4.701, \(P = 0.003 \)), CRBSI-incidence (3.086–6.430, \(P < 0.0001 \)), and CRBSI-related mortality (1.517–5.864, \(P < 0.001 \)) was