Urinary tract infections in patients with malignant neoplasms of the genitourinary system

Zefiryn Cybulski, Andrzej Roszak, Zofia Talaga, Alicja Grabiec, Joanna Kaźmierska

Great Poland Cancer Centre, Poznań, Poland

Proceedings from the Conference „Current Achievements in Oncology” Poznań, 6–8 November 2003.

Summary

Aim
To diagnose the etiological factors involved in urinary tract infections (UTI) and to examine antibiotic sensitivities in bacteria – causative agents of UTI in female patients with genitourinary malignancies.

Materials/Methods
Nineteen patients aged between 35 and 75 years treated for genitourinary malignancies and with a diagnosis of UTI were examined. The majority of these patients (17) were treated with X rays to the pelvic region (tele – and brachytherapy). Six patients were treated for endometrial carcinoma. One patient was treated for ovarian cancer, and one for vaginal cancer. Significant bacteriuria was defined as 10^4 or more CFUs/ml in quantitative urine examination. Microorganisms were identified according to standard bacteriological methods using bio-Merieux tests. The isolated bacteria were tested for antibiotic sensitivity using the ATB Expression system.

Results
E. coli was the most frequently observed causative factor in cases of UTI. E. faecalis strains were the next most commonly observed species. One of 11 isolated E. coli strains was resistant to 5 antibiotics, a second was resistant to 3 antibiotics and three strains were resistant to 2 antibiotics. E. coli strains were classified into 9, and E. faecalis into 4, sensitivity patterns. UTI was diagnosed in four patients with stage I B, in four with stage III B and in one patient with stage IV cervical cancer.

Conclusions
E. coli and E. faecalis were the most frequently isolated species from the urine of female patients with genitourinary malignancies. These bacteria are among the main causative agents of UTI. The results of these investigations may be used for epidemiological purposes: to find the causes and sources of nosocomial infections and in the prophylaxis of these infections.

Key words urinary tract infections • genitourinary cancers

Word count: 1400

Tables: 3

Figures: –

References: 27

Author’s address: Zefiryn Cybulski, Great Poland Cancer Centre, ul. Garbary 15, 61-866, Poznań, Poland, e-mail: zefiryn.cybulski@wco.pl
BACKGROUND

Urinary tract infections (UTI) are very often observed and occur more frequently in women than in men [1,2]. Infection in women is more frequent because of the close proximity of the reproductive and lower urinary tracts. Among factors increasing the risk of UTI are diabetes, vaginal inflammation, disorders of the reproductive organs and urinary bladder, neoplastic diseases and invasive gynaecological surgery [3,4]. Patients with malignant neoplasms of the genitals often suffer simultaneously from inflammation of the uterus and vagina. Patients who have undergone surgery (for cancer or for other reasons) may suffer infection of the urinary tract as a complication of the surgery, catheterisation or cystoscopy [5]. Radiotherapy, which used alongside surgery is a standard method in the treatment of these tumours, may also be a factor increasing the risk of UTI as it causes inflammatory changes to the epithelium of the urinary bladder [6].

General factors in the etiology of UTI are E. coli and other organisms of the family Enterobacteriaceae and Enterococcus spp. [7–9]. UTI may arise as a nosocomial infection and this is the most frequently observed form of this infection [10–12]. In epidemiological studies, aimed at finding the sources of nosocomial infections, it is important to identify the bacterial species involved. One of the methods used to differentiate bacterial species is to determine their sensitivity to drugs. Obviously the basic purpose of an antibiogram is to determine effective antibacterial medication to facilitate efficient treatment of the UTI. Because various species are resistant to treatment, for example E. coli which can be resistant to trimethoprim-sulfamethoxazole (standard treatment for UTI), antibiograms are required to identify other medicines [13].

Urinary tract infections (UTI) are among the factors increasing mortality and prolonged stays in hospital [14,15]. One symptom of UTI is the occurrence of symptomatic bacteriuria in which a count of 10^4 to 10^5 CFUs/ml (colony forming units/ml) is the threshold value [5,10,16]. Nonetheless, the majority of papers published on the subject of urinary tract disorders including infection are on patients with cancers of the uterine cervix [17–20] and few authors give any special value to UTI as a post therapeutic complication after radiotherapy on malignant neoplasms of the reproductive system in women [5,6]. Correct etiological diagnosis and appropriate treatment can have the effect of reducing the numbers of nosocomial infections.

AIM

The purpose of this study was to diagnose the etiological factors in urinary tract infection and to determine the drug sensitivities of bacteria causing UTI in patients with malignant neoplasms of the reproductive system. A further purpose for the study was to use information gained about drug sensitivities of the organisms.

MATERIALS AND METHODS

We investigated 19 patients, aged between 35 and 75 years, being treated for malignant neoplasms of the urinary tract in the Department of Radiotherapy and Gynaecological Oncology at the Great Poland Cancer Centre and diagnosed as having symptomatic bacteriuria. The group included 17 patients being treated for tumours of the genitalia, one patient with cancer of the urethra and one with cancer of the urinary bladder. The largest group was patients treated for cancer of the uterine cervix – 9 patients – 5 of whom had undergone previous surgery. Six patients suffered from endometrial cancer, 5 of whom underwent surgical treatment. One patient was treated for ovarian cancer and one for cancer of the vagina.

In the cases of 12 patients this was their first operation. In this group of patients, throughout the time of surgery, urine was taken from the bladder via urethral catheter. The next 5 patients were catheterised during radiotherapy. The majority, 17 patients, were treated with ionising radiation to the pelvic region (tele and brachytherapy).

In all cases, clinical findings agreed with histopathological findings. The group of women suffering from invasive intraepithelial neoplasia of the cervix were in stages I B, III B and IV of tumour advancement.

Bacteriuria was defined as 10^4 and higher CFUs/ml of urine tested in quantitative tests. Qualitative and quantitative analysis of urine included CPS, D-Coccosel, Cetrimide, Albicans ID2 using quantitative loops. All ‘under bed’ tests were pro-

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Age (years)</th>
<th>Results of Urine Culture</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>45</td>
<td>P. mirabilis, S. equisimilis</td>
</tr>
<tr>
<td>2</td>
<td>35</td>
<td>E. faecalis, E. coli</td>
</tr>
<tr>
<td>3</td>
<td>68</td>
<td>E. coli</td>
</tr>
<tr>
<td>4</td>
<td>47</td>
<td>K. pneumoniae</td>
</tr>
<tr>
<td>5</td>
<td>70</td>
<td>P. aeruginosa</td>
</tr>
<tr>
<td>6</td>
<td>69</td>
<td>E. coli</td>
</tr>
<tr>
<td>7</td>
<td>47</td>
<td>E. coli</td>
</tr>
<tr>
<td>8</td>
<td>65</td>
<td>E. coli</td>
</tr>
<tr>
<td>9</td>
<td>47</td>
<td>E. faecalis, P. aeruginosa</td>
</tr>
<tr>
<td>10</td>
<td>67</td>
<td>S. agalactiae</td>
</tr>
<tr>
<td>11</td>
<td>68</td>
<td>E. faecalis</td>
</tr>
<tr>
<td>12</td>
<td>67</td>
<td>E. coli</td>
</tr>
<tr>
<td>13</td>
<td>47</td>
<td>E. coli, E. faecalis</td>
</tr>
<tr>
<td>14</td>
<td>54</td>
<td>E. coli</td>
</tr>
<tr>
<td>15</td>
<td>70</td>
<td>E. cloacae</td>
</tr>
<tr>
<td>16</td>
<td>75</td>
<td>E. coli</td>
</tr>
<tr>
<td>17</td>
<td>58</td>
<td>P. mirabilis, P. aeruginosa, K. oxytoca</td>
</tr>
<tr>
<td>18</td>
<td>48</td>
<td>E. faecalis, E. coli</td>
</tr>
<tr>
<td>19</td>
<td>62</td>
<td>E. coli</td>
</tr>
</tbody>
</table>
Reduced by the firm bio-Merieux. Identification of microorganisms was performed according to standard bacteriological methods, also using bio-Merieux tests. Antibiotic sensitivity of cultured organisms was assessed using the ATB system antibiogram test for ATB Ur and ATB Strep.

RESULTS

The results of urine analysis are shown in Table 1. The most frequently isolated organisms were colibacilli. *E. coli* was cultured from 11 urine samples. The second most commonly found species was *E. faecalis* which was isolated in 5 cases. In 13 cases the causative etiological factor in UTI was one species of bacteria. In 5 cases, 2 species were involved and in one case three species were present.

Tables 2 and 3 show the antibiotic sensitivities of *E. coli* and *E. faecalis*, the most common causes of UTI. As shown in Table 2, *E. coli* was classified into 7 sensitivity patterns, each representing a single strain, and 2 patterns which were displayed by 2 strains. One of the 11 strains of *E. coli* shown in the table, displayed resistance to 5 antibiotics, 1 strain to 3 antibiotics, 3 strains to 2 antibiotics. All strains were sensitive to norflloxacin. No strain was confirmed as being resistant to amoxicillin/clarulanic acid. Four strains displayed resistance to cefalotin, two to cefotaxime, ciprofl oxacin and cotrimoxazole and one to gentamicin, netylmicin, amikacin and ceftazidime.

Cultures of *E. faecalis* were classified into 4 sensitivity patterns. Three patterns were seen in single strains and one pattern was seen in 2 strains (Table 3). As shown in the Table, 2 strains were resistant to 4 antibiotics, two strains to 3 antibiotics and one strain to 2 antibiotics. All strains had the characteristic of resistance to tetracycline and 4 of these were resistant to erythromycin. All strains were sensitive to piperacillin, vancomycin, teikoplanine, ampicillin and penicillin.

P. aeruginosa was isolated from 3 patients and displayed sensitivity to ceftazidine and imipenem. The greatest resistance to antibiotics was seen in the case of *K. pneumoniae* which was isolated from one patient, aged 47, who had undergone resection of the uterus and left kidney. This organism was resistant to amoxicillin/clarulanic acid, cefotaxime, cotrimoxazole, gentamicin, netylmicin and amikacin. It was sensitive only to norfloxacin.

DISCUSSION

The results of the tests performed show that the most frequent etiological factor causing UTI in female patients with
neoplastic diseases of the sex organs was *E. coli*. This agrees with other authors in that *E. coli* is the most commonly observed bacterial species causing UTI [8]. Four strains of *E. coli* displayed resistance to cephalosporins, frequently used drugs in the treatment of UTI. Other authors have also described an increase in the number of species resistant to cephalosporins in cases of UTI [21]. Our results draw attention to the emergence of organisms resistant to ciprofloxacin and cotrimoxazole, drugs many authors list as standard treatments for UTI [22–24]. Also, antibiograms on tested materials showed that 3 strains of *E. faecalis* were resistant to aminoglycosides, antibiotics used in the treatment of UTI [25]. VRE (Vancomycin Resistant Enterococcus) were not observed though these are currently a serious threat owing to high drug resistance in these species. Attention is drawn to the emergence of a strain of *K. pneumoniae*, which is multidrug resistant, isolated from a patient being treated for cancer of the uterine cervix. Other authors have also written about the high resistance of *K. pneumoniae* [26,27].

The results of our investigation show UTI in four patients with stage I B, four with stage III B and one with stage IV cancer of the uterine cervix. Prasad et al. (1995) showed that advanced cervical cancer may have effects leading to UTI. Authors have described a higher percentage (33.3%) of infections in patients with stage III cervical cancer in comparison to patients with stage II disease (16.7% UTI) [6].

CONCLUSION

The results of this study show that *E. coli* and *E. faecalis* may generally be isolated from the urine of female patients with neoplastic disease of the genitourinary tract and that these species are therefore the most common causative factor in infection of the urinary tract. Comparison of species’ resistance patterns may be used in epidemiological studies in order to discover the source of infections and therefore has a profound significance in the prophylaxis of nosocomial infections.

REFERENCES: