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ABSTRACT 

Standard implementations of the Simplex method have been shown to be subject 
to computational instabilities, which in practice often result in failure to achieve a solu- 
tion to a basically well-determined problem. A numerically stable form of the Simplex 
method is presented with storage requirements and computational efficiency compar- 
able with those of the standard form. The method admits non-Simplex steps and this 
feature enables it to be readily generalized to quadratic and nonlinear programming. 
Although the principal concern in this paper is not with constraints having a large 
number of zero elements, all necessary modification formulae are given for the 
extension to these cases. 

1. INTRODUCTION 

This paper is concerned with the solution of the following linear 

programming problem : 

min{z = cTx}, 

subject to the constraints 

ATx > b, 

where A is an n x m matrix, with m 3 n. 

WI 

* This paper was presented at the 7th Mathematical Programming Symposium 
1970, The Hague, The Netherlands. 
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The problem is stated in this nonstandard form in order to emphasize 

the close relationship between linear and nonlinear programming problems. 

Initially no reference is made to the form of the constraints but later 

special consideration will be given to constraints of the form x > b, which 

are common in practical problems. 

It is assumed that 

(i) there exists at least one x E En for which 

(ii) z is bounded in the feasible region, and 

(iii) A and [A:c] satisfy the Haar condition for matrices. 

The final condition ensures that degeneracy and cycling cannot occur 

during the Simplex algorithm. 

It is unfortunate that the terminology associated with linear program- 

ming has served to isolate the subject from the mainstream of linear algebra 

and numerical analysis. It is not always appreciated by linear programming 

practitioners that any viable form of the Simplex algorithm ought to be 

numerically stable when applied to the problem of solving a set of linear 

algebraic equations. The form of the algorithm in the majority of linear 

programming implementations differs little from that given by Dantzig in 

1947 [5]. Any changes that have been made have been concerned only 

with the manner in which the form of the algorithm is stored inside the 

computer, while aspects of the numerical errors involved have generally 

received little mention in the research literature. 

The solution of a linear program consists of two stages: 

(i) The identification of the set of constraints active at the solution. 

(ii) The determination of the vertex defined by the set of active 

constraints. 

Stage (ii) corresponds to the solution of a set of n equations in n un- 

knowns and consequently any algorithm for the solution of a linear program 

must incorporate a method for the solution of a set of linear algebraic 

equations. The standard form of the Simplex algorithm embodies the 

Gauss-Jordan elimination process with the pivots chosen without regard 



THE SIMPLEX ALGORITHM 101 

to rounding error. In solving linear equations by Gaussian elimination it 

is essential for numerical stability that large pivots are chosen. Wilkinson 

[12] gives an example to illustrate this fact. Suppose the solution to the 

following set of equations is required 

Ax = b, 

where 

A= 

When applied to this problem Gaussian elimination without any choice of 

pivots breaks down, despite the fact that A is an orthogonal matrix and 

consequently well conditioned. Avoiding zero pivots by requiring them 

to be larger than some threshold E does not solve the problem, since A 

could just as easily be of the form 

in which case A = A-l. Although Gaussian elimination does not break 

down in this case, the small pivotal elements obtained lead to gross errors 

in the solution. Recently Bartels and Golub [l, 21 have drawn attention to 

the instabilities inherent in the standard Simplex algorithm and they have 

devised two alternative forms that exhibit numerical stability. The 

implementation of their methods into linear programming packages has been 

slow if not nonexistent. This could be attributed to certain disadvantages 

in terms of the storage and/or computational efficiencies which the 

methods have in comparison with the standard method. The basis of both 

procedures is a recursion from iteration to iteration of the triangular 

decomposition of the matrix of coefficients of the active constraints. 

Partial pivoting is used when updating the triangular factors, but un- 

fortunately the simple form of the matrices carried from the previous 

iteration is then largely destroyed. 

All the methods considered in this section so far have been based upon 

the factorization of a matrix into a product of upper and lower triangular 

matrices. The method proposed in this paper utilizes a factorization into 

the product of a lower triangular and orthogonal matrix. This factorization 

always exists and can be made without interchanging rows in the initial 

matrix. 
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2. THE SOLUTION OF LINEAR EQUATIONS USING ORTHOGONAL 

TRANSFORMATIONS 

A vertex of the feasible space, and consequently the normalized 

directed distance between two vertices, can be defined by the solution of 

n linear equations in n unknowns. The normalized direction from a point 

other than a vertex to a point in the feasible region where the objective 

function is decreased can be defined by a solution of an underdetermined set 

of linear equations. 

This point is of particular relevance in Sec. 10 where non-Simplex steps 

are considered. 

Consider the system of equations 

ATy = b, (1) 

where AT is now an s x t rectangular matrix with rank s, s < t. 

The matrix AT can be reduced to lower triangular form through 

successive postmultiplications by a sequence of elementary unitary 

matrices of either the Givens’ or Householder type. 

Then 

ATWIW, -.- W, = [L 01, 

with WiTWi = I, for i = 1,. , s, and L a lower triangular matrix. Define 

WI. . . w, = P, 

then 

AT = [L O]PT. (2) 

A solution of Eq. (1) can be found from a forward substitution of the 

system 

[L 01% = b, (3) 

with x,+r, . . , xt arbitrary and forming 

y = Px. (4) 

Alternatively if y is found using the following equations, 

LLT’w = b and 7 = Aw, (5) 
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then 9 is a solution of (1). The two solutions (4) and (5) are identical 

if s = t or x,+i,. . ., Xt = 0. The error analysis of the factorization and 

forward substitution has been given by Wilkinson [12]. Gaussian elimina- 

tion is usually preferred when solving linear equations since it takes 

approximately half the computational effort of the Householder trian- 

gularization and a quarter that of Givens’ method. 

Lf AT has any special form, elementary unitary transformations may 

be computationally more efficient since the effect of row permutations can 

radically alter the structure of /i r. In particular, Sets. 5 and 6 describe how 

Givens- and Householder-type reductions can be used to recur lower 

triangular matrices from one iteration to the next. 

3. A BASIC ITERATION FOR TAKING SIMPLEX STEPS 

At the beginning of the ith iteration the following matrices and vectors 

are available : 

(i) Ati) an n x n matrix, 

(ii) /iti) an n X (in - n) matrix, 

(iii) bti) an It X 1 column vector, 

(iv) Bi) an (m - n) X 1 column vector, 

(v) xti) an n X 1 column vector, 

where the matrix of constraints is partitioned in the form 

A'i,T 
AT= _: . 

[ 1 A(z)T 

The rows of AtijT, AtijT are labelled l(l)n, l(l)wz - n respectively, giving 

with 

and 

A(i)TX(i) = b(i), 



104 PHILIP E. GILL AND WALTER MURRAY 

(vi) Further, Lci) is a lower triangular matrix such that 

L’i’L’i’T = /l(i’TA’i’; 

(vii) and d’i’ = A’i,TC 

(viii) and co(i) = A’i’T.+ _ 6’9. 

Step 1 

Determine the Kuhn-Tucker multipliers, u, associated with the active 

constraints by solving the equations 

L’i’L’i’Tu = d(i), 

(a) If uuj > 0, j = 1,. ., n then x ti) is the optimal solution. 

(b) If some uj < 0 then choose an index q such that 

u, = min(uj: i = 1,. ., PZ}. 

Step 2 

Determine pT, the qth row of (A(i))-l, by solving the equations 

L’i’L’i’Ty = e,, 

where e, is the qth column of the identity matrix, then 

Step 3 

Determine the index k such that 

;I, = - wk(i) _ min 

ilk zlj<o 

where 

Step 4 

Set 

x(i+l) =X (i) + &pr 
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d (i+l) = ckTC 
n (6) 

where d, is the kth column of 1j(i). Update the residuals of the inactive 

constraints 

w .(i+l) 
3 = wp) + ;l,vj, l<j<m-92, j#k 

Cc)k(i+l) = 3 
‘k’ 

Step 5 

The gth column of A ci) is removed to become the kth column of Aci+l). 

A(i+ir is formed by relabelling the remaining columns of A(%) from 1 to 

n - 1 and adding a, in the nth position. Similarly, the qth element of Vi) 

is removed and placed in the kth position of 6ti+l). bci+l) is formed by 

relabelling the remaining elements of bci) from 1 to n - 1 and adding &fir 

in the nth position. 

Step 6 

The lower triangular factors Lti) are modified in two stages. When 

the gth column of A ci) is removed an intermediate lower triangular matrix 

9 is found by one of the methods given in Sec. 5 with t = s = n. This 

matrix is in turn modified by the method given in Sec. 6 when a, is added 

in the nth position. 

4. PROOF OF CONVERGENCE 

Let {aj: 1 < j < n} be the n columns of Ati). It can be seen from the 

choice of p in Eq. (6) that 

CTX(itl' = CTX(i’ + ~,$‘p, 

Substituting for p gives 

CTX(i+l) = CTX(i) + &CTAWY, 

= CTX(i) + )&COT YJ 

= CTX(i) + ~k,TL(i’L’i’T 
Yt 
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= cTx(i) A J.,uTe,, 

= CT%(i) + &uu,. 

Consequently, since ac, < 0 and 1,: > 0 

CTX(i+l) < CTX(i), 

If all ui > 0 no improvement can be made to the objective function. The 

new point is always feasible since 

for 
{I < i < n, ajTx(i-l) = ajrx(i) + AkaiTp; 

1 iz41 = a .TX(i) 1 1 

and we have 

ajrX(i+l) = b,, 

For j = q we have 

,J T%(i+l) = 
Q 

a TX(i) + AkagTj,, 
4 

= b, + L 

> b, since ii, > 0. 

5. MODIFICATION OF THE TRIANGULAR FACTORS OF ATA WHEN A COLUMN IS 

REMOVED FROM A 

The orthogonal triangularization of a rectangular matrix AT is given by 

AT = IL O]Pz’, Pl’P = I, 

where L is an s x s lower triangular matrix, AT an s x t matrix and P 
a t x t orthogonal matrix with s < t. Then 

ATA = [L O]PTP LoT , 
[ I 

= LLT. 

If ai,. . .) a, are the s linearly independent columns of A, then the matrix 
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& obtained when a column ak is removed from A is given by 

where L is a (s - 1) x s lower Hessenberg matrix with zeros above the 

diagonal in the first k - 1 rows. Given the matrix z with elements & 

three methods are given to obtain 2, the lower triangular factor of dT&. 

5.1. Method A : Elementary Hermitian Matrices 

An orthogonal matrix W can be constructed such that 

&P&3? = EWTWZT, 

where 9’ is the (s - 1) x (s - 1) lower triangular matrix associated with 

the symmetric triangular decomposition of &OZT&. 

For Y = k, k + 1,. . ., s - 1 the matrices W, are defined as follows 

Z(r+l) = ~‘T’W 
7, 

where 

and 

W, = I - a,~(+,)r)T_ 

Let 

a, = [ST2 ‘f Z$S,]-l, 

where 

Since the columns of A are linearly independent, ~,!~~~r is nonzero and 

consequently S, is nonzero. The column vector 09) has two nonzero 
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components, 

the sign of S, being chosen to minimize rounding error. The IV, are 

symmetric matrices which transform the elements i&!+i of z(P) into zero 

elements of Zfr+l). During the reduction by a particular IV, only columns 

Y, r + 1 of E(r) are modified due to the sparsity of the CC)(~) vectors. The 

product of the W,‘s is an orthogonal matrix (though not symmetric). 

If the product is written as 

WkWk,l . * * W+l = w, 

then 

Ew = L(y), 

where E(s) is a lower triangular matrix plus a null last column, i.e. 

5.2. Method B: Elementary Unitary Matrices 

The reduction of 1 to lower triangular form can also be obtained using 

elementary unitary matrices. Again, an orthogonal matrix Q is constructed 

such that 

The matrices Q,., each of dimension s x s, are defined as follows 

Lb+l) = l(r)QI., Y = k, k + 1,. . . , s - 1, 

with 
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where 

Qp = 

-1 1 

1 

1 

1 
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Y 

r+l 

and c = cos 8, s = sin 8. 8 is chosen such that the upper diagonal element 

corresponding to i,!?,, in LtT) is zero in Z”+l) i.e > . 

- sl(” + cl!:‘,, = 0. r,r 

If 

u = tan e, 

then 

c = i!;‘+$~;. 1 2 

The quantities cos 6J and sin 0 can be simply calculated using 

tc’, 
c=“‘, I$+1 

P P 

The unitary matrix Qr, which is a rotation in the (Y, Y + 1) plane, becomes 
a permutation matrix when 2$ is zero. Only two columns of Ltr) are 
modified during a transformation by a particular QT. The final matrix 

obtained by recurrence is then of the form 

L(s) = [L?:O]. 
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5.3. Method C: Elementary Nonuktary Matrices 

The elementary nonunitary matrices M,, r = k, k + 1,. . . , s - 1, each 

with dimension s x s are defined as follows: 

with 

where 

M, = 

L(r+l) = E(‘)M 
T, 

I(“) = L, 

(7) 

1 

1 
. . . 

1 

1 

1 - mrSr+r 

0 1 

1 

1 
. . . 

1 

1 

and mr.T+l is chosen such that the upper diagonal element ij,:+r of Lo) is 

transformed into the zero element of zo+l). 

We choose 

mr,rtr = g!,,/q. (8) 

It is assumed for the moment that l,?i is nonzero. The M, modify only 

one column of E(r). The product of the M, can be written as 

and 

M = M&f,+, . * * M,_,M,_, 

l(s) = LM. (9) 

The decomposition can be written as 

APL?2 = UT. 
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= ZMM-l(MT)--1MTZT, 

= p&r-l(Jp)-l~'"'T. 

Now 

M-l= I,--1 0 

[ 1 0 N’ 

where I,_, is the (k - 1) x (k - 1) identity matrix and 

N= 

Then we have 

where T is a symmetric positive definite tridiagonal matrix of the form 

T= 

-1 + 4+l,k mk+l,k 

mk+l.k 1 + 62,kH mk+2,k+l 

ms-h-2 1 + 4,,-, ms,+1 

f+bl 1 

The symmetric decomposition of T can be formed giving 

T = RRT, 

where R is a lower triangular matrix of the form 
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The elements of R can be found using the recurrence relations 

yr2 = I + mZ+l,k, (12) 

ri2 + t1 = 1 + mi+i,k+i--l 
1 

(13) 
i = 2,. . ., s - k. 

riti = mk+i,k+i-1 I (14) 

The product of these decompositions gives a lower triangular decomposition 

of &P&a2 

The assumption that l$ is nonzero in Eq. (8) is in general invalid. The 

breakdown of attempts to modify the triangular factors of the identity 

matrix when a column is deleted indicates that zero divisors can occur 

even when the problem is relatively simple. In addition, the occurrence 

of very large elements in the elementary matrices can produce adverse 

effects upon the stability of the method. These problems can be 

solved by using column interchanges during the reduction process. A 

column interchange is made to obtain the larger of the two elements 

l,!:+i, i!i as divisor in Eq. (8). 

The reduction (9) then becomes 

ZI,M,Ik,l * * * I,_,M,_, = L(s), 

where lj is a permutation matrix which interchanges columns (i, i + 1). 

Then 

AT,_, = M,?l, 

W,_z = I,_,Ms?21s_-l, 

M, = I,_, * * * Ik+lMk-lI,+l * ’ ’ Is-,, 

and 
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Suppose no interchange of the columns is necessary for the calculation of 

M,. Then 

for all j = k, . . . , i - 1, 

= I,_, - * * Ij+lMJj+l * * * I,_,. 

The Rj are consequently unaffected by succeeding permutations of 

columns and instead of Eq. (1 l), the inverse product of the transformations 

is then 

N= 

where the G,, are k, x (k, + 1) submatrices with the structure 

GkS = 

‘1 g1 - 

1 g2 

’ gkg. 

(15) 

(16) 

and 2 k, + 1 = s. k, indicates that there have been k, permutations 

of a particular column, the last of which is the identity permutation. Since 

the matrix T is no longer tridiagonal the recurrence relations (12), (13) 

and (14) cannot be used. 

Givens-type rotations can be used to reduce M-l to lower triangular 

form. Equation (10) is then written 

where Q*Q = I and M-lQT = R a lower triangular matrix whose columns 

are multiples of the nonzero columns of G,, in Eq. (16). The new lower 

triangular factor is 
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9’ can be calculated in 0(s2) operations using a technique similar to that 

described in Sec. 7. 

6. MODIFICATION OF THE TRIANGULAR FACTORS OF cdTd WHEN A COLUMN 

IS ADDED TO d 

If dr is an (s - 1) x t matrix with 

then there exists an orthogonal matrix L?J such that 

2P = [9LpiO]F. 

The new row aT can be inserted anywhere within JZ?‘~ with the effect of 
adding a new row I* to the lower triangular factor 2’. If the new row 

is added at the end of &‘* giving 

then the amount of computational effort required for the modification 
of the lower triangular factors is minimized and 

= [L’O]PT, 

for some orthogonal matrix P. Now 

(17) 

and also 

Comparison of Eq. (17) with Eq. (18) gives I as the solution of the equations 

[_YiO]Z = &*a, (19) 
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lTl = aTa. (20) 

Since _Y is lower triangular, all but one element of 1 can be found by 

forward substitution in Eq. (19) and the final element using Eq. (20). 

7. MODIFICATION OF THE TRIANGULAR FACTORS OF ATA WHEN A ROW IS 

REMOVED FROM A 

7.1. Method A : Elementary Nonunitary Matrices 

Let AT be an s x (t + 1) matrix and AT the resulting matrix when 

the column a is removed from AT. Then 

ATA = ATA - aaT. 

ATii is obtained by applying a rank one modification to A*A. 

In general consider the matrix B where 

B = B + kggT, 

g is an s x 1 vector, k a scalar, B and B are s x s positive definite sym- 

metric matrices. The triangular factors of B are required when the 

triangular factors of B are given. Bennett [4] has given an algorithm 

for the modification of the triangular factors of a general matrix under a 

rank Y (r 3 1) modification but since the general case is relatively complex, 

a similar method for symmetric matrices under a rank-one modification is 

described below. It is emphasized that the calculation of the modified 

triangular factors for the case considered is numerically stable whereas 

the general algorithm given by Bennett is not. 

Define 

B(1) = B with B(1) = [$)I. 

The matrix B(l) has the symmetric triangular decomposition 

B(l) = LDLT, 

where L is a lower triangular matrix with unit diagonal and D is a diagonal 

matrix. The triangular decomposition can be found in the following 

manner. Let Z(j) be the (s - j) x 1 vector of elements (j + 1) to s of 

the jth column of L. Let Mj be the identity matrix with elements (j + 1) 

to s of its jth column replaced by Z(j). 

Then 

D = M,-‘M,y. . . . Ml-lB’l’(Ml-1) T . . . (&f-l) T. 
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Also if B(l) is partitioned in the form 

B(l) = bpi ; vT 1 /:H ’ 

the following relation holds 

where 

b!j 

I’l’ = (l/b?;) : 

/ I b$ 
(21) 

If the (s - 1) x (s - 1) matrix Bt2) is defined as 

B(2) = @;‘I, 

= H - (l/b’lll’)vv’, 

then 

iIfl-lB(l)(M,-l)T = 

Corresponding to Eq. (21) Z12) is a multiple of the first column of Bt2), i.e. 

b;T 

1’2’ = (l/by!) : 

[ I. pi 
s-l,1 

Generally l(j) is expressed as 

l(j) = (l/b$) 
. 

By considering each new submatrix B(j) and forming I(j) as a multiple 

of its first column, the complete triangular decomposition can be found. 

The quantities Z(j) and B(j) can be used to modify the lower triangular 

factors of B to give those of B. Define g = g(l), k = k(l) and 
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If B(l) and g(l) are partitioned as 

g(l) = g1 

[ 1 Co 
and 

jfp) = 
bll 

[ 

+ g,W' j VT + ,Tg,k(l' I v Sg,k(lh H + w&2 ' 
then 

G1-l(B(l) + pl,g'l'g'l'T)(fll-l)T = 

+ W12 0 

1 .I > 
0 H + k%ooT - - cbl, + kcltg12) [u + W,ol[v + k'?&WIT 

where i@l is the multiplier corresponding to the modified triangular 
factors. Consider the (s - 1) x (s - 1) submatrix 

1 
H + k(l’WWT - (bll + k’1,g12j [” + k’l)g,w][v + k’l’g,w]T 

* [v + k'l'glw][v + k(lJglo]T + k(‘JWoT 

which, after some manipulation gives 

k'l' 

hl(hl + kt1)g12) 

* [g12VVT + b&oT - bllg,uwT - bl, g,vwT], 

k(l) 
= jp + ___ 

bll(bll + k'ljg12) hco -gd(h@ -gdT' 

If gt2) is defined as 

g’2’ = (bll0.J -gg,v) = b,,(w - I’l’g& 
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k(2) = ~ 
k(l) 

b,,(bn + W,2) ’ (22) 

then 

$jl-lgm(~l-l)T = 

i 

b11 + W,2 0 

0 1 B(2) + kWgWg’2’T . 

Since the first column of B t2) is known from the old lower triangular 

factors L, it is possible to calculate the new triangular factors and the 

quantities kt2), gf2). The elements 2 to s of the first column of the modified 

triangular factor are given by 

Since B is positive definite it can have no zero diagonal elements and the 

denominator in (22) is nonzero. The algorithm is repeated on the (s - 1) x 

(s - 1) submatrix B(z) and the process continued, the jth column of the 

modified triangular factor being obtained from the first column of B(j). 

7.2. Method B : Elementary Hermitian Matrices 

Consider the matrix 

AT = [LiO]PT, 

where AT is an s x (t + 1) matrix, t 3 s, L is an s x s lower triangular 

matrix, and P is a (t + 1) x (t + 1) orthogonal matrix. Let AT denote 

the matrix AT with the kth column a deleted and pT the first s rows of 

the matrix PT with the kth column p deleted. 

Then 

Let p(l) be an s x 1 vector such that 

P = ;::: I 1 
Define p(j) as the vector consisting of all the elements of p(j-l) except 

the first. Then 
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_T_p = a 

and 

hence 

ATA = j-(1 _ $U)$W)LT. 

This can be written in the form 

/$TA = LB'l'B'l'TLT, 

where 

B(j) = I _ &)pwp)T, j = l,...,s, 

a(l) = l/[l F @13j(1))1/2]~ 

In general o(l) is chosen as 

@) = l/(1 + J$a)Tp1q1/2). 

o(j), j = z,..., s are given later in this section. Note that if $(l)Tfi(l) = 1, 

p(l) = 0 hence a = 0 and no reduction of B(l) is necessary. 

The matrix B(l) can be reduced to a lower triangular matrix L using 

a sequence of Householder orthogonal matrices W,, where the W, are of 

the form 

hence 

If 

then 

z = B(l)W, * - - w,. 

Y (1) = 1 - &)fjl(1)2, 
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s 

d(l)2 = gu)2p1(1)2 
,z PP2 + y'l'2. 

Hence the elements of w(l) are given by 

w1u) = y'l' F &I', 

and 

UjC1) = - cr(1)fi10)$3(1), for i = 2,. . . , s. 

Hence B(l)W, is of the form 

where 

&a = o'l'(l + plm&+#l)(p,u) + pCl,Tr,jl,)), 

and 

8'1' = - &)pl(l) + tcq#lylwwl~l) + ~~~l~Gc~l~~~l~p~l~~w~l~ 

Postmultiplication by Wi, j = 2,. . . , s leaves the first row and column 

of B(l)W1 unaltered. Extending therefore the definition of /F) and ~$1) 

to p(j) and d(j), respectively, the jth column of z can be written 

0 ii = 
[ 1 (j(j) 

pwp+l' 

If 9 is defined to be the lower triangular matrix such that 

AT = [_Y.O]BT, 

where B is an orthogonal matrix, then 

In general L and x are dense lower triangular matrices and straight- 

forward multiplication would take s3/6 + 0(s2) operations; however 9 

can be determined in only 0(s2) operations in the following fashion. 
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Let li denote the y’th column of 9 and l(j) the (s - i) x 1 vector of the 

last (S - j) elements of Zj. Then 

lj = Lij. 

Partitioning L in the form 

L= 

gives 

1 

l(j) = &dl(j) + /j(j)L(j+l)p(j+l) 

Now recall that 

(23) 

II = L@(l). 

If a(j) denotes the (s - i + 1) x 1 vector of the last (S - y’ + 1) elements 

of n, 

a(2) = plcl,p + L(29(2,, 

and substituting in (23) with j = 1 gives 

p = &l’lU, + p(lya(2) _ p,qcl,), 

or 

p = /jWa(2) +_ (d(l) - p(l)plw)p~ 

L’j+l)@(j+l) can be determined from the relationship 

Lcj’pc” = I zj,jpp 

I 
lCdp,Cj) + L(j+l)pCj+l) . 

L(2$5(2) and L(8)#(s) are known and since all the p(i) and d(j) are available 

the lj can be determined recurring backward or forward. 
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8. MODIFICATION OF THE TRIANGULAR FACTORS OF ATA WHEN 

ADDED TO A 

8.1. Method A : Elementary Nonunitary Matrices 

In this case the following relation holds 

ATA = ATA + aaT. 

MURRAY 

A ROW IS 

Exactly the same procedure as method A in Sec. 7 can be used but with 

k(r) = 1 instead of - 1. 

8.2. Method B : Elementary Hermitian Matrices 

Let 

with 

where 

and 

AT/i = ATA + aaT where A is a t x s matrix, t 3 s, 

AT = [&AT] = [z;O]PT, 

1: 0 
PT = o ; p 1. 1 

Note that P is still an orthogonal matrix. The matrix 1 is a lower Hessen- 

berg matrix and can be reduced to lower triangular form by the methods 

given in Sec. 5. 

An alternative procedure is possible if A is defined as 

AT = [AT’s]. 

Then 

AT = [L’O]P, 

where 
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Let p(l) be the vector consisting of the first s elements of $. Then 

@Cl) = a. 

Now 

FTP = 
I+PP’ Pt+1P 
Pt+lPT PTP + P,“,l 

so that 

ATA = _L(I + p(l)p(l)T)LT 

= L(I + @P(l)P(l)T)(I + @P(l)P(l)T)LT, 

where 

o(1) _ (1 + p(l)Tp(l))r’a - 1 
- 

p(l)TP(l) 

The matrix (I + a(l)p(l)T~(l)) can be reduced to lower triangular form in 

exactly the same fashion as in Sec. 7.2. 

9. MODIFICATIONS TO THE BASIC ITERATION IN THE CASE OF SIMPLE 

CONSTRAINTS 

In many problems solved by linear programming techniques simple 

constraints of the form & xj 3 bj are imposed upon the variables. The 

particular structure of the coefficient matrix can be utilized within the 

basic iteration to obtain a saving in arithmetic operations and storage 

requirements. 

In the following discussion the original problem is considered to possess 

Y general constraints and n simple constraints of the form xi > bi. If Y’ 
general constraints are active at the beginning of the ith iteration the 

variables can be ordered such that the matrix of active constraints has 

the form 

A’i,T = 
Al’i’T A2(i)T 

I n--T, 1 0 ’ 

where A,tijT is an r’ x (n - Y’) matrix, Azti) is an r’ x Y’ matrix and 

I,_,, the (+z - Y’) x (n - r’) identity matrix. Similarly AtiJT has the 
form 
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A’i’T = I A,‘i’T &i’T 

I L 0 I,. ’ 

where /i,(i)r, A,(i)r h ave shapes: (Y - r’) x (12 - r’), (Y - Y’) x Y’ respec- 

tively. The modifications to each step of the basic iteration are as follows. 

Step I 

The Lagrange multipliers are solutions to the equations 

If the column vectors zt and c are partitioned accordingly, the equations 

become 

giving 

A,‘%&, = c2, (24 

u‘j = Cl - A,‘i’Ul. (25) 

Using the strategy outlined in the basic iteration, Eq. (24) is replaced by 

ui is found, and substitution in Eq. (25) gives ~4~. Only the triangular 

factors of A,(i)TA,(i) need be stored during any one iteration, resulting 

in a considerable saving in storage and computational effort. 

Step 2 

The method used to determine the qth row of A’i)-l is dependent upon 

the nature of the constraint about to be deleted. The equations for p are 

given by 

A,‘“‘T AZ’i’T p, 

I 0 I[ I 
= e,. 

n--T’ P‘2 

(a) General Constraint Deleted at Step 1. In this case q < r’, p, = 0 and 

A,(i)Tp, = e, where e, is now the qth column of I,.. Then p, is found from 
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L,'i'L,(i'Ty = e,, 

p, = A,(i'y. 

(b) Simple Constraint Deleted at Step I. Now q > Y’ and the equations 

for p reduce to 

i.e., 

A1(i)Te,_,, + A2(“)*~2 = 0, 

A2tijTp2 = - ao_+, 

where ac_Tz is the (q - r’)th row of A,(i), es_,, is the (q - r’)th column of 

I n--T” p, can be calculated from 

L,(i)L,(i)lj = - aa_T,, 

p, = A,ci’y. 

Step 3 

The calculation of ?I can be significantly simplified. In general v is given 

bY 

(a) Simple Constraint Deleted at Step 1 

AI( ; &'i'T 
v= 

e,_,, I[ 1 p, ’ 
giving 

I h,_,r + A,(“‘Tp, yj= 
P2 I ) 

where H,_,, is the (q - r’)th row of Alti’. 

(b) General Constraint Deleted at Step 1. In this case v becomes 

v= 
&'i'T& 

[ I. P2 
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Step 4 

Some economy can be achieved in the calculation of xci+i) (and some- 

times d,ti+l)) due to the sparsity of the vector p. 

Step 5 
The lower triangular factors of the recurred matrices must be modified. 

As in the basic iteration the triangular factors are modified twice, after 

the first constraint has been deleted and after the new constraint has been 

added. There are several possibilities regarding the nature of the incoming/ 

outgoing constraints. 

(u) Deletion of a Simple Constraint. When a simple constraint disappears 

from the basis a row of I,,+,, is deleted and the variables reordered such 

that the corresponding row of A, ti) is placed amongst those of A,ci). The 

algorithm described in Sec. 8 is used to modify the triangular factors 

of A2ti’. 

(b) Deletion of a General Co&raid. A column is deleted from A,ci) and 

A2ci) and the corresponding triangular factors of A,(i)TA,(i) are updated 

as in Sec. 5. 

(c) Addition of a Simjde Constraint. If the simple constraint corresponds 

to the variable xj then the variables must be reordered such that the 

coefficients of xj which make up a column of A,fijT are added to AlcijT. 

Since A,tijT has been column-deleted, the lower triangular factors are 

modified as in Sec. 7. The new A, tiJT is formed so that the identity matrix 

is maintained in the bottom left hand corner of the coefficient matrix, in 

which case formulas (24) and (25) hold for the next iteration. 

(d) Addition of a General Constraint. In this case A,(ijT, A2(ijT are both 

row-augmented. The triangular factors of A, (i)TAz(i) are modified using 

the procedure outlined in Sec. 6. Step 5 completes the modified basic 

iteration. 

It is not the intention of this paper to consider further problems posed 

by A(i) being sparse or possessing special structure. Certainly the algorithm 

can be adapted to consider the type of coefficient matrix that arises in 

practical problems. All necessary formulas for the modification of the 

lower triangular factors which could arise from these considerations are 

given in Sets. 5-8. 
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10. NONSIMPLEX STEPS 

The algorithm described in Sec. 3, does not depend upon n’, the number 

of active constraints, being equal to n, the number of variables. This 

implies that the initial approximation to the solution, x,,, need not be a 

feasible vertex but any feasible point. At each subsequent iteration a new 

constraint enters the basis while the value of the objective function is still 

being decreased. During any period with n’ < n a considerable saving in 

computational effort and storage requirements is obtained and since 

progress can be made across the interior of the simplex, the number of 

iterations necessary to find the solution will be reduced. 

Having reached a point with Y (say) constraints active it is also possible 

to move off more than one constraint simultaneously. In this case the 

computational effort increases with the number of constraints being 

deleted until approximately r/3 constraints are discarded simultaneously 

when it is more advantageous to drop all the constraints and build up the 

active basis afresh. The work then decreases until it is possible to move 

off all the constraints with no work at all. This strategy is recommended 

when a large number of constraints are likely to be redundant. In partic- 

ular, if - c lies interior to the simplex, a step in this direction can be 

made with no constraints in the basis. At each subsequent iteration a new 

constraint becomes active but a currently active constraint for which the 

Lagrange multiplier is negative can be deleted, giving an expected small 

number of iterations with a full basis. 

When n’ < n the direction of search, $, is no longer unique, but need 

only satisfy the relations 

cTp < 0, 

and 

(27) 

where /lciJT is the matrix of active constraints at the ith iteration, and 

&(ilT the matrix A($)T with the gth row a, T deleted. If a constraint is 
not deleted from the basis at the ith iteration, only conditions (26) and 

(27) need be satisfied, where Seti) is now equal to Ati). 

The conditions (26), (27), and (28) ensure that the new direction of 
search remains feasible and decreases the objective function. Such a p 
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will be called a feasible descent direction. In step 2 of the basic iteration 

when n’ = n, p was chosen as the qth column of (AtijT)-l and shown to 

satisfy Eqs. (27) and (28). For n’ < n, providing the multiplier fi can be 

chosen to satisfy Eqs. (27) and (28), any p of the form 

p = P{~(i)(~(i)T~(i))-l~(~)Tt _ t> 
(29) 

will suffice, where t is an arbitrary vector linearly independent of the 

columns of &ti). In the case where n’ = n the vector p is unique apart 

from the arbitrary multiplier 8. 

Judicious choice of the vector t in Eq. (29) can significantly reduce 

the amount of computation required. Three possible choices are c, uQ, or 

9, the latter being the p of the previous iteration. Let the respective p’s 

from these choices be p,, 9, and $J. The remainder of this section is devoted 

to examining under what circumstances these p’s are feasible descent 

directions and giving details concerning their computation. The following 

lemma will prove useful. 

LEMMA 1. Let y be the (q, q)th element of (A(i)TA(i))-1. Then 

~(i,(~(i’T~OZci,)-l~(~)Taa. _ a, = _ L,, 

Y 

where ZI is the qth YO’W of the matrix (A(i)TA(i))-IA(i 

Proof. Let 

A+ = (A(i)T1AWT 

and reorder the rows of A+ such that vT appears as the n’th row. Then 

by definition 

where H is the matrix of remaining n’ - 1 rows of A+. If H is eliminated 
from this system we obtain 

(anT~OZci)(~(i)T~(i))--l~(i)Taq _ a,Ta,}v = ~4’i)(~(i)T~4’i))-l~(i)Ta, _ a,. 

We must now obtain an expression for the scalar multiple of v. Consider 

the set of equations 
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The vector [z(nT r] corresponds to the qth row of (A(i)TA(i))-1, and if z(r) 

is eliminated from this set of equations we obtain 

y = {a,‘u, - a,T~(i’(~olci,T~seci,)-l~(i,Tan}-l. 

Clearly, since y > 0 is the (4, q)th element of (A(i)TA(i))--1, we have 

z, 
_ = ~(i,(~Zci,T~(i,)-lyQZ(i)Ta~ _ a,, 

Y 

and the Lemma is proved. n 

THEOREM 1. The direction of search 

p, = Pc{~oZci’(~(i)T~(i))_l~(i)TC _ C} 

is a feasible descent direction for all p, > 0. 

Proof. We have by definition 

cTpc = Pc{cT~(i)(~Olci,T~Y’(i))-l~(~)~c _ cTc}. 

We first prove that Eq. (27) is valid. Define the matrix 

AT = dcrT ; 
[ 1 

then - fic(cTpc)-l is the (n’, n’) element of (ATA)-1. Consequently 

cTp, < 0 if p, > 0 and relation (27) is satisfied. 

To prove Eq. (28) we form 

If the Lagrange multipliers calculated during the ith iteration are reordered 

in the form 
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where 4 are the multipliers with uu, excluded, and their partitioned equations 

written explicitly, then 

&MT&(i)4 + &%)Ta,~U, = &&i)TC, 

agTd4’W + agTapq = aqTc. 

Eliminating 62 from Eqs. (30) and (31) we have 

a,T~aZci)(~(i)TlaZ(i))-l~(i)TC _ a,TC 

= ~,{a,T~(i)(~(i)T~(i))--154(i)Taq _ anTag}, 

giving 

(30) 

(31) 

anTpc = Be,n{anT~(i)(~(i)Tge(i))-1_QZ(i)Ta4 - a,‘a,}. 

Using Lemma 1 this equation can be written as 

%Pc aaTpc = - ~, 
Y 

where y is the (4, q)th element of (A(iJTA(i))--l. If u, < 0 and /? > 0 then 

anTp, > 0 and $, is a feasible descent direction. n 

THEOREM 2. The direction of search 

p, = Pa{~Olci)(~(i)T~(i))-l_QZ(i)T 
a, - a,> 

is a feasible descent direction for all p, < 0. 

Proof. We first prove relation (27) by calculating 

CTP, = ~a{,T~(i)(se(i)Tge(i))-I~(i)Ta, _ GT~,>, 

and we obtain 

Pa% 
cTpa = -7’ 

giving cTp, < 0 if ztq < 0 and 8, < 0. 

In a similar fashion 

aaTP, = Pa{a,T~(i)(~(i)TIQl(i))--lge(i)Ta, _ a,‘a,}, 

” -A&> 
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with anTp, > 0 for p, < 0. Clearly 9, is a feasible descent direction. n 

When less than n constraints are in the basis and the third choice 

of t = 9 is made in Eq. (29) it has not been possible to show that a /J’ 

exists which will satisfy both Eq. (27) and Eq. (28). However, when 

n’ = n, p must be a scalar multiple of p,. Also if n’ # +a and we do not 

delete a constraint then p can be chosen so that $J is a descent direction. 

Evaluation of p, 

We have 

p, = Pc{~OZ(i’(_C9’i’T~(i’)--l~~(i)TC _ c} 

which, after using Eq. (30), becomes 

Now 

p, = p,{&(i)& + ,a~(i)(~Zci)T~nZ’i))-l~(i)a,T _ c}, 

AN4 - c = dW + u,a, - c, 

and the equation for p, then reduces to 

p, = P,{A% - c + U4(~(i)(~(i)T~01(i))--l~(i)Tan _ a,)}. 

We now use Lemma 1 to obtain 

where 

LCi,LCi,Ty = e,, (32) 

that is, y is that vector defined in step 2 of the basic iteration. If 8, is 

chosen equal to y then 

p, = y(A’% - c) - u,A(i)y. 

If n’ = n, the residual A(% - c is zero and 

PC = - u,A’~‘~. 
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Evaluation of ~3, 

Since p, is defined as 

p, = Pa{~(i'(~a2'i'T~DZ(i))-l~(i'Ta* _ a,}, 

we see that Lemma 1 gives 

p =_!! 
a V, 

Y 

If we put 

then 

and 

P, = Y”a (P, < (4, 

p, = - ZL,A(i)Y, 

p, = p, + y(A’%4 - c). 

A natural question that arises is whether one of these directions is 

always better than the other. The matrix 1 - A’i)(A(i)TA(i))--1A(i)T is 

positive semidefinite; therefore 

cT(I _ A’i’(A’i’TA(i))-lA(i)T)C 3 0 

hence 

c’(c - A(%A) > 0 I’ 

Now 

cTPc = cTP, + ycT(A’~‘u - c), 

and since y is positive 

cTP, < CTpa < 0. 

The best direction, say p,, satisfies the inequality 
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where 

/ lzll = (ZTZ)l’2. 

It can be shown from the relation between p, and p, that 

llPcl12 = llP# + y2&@+ - c/l 

and consequently no a priori comment can be made as to which of the two 

directions is best. 

Evaluation of ~3 

We have defined 

However, g must be orthogonal to all but one of the constraints that 

make up dtijT (the constraint aT ng added during the last iteration). Con- 

sequently we have 

where 

p = P{,~Peci,(~(i)T~4(i))-le,,_, _ 941 

If we recur the factorization 

&i,rr~o2ci, = ZP(i)TWT, 

then 

where 6 is the (n’ - l), (n’ - 1) element of LFi) and z is obtained from 

the back substitution 

LP)Tz = e,,_1. (33) 

The reason for considering this choice of t at all is that Eq. (32) used in 

the evaluation of ~5~ and p, simplifies to become Eq. (33) in this case. 
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11. STORAGE AND COMPUTATIONAL REQUIREMENTS 

When the matrix of active constraints has an insignificant number of 

zero elements the form of the algorithm presented here requires n2/2 + 

O(n) storage locations in addition to the original data. The number of 

arithmetic operations per iteration varies according to 

(i) the position of the constraint leaving the basis of constraints, and 

(ii) the particular modification method used. 

The number of multiplications for each method used to modify the lower 

triangular form when a row is deleted from AT is shown in Table 1, where 

it is assumed that the deletion of a particular constraint between 1 and n 

is equally likely. 

TABLE 1 

AVERAGE NUMBER OF MUI.TIPLICATIoNS REQUIRED FOR THE MoDIFICATIoN OF THE 

TRIANGULAR FACTORS WHEPi A ROW IS CHANGED IN AT 

Method 

Constraint Leaving the Basis Constraint Entering 

the Basis 

‘4 B c 

Number of min: $13~ + O(n) 

multiplications 
+z” + O(n) +z” + O(n) 

max: in2 -+ O(n) 
$22 + O(n) 

- 

If method B is used when a constraint leaves the basis and 9 is obtained 

using the method requiring the least number of multiplications, the average 

total amount of work is given by 

4$%2 + n(m. - n) + O(n) 

(see Table 2). 

The inclusion of non-Simplex steps reduces the amount of work and 

the additional storage requirements. If rc’ constraints are active at the 

ith iteration with n’ < n, then (PZ’/~)~ + O(n’) additional storage locations 

are required, and the work reduces to 

~$(Yz’)~ + 2nn’ + n(m - n’) + O(n - n’) multiplications. 

When average figures of m = 312, n’ = n/2 are assumed the average work 

becomes 

3$z2 + O(n) with G/8 + O(12) locations. 
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TABLE 2 

NUMBER OF RlULTIPLICATIONS PEK CYCLE FOR THE EVALUATION OF THE BASIC ITERATION 

WITH GEPiERAI. CONSTRAINTS 

SOUPX 

Calculation of the Lagrange multipliers 

Calculation of p 

Calculation of u 

Modification of the lower triangular factors 

Number of Multiplications 

+x2 + 0(n) 

&&” + O(n) 

n(nz - n) 
18 
p2 + 0(z) 

- 

A direct comparison can be made with the explicit inverse version of the 

Simplex method when AT in Eq. (Pl) is given by 

B 
AT= I 

i 1 and b = 

B is an Y x $2. matrix with Y < n, and m = n + Y. The constraints are 

equivalent to 

B?G 2_ b, x 3 0. 

In the standard Simplex method the variables x are augmented by Y slack 

variables y such that 

x’ = 
x II Y ’ 

and the constraints become 

where 

B’ = [BiD], 

D being a diagonal matrix with elements f 1. During any current 

iteration of the standard Simplex method Y linearly independent columns 

are chosen from B’ to form the “column basis” and the explicit inverse 

of the matrix formed by these columns is stored. As columns are inter- 

changed in the column basis the explicit inverse is modified. The size 

of the matrix recurred during the process is constant, the amount of work 

required per iteration being (Hadley [7]) 
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(n + Y)Y + y2 + O(r) multiplications. 

If an average figure of n = 37 is assumed the amount of work becomes 

5r2 + 

D not in the column basis of the explicit inverse. 

During any iteration it may be necessary to change a column of the 

Y’ x Y’ submatrix of A T corresponding to A2 ti) in Sec. 9. The computational 

requirements for each of the methods described in Sets. 7 and 8 are given 

in Table 3. 

TABLE 3 

NUMBER OF MULTIPLICATIONS REQUIRED FOR THE MODIFICATION OF THE TRIANGULAR 

FACTORS OF ATA WHEN A COLUMN OF AT IS ALTERED 

Method 

Modification due to 

Incoming Column 

A B 

Modification due to 

Outgoing Column 

A B 

Number of multiplications $(Y’)~ + O(r’) 2(~‘)~ + O(Y’) $(F’)~ + O(r’) Z(V’)~ + O(Y’) 

If an expected figure of n = 3r is taken and it is assumed that 

approximately half the simple constraints are active on average, then the 

total amount of work for any iteration is given by 

z$ra + O(r). (36) 

The corresponding average storage per iteration is given by 

P/8 + O(r). (37) 

A comparison of Eq. (34) with Eq. (36) and Eq. (35) with Eq. (37) dem- 

onstrates the saving over the explicit inverse form of the Simplex method. 

If non-Simplex steps are taken further economy can be achieved, for 

example, the expected amount of storage reduces to 

G/32 + O(r). 
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TABLE 4 

EXPECTED EUMIBER OF MULTIPLICATIONS FOR THE EXECUTION OF THE MODIFIED BASIC 

ITERATION 

source Number of Multiplications 

Calculation of Lagrange multipliers 

Calculation of 9 
c 

simple constraint outgoing 

general constraint outgoing 

Calculation of u 
{ 

simple constraint outgoing 

general constraint outgoing 

Modification of A,(i)TA,(i) : 

1 
+ 

Simple constraint incoming 

Simple constraint outgoing 

c 
+ 

Simple constraint incoming 

General constraint outgoing 

C 
+ 

General constraint incoming 

General constraint outgoing 

General constraint incoming 

+ Simple constraint outgoing 

$(/)Z + r’(n -- Y’) + O(r’) 

2(r’)2 + O(r’) 

$(v’)” + O(r’) 

Y’(Y ~ v’) $- O(r’) 

V’(Y - Y’) + O(r’) 

3(r’)2 + O(r’) 

f(#) 2 +- O(v’) 

F(#)Z + O(r’) 

3(r’)2 + O(v’) 

- 

11. COMMENTS AND CONCLUSIONS 

The importance of numerical stability in methods used for the solution 

of linear programs is not always appreciated. Although the schemes of 

Bartels and Golub 11, 21 have been well publicized, practitioners have 

seemingly preferred to sacrifice numerical stability for apparent advantages 

in storage and computational effort. However, the number of iterations 

needed is likely to decrease for a numerically stable algorithm, since it is 

possible for a numerically unstable method not to converge at all. An 

algorithm has been presented which is competitive in storage requirements 

and computational effort with the standard Simplex method. 

This consideration has principally been with linear programming 

problems which possess no special form of constraints. Alternative versions 

of the algorithm more suitable to sparse and structured systems will be the 

subject of future publications. 

Murray [9] has extended the method to indefinite quadratic pro- 

gramming. Although still regarded as an extension of the Simplex method 

it differs radically from the two most popular methods [3, 131 which 

transform the problem into an artificial linear program. The formulation 

of the problem and its method of solution illustrates the natural link 
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between linear and quadratic programming. Further investigations have 

been made extending the numerical techniques to the minimization of a 

nonlinear function without constraints [6] and with linear constraints [7]. 

Since the first appearance of this paper, further developmental work 

has taken place. An account of this work can be found in the publications 

of Dr. M. A. Saunders [lo, 111. 

The authors wish to thank Mr. E. L. Albasiny, Dr. M. A. Saunders, 

Dr. J. H. Wilkinson, Dr. D. W. Martin, and Miss Susan M. Picken for 

their careful reading of the malzuscri$t and a number of helpful suggestions. 
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