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Abstrac t - -We consider the following boundary value problem, 

( -1 )n- lyn~  ( t )=( -1 )P+lF( t , y (~n- l ( t ) ) ) ,  tE[a,b]NT, 

yA~ (a)=O, O<_i <_p-1, 

yA~ (o'(b)) = O, p < i < n -  1, 

where n _> 2, 1 _< p _< n -  1 is fixed and T is a time scale. Criteria for the existence of single, 
double, and multiple positive solutions of the boundary value problem are developed. Upper and 
lower bounds for these positive solutions are established for two special cases that arise from some 
physical phenomena. We also include several examples to illustrate the usefulness of the results 
obtained. (~) 2006 Elsevier Ltd. All rights reserved. 

K e y w o r d s - - p o s i t i v e  solutions, Boundary value problems, Two-point right focal boundary condi- 
tions, Time scales. 

1. I N T R O D U C T I O N  

In this paper, we present results governing the existence of positive solutions to the differential 
equation on time scales of the form, 

( - -1 )n -1  y A" (t) = ( - 1 ) p + I F  ( t , y  ( a n - 1  ( t ) ) )  , t e [a,b],  (1.1) 

sub jec t  to the  two-po in t  r ight  focal b o u n d a r y  condi t ions ,  

y a '  (a) ---- 0, 0 < i < p -  1, 
(1.2) 

y~' (o (b)) = 0, p < i < n - 1 ,  

where p,n are fixed integers satisfying n >_ 2, 1 < p < n -  1, a,b C T with a < a(b), and 
p(a(b)) = b. 
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To understand the notations used in (1.1), we recall some s tandard definitions as follows. The 
reader may refer to [1] for an introduction to the subject. 

(a) Let T be a t ime scale, i.e., T is a closed subset of R. We assume tha t  T has the topology 
tha t  it inherits from the s tandard topology on R. Throughout ,  for any c, d (> c), the 
interval [c,d] is defined as [c,a~ = {t • T [ c _< t _< d}. We also use the notat ion 
N[c, d] to denote the real interval {t • 1t~ [ c < t < d} and Z[c, d] to represent the set 
{t • Z I c < t < d}. Analogous notations for open and half-open intervals will also be 
used. 

(b) For t < sup T and s > inf T ,  the forward jump operator a and the backward jump 
operator p respectively are defined by 

(t) = inf {r  e T [ T > t} e T and p(s )  = sup{T e T [ T < S} • T.  

We define an(t) = a(a~-l(t)) with a°(t) = t. Similar definition is used for p~(s). 
(c) Fix t E T.  Let y : T --* R. We define yA(t) to be the number  (if it exists) with the 

proper ty  tha t  given e > 0, there is a neighbourhood U of t such tha t  for all s E U, 

[[y (~  ( t ) )  - y (s)] - y ~  (t) [~ (t)  - s][ < ~ t~ (t) - s l .  

We call yr'(t) the delta derivative of y(t). Define yA~(t) to be the delta derivative of 
A n - 1  

y (t), i.e., yA~(t) = (yA~-l(t))A. 
(d) If  FA(t) = f(t) ,  then we define the integral, 

f t f (~) zx~ -- F (t)  - F ( a ) .  

A solution of (1.1), (1.2) will be sought in C[a, a'~(b)], the space of continuous functions {y : 
[a, a~(b)] --, R}. We say tha t  y is a positive solution if y(t) >_ O, for t E [a, an(b)]. By utilizing 
some fixed point theorems, we shall develop criteria for the existence of single, double, and 
multiple positive solutions of (1.1), (1.2). In addition, we shall consider the following special 
cases of (1.1),(1.2) when n = 2 and p = 1: 

y ~  (t) + h (t) ([y (~ (t))] ~ + [y (o (t))] ' )  

y (a)  = y ~  (o  (b)) = 0, 

= 0, t c [a, b], 
(Q1) 

and 
y~,2 (t) + h (t) e ¢[v(~(t))l = O, t • [a, b], (q2) 

y (a) = y~ (o (b)) = 0. 

It  is assumed tha t  0 < a < 1 < ~3, ¢ > 0 and h is nonnegative. We shall provide conditions under 
which (Q1) and (Q2) have double positive solutions, and also establish upper  and lower bounds 
for these solutions. The importance of (Q1) is illustrated in [2,3] where particular cases in the 
real and discrete domains axe discussed. Boundary  value problem (Q2) arises in applications 
involving the diffusion of heat generated by positive tempera ture-dependent  sources [4]. For 
instance, when ¢ = 1 the boundary  value problem (Q2) occurs in the analysis of Joule losses in 
electrically conducting solids as well as in frictional heating. 

Boundary  value problems have a t t rac ted  a lot of at tent ion in the recent literature, due mainly 
to the fact tha t  they model many  physical phenomena which, besides (Q1) and (Q2), include gas 
diffusion through porous media, nonlinear diffusion generated by nonlinear sources, thermal  self- 
ignition of a chemically active mixture of gases in a vessel, catalysis theory, chemically reacting 
systems, adiabatic tubular  reactor processes, as well as concentration in chemical or biological 
problems, just  to name a few. In all these problems, only positive solutions are meaningful. 
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Many papers have discussed the existence of positive solutions of boundary value problems on 

the real and discrete domains, we refer to [5-9] and the monographs [I0,Ii] which give a good 

documentary of the literature. A recent trend is to consider boundary value problems on time 

scales, which include the real and the discrete as special cases, see [12-17]. Our approach in the 

present work not only unifies the analysis for the real and the discrete cases in [18,19], but also 

leads to new results which, when reduced to R and Z, are also new in the literature. 

The outline of the paper is as follows. In Section 2, we shall state two fixed-point theorems, 

namely a nonlinear alternative of Leray-Schauder type and Krasnosel'skii's fixed-point theorem, 

and also present some properties of certain Green's function which are needed later. Existence 

criteria for single, double, and multiple positive solutions of (1.1),(1.2) are developed in Section 3. 

As an application of the results obtained, in Section 4, we establish the existence of double positive 

solutions of (QI) and (Q2) as well as upper and lower bounds for these solutions. Throughout, 

examples are included to illustrate the importance of the results obtained. 

2 .  P R E L I M I N A R I E S  

We shall first s ta te  two fixed-point theorems. The  first theorem is the Leray-Schauder alterna- 
tive [20] while the second is due to Krasnosel 'skii  [21]. 

THEOREM 2.1. (See [20].) Let  B be a Banach space with E C_ B closed and convex. Assume  U 
is a relatively open subset o f  E with 0 E U and S : 0 -* E is a continuous and compact map. 
Then, either 

(a) S has a fixed point  in U, or 
(b) there exists y 6 0 U  and A E R (0, 1), such that  y = ASy. I 

THEOREM 2.2. (See [21].) Let  B --- (B, [[. [t) be a Banach space, and let C(C B) be a cone. 
Assume ~1 and f~2 are open bounded subsets o r b  with 0 E f~ l ,~ l  C ~12, and let 

s :  c n (as \ c 

be a continuous and completely continuous operator such that, either 

(a) IlSyll _< IlYlI, Y e C n O&'~l, and IlSyll _> IlYlI, Y e C n 0~2, or 
(b) IISYll > IlYlI, Y e C n 0~1, and IISYll _< IlYII, Y e C n O~=. m 

Then, S has a fixed point  in C M (~2 \ £1).  

The  Green 's  function related to (1.1),(1.2) plays a central role in the development  of our 
results. We shall first s ta te  some definitions and notations,  followed by the explicit expression of 
the Green 's  function, as well as some related inequalities. 

DEFINITION 2.1. 

(a) Define the functions hk : T × T --+ R, k E {0 ,1 , . . .  ), recursively as 

h o ( t , s ) = l ,  for all s , t  e T ,  

and 

// h k + l ( t , s ) =  h k ( % s )  A% for a l l s ,  t E T ,  k = O ,  1 , . . . .  

(b) Let  ti, 1 < i < n be such tha t  

a = t l  . . . . .  tp < tv+l . . . . .  t~ = ~ (b). 

(e) Def ine  T~: [a, b I ---, a ,  0 < i < n - 1 as 

To(t) - 1 

and 

r' I  i? Ti (t) = Ti (t : t t , . . . ,  ti) = .. A~'i. • • A~-2A'Q, 1 < i < n - 1. 
J t l  J r2  " 
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To obtain a solution for (1.1),(1.2), we require a mapping whose kernel G(t, s) is the Green's  
function of boundary  value problem (1.2), 

( - 1 )  n-1 y ~x~ (t) = 0, t • [a, b]. (2.1) 

The Green's  function G(t, s) of boundary value problem (2.1),(1.2) THEOREM 2.3. (See [22].) 
can be expressed as 

(_1)n_1 pill Ti (t) hn- l - i  (a, (r (s)) + ( - 1 )  n hn-1 (t, a (s)) ,  t _< a(s) ,  

G (t, s) = ~=0 

( - -1 )  n - 1  pill Ti (t) h~ - l -~  (a, cr (s)) ,  t _> a(s) ,  
i=0 

where t • [a, an(b)] and s • [a,b]. | 

LEMMA 2.4. (See [24].) For (t, s) • [a, an(b)l x [a, b], 

0 _< ( - 1 )  p+I a (t, s) _< ( - 1 )  p+I a (cr ~ (b), s) .  | 

REMARK 2.1. In [22], it is noted tha t  (-1)p+IG(t, s) is a nondecreasing function in t • [a, an(b)]. 
Throughout  this paper,  for a fixed number  5 • R (0, 1/2), we let 

c = min{ t  • T I t_> a + 5 ( a  n (b) - a )} ,  

d = m a x { t  • T [ t < a n (b) - 5 ( a  n (b) - a )} ,  (2.2) 

and assume the existence of c and d, such tha t  a < c < pn-1 (d) < a (b). 

LEMMA 2.5. (See [221. ) For (t, s) • [c, d] x [a, b], 

(--1) p+I C (t, s) > k ( - 1 )  p+I V (a n (b), s ) ,  

where 0 < k < 1 is a constant given by 

k =  inf G ( c , s )  | 
seia,b] g (a n (b), s)" 

3 .  E X I S T E N C E  R E S U L T S  F O R  ( 1 . 1 ) , ( 1 . 2 )  

In this section, we let the Banach space B -- C[a, an(b)] be equipped with the norm, 

I M I =  sup ly(t)l. 
tE[~,~-(b)] 

Let the operator  S : B ~ B be defined by 

~ (b) (--1) p+I [a, d rn (b)] S y ( t ) =  G(t ,s)  F ( s , y  (or n-1 (s)))As,  t e  . 

I t  is clear tha t  a fixed point of the operator  S is a solution of (1.1),(1.2). 
For clarity, we shall now list some of the conditions used later. In these conditions, we let 

~ : = { y C B l y ( t ) > _ O ,  te[a,a~(b)]}  

and 
K = {y e t72 I Y (t) > 0, for some t E [a, a n (b)] } = / (  \ {0}. 

(3.1) 
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(B1) The function F is continuous on [a, a(b)] x k with 

F (t, y) >_ 0, (t ,y) e [a, ~ (b)] × R,  

and 
F (t, y) > 0, (t, y) e [a, ~ (b)l × K. 

(B2) There exist continuous functions w, q with w : ~  [0, oo) ~ ~ [0, oo) nondecreasing and 
q: [a, tT(b)] ---+ R [0, oo), such that  for (t, y) E [a, ~r(b)] ×/~', 

F (t, y) _< q (t) ~ (y).  

(B3) There exists T: [c, pn-l(d)] --~ ~+ such that  for ( t ,y)  E [c,p'~-l(d)] × K ,  

P (t, y) _> ~ (t) ~ (y).  

(B4) There exist continuous functions f ,  u, v with f :  R [0, oo) ~ X [0, oe) and u, v :  [a, cr(b)] 
R [0, e~) such that  for (t, y) e [a, cr(b)] x K,  

u ( t ) f  (y (~7 '~-1 (t))) < F ( t ,y  (a n-1 (t))) <_ v (t) f (y (a n-1 ( t ))) .  

(Bh) u(t) is nonzero for some t e [c, p~-x(d)) ,  and there exists a number ~ e ~ (0, 1] such that 
u(t) > ~Tv(t), for t E [a, a(b)]. 

(B6) f[(b)(-1)P+lG(~r'~(b), s )v (s )As  < oo. 

LEMMA 3.1. (See [22].) Let  F : [a, a(b)] × R ~ I~ be continuous. Then, the operator S : B --* B 
is continuous and completely continuous. 

We shall now provide an existence criteria for a general (not necessarily positive) solution of 
(1.1),(1.2). 

THEOREM 3.2. Let F : [a, a(b)] x ]~ -~ ]~ be continuous. Suppose there exists a constant r~ 

independent of A, such that 

Hyll ¢ ~, 

for any solution y 6 B of the equation~ 

f °(b) ( -1)  p+I (O "n-1 [a, o "n (3.2) y (t) = ~ c (t, s) r (s, u (s)))  :~s, t ~ (b)], 
~'6~ 

where A c ~ (0, 1). Then (1.1),(1.2) has at least one solution y E B such that ]IY}I < r. 

PrtOOF. Solving (3.2) is equivalent to obtaining a fixed point of the equation, 

y = ASy, 

where S is defined in (3.1). By Lamina 3.1, S is continuous and completely continuous. Next, in 
the context of Theorem 2.1, we define 

v - -  {y e B IIlYll < r} .  

The condition t[Y[[ ~ r ensures that  we cannot have Conclusion (b) of Theorem 2.1, hence, 
Conclusion (a) must hold, i.e., (1.1),(1.2) has a solution y e 0- with [[Yl[ <- r. | 

The next result employs Theorem 3.2 to provide the existence of a positive solution. 
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Using a similar argument as above, it can be seen that  

lYo (t)] -- Yo (t),  t e In, O " n  (b)], and IlY011 ¢ ~. (3.9) 

Thus, Yo is positive and IlY0H < a. Further,  noting (3.5) and (3.9), we have for t E [a, crn(b)], 

i f (b)  (t, s) F (s, ]y0 (~o-1 Yo (t) = ( -1 )  p+I V (s)) 1) As 

= f~(b) (-1)  p+l G (t, s) F (s, yo (,,,,-1 (s))) As. 
J O ,  

Hence, Y0 is in fact a solution of (1.1),(1.2). The proof is complete. | 

REMARK 3.1. We note tha t  the last inequality in (B1), viz., 

F (t, y) > o, (t, y) • In, ~ (b)] × K, 

is not needed in Theorem 3.3. 

Theorem 3.3 provides the existence of a positive solution, which may be trivial. Our next 
result guarantees the existence of a nontrivial positive solution in the cone Ck, defined, for a 
fixed 5 • R (0, 1/2), as 

{y  • B [ y(t) >__ O, t • [a'a'~ (b)] "te[c,d]min y(t) >_ k lly]l } , (3.10) Ck 

where k is given in Lemma 2.5. 

THEOREM 3.4. Let  5 • ]~ (0, 1/2) be fixed and assume (B1)-(B3) and (3.3) hold. Suppose 

there exists/~ > 0 such that  for x • R [kt3, t3], we have 

Pn--l(d) (3.11) 
X _< w (z) k ( - i )  p+I G (a s (b), s) T (s) As. 

J C  

Then, (1.1),(1.2) has a positive solution y • B such that 

(a) a < ][y[] <_ f~ and mintE[~,d] y(t) > ks  ira < ~; 
(b) Z < Ilyll < ~ and minte[~,d] y(t) >_ kfl ira > ft. 

PROOF. We shall employ Theorem 2.2. To begin, the operator S : B --~ B is continuous and 
completely continuous by Lemma 3.1. 

Next, we shall show that  S maps the cone Ck into Ck. For this, we let y • Ck. Since Ck C_/~', 
it follows from (B1) that  

F (t, y) > 0, (t, y) • [a, a (b)] x Ck. (3.12) 

Noting (3.12), we obtain for t • [a, an(b)], 

L a(b) (--1) p+I ( O'n-1 Sy(t)  = G ( t , s ) F  (s,y (s))) As > 0. (3.13) 

In view of (3.13) and Lemma 2.4, we find 

L 
~(b) 

[Sy(t)[=Sy(t)<_ ( - 1 ) p + i G ( a ~ ( b ) , s ) F ( s , y ( ~ n - i ( s ) ) ) A s ,  tE[a,a~(b)],  
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which implies 

L a(b) (--1) p+I ( O'n-1 IlSyll _< a(~P(b),s)F(s,y (s))) As. 

Now, using Lemma 2.5 and (3.14), we get for t • [c, a~, 

L 
o(b) 

Sy(t)>_ k ( - 1 ) ' + l G ( a ~ ( b ) , s ) F ( s , y ( a ~ - l ( s ) ) ) A s > _ k l l S y l l  . 

Hence, 
rain Sy(t)  >_ k IlSyll. 

tE[c,d] 

Finally, we combine (3.13) and (3.15) to obtain S(Ck) C_ Ck. 
To proceed to the next part of the proof, let 

~ .  = {y e B I IIyll < a}  and 

We shall verify that  

(i) II@ll <- IIvll for y • Ck N 0f/~, and 
(ii) II@ll -> Ilyll for y • c~  n 0a~ .  

a~ = {y e B I Ilyll </~}.  

(3.14) 

(3.15) 

which implies 

t ~ [C, pn--1 (d)]. 

~ (b) ( - 1 F  +~ a ( ~  '~ (b) ~) F ( . , y  (~'~-~ (~))) n. 

rpn-l(d) 1 
>]~  (-1)  ~+ G ( ~  (b), ~) F (~,y (o~-~ (~))) n~ 

fpn--l(d) 
---Jo (-1)P+~ V (a~ (b), s) ~ (s) w (Y (°~-~ (s))) a~ 

.c f, l(d)(--1)pAclG(~"(b)'')T($) ~,: n-l(d) (- l~'(~:;'(a'~ (b), x) ~- (x) Ax 

_> i. '(d) (-IF +~ G (~" (b), ~) ~ (~) k I~ "-'(d) (_IF+~ C (o~ (b), ~) ~ (~) n~ 

--- ~ = IlYll, 

I1@11-> Ibll. 

Next, we shall prove (ii). 
t E [c, a~, and this implies 

Applying (B3) and (3.11), we find 

Isy (o~ (b))l = Sy (on (b)) 

Ilsyll _< Ilyll • 

Let y c Ck A c9~. Then, Ifyll =/3- Moreover, kfl <_ y(t) <_ fl, for 

and so 

I@ (t)t = @ (t) 
L~(b) 

< ( -1)  p+' a (t, s) q (s) w (Y (~n- ,  (s))) As 

L ~(b) (--1) p+' _< G (a '~ (b ) , s )q ( s )w  (a) As = 7 . w  (a) < a = Ilyll, 

To show (i), let y e Ck N 0 ~ .  Then, IiYll -- c~. Using (3.13), (B2), Lemma 2.4, and (3.3), w e  

get for t e [a, ~(b)] ,  
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Having established (i) and (ii), it follows from Theorem 2.2 that  S has a fixed point y 
C ~ ( ~ { ~ , Z ) \ ~ m i n { ~ , ~ } ) .  Thus, min{c~,fl} < IlYll -< max{a,  fl}. Using a similar argument as 
in the first par t  of the proof of Theorem 3.3, we see tha t  IlYil ¢ a.  Hence, we obtain the first 
part  of Conclusions (a) and (b). Further,  since y ~ C, we have 

rain y (t) > k [lYll > min {a,  fl}, 
t ~ [ c , d ]  - -  - -  

which, together with IlYll ~ a ,  gives the second part  of Conclusions (a) and (b). | 

Our next  result gives the existence of double positive solutions. 

THEOREM 3.5. L e t  5 E ~ (0 ,  1/2)  be f ixed  and a s s u m e  ( B I ) - ( B 3 ) ,  (3.3), and (3.11) hold w i th  

a < ft. Then ,  (1.1) ,(1.2)  has  (~t least)  two pos i t i ve  so lu t ions  y l , y 2  E B such tha t  

0 < [[YlH < a < [[y2[[ < fl, with min Y2 (t) > ka .  

PROOF. The  existence of Yl and Y2 is guaranteed by Theorems 3.3 and 3.4, respectively. | 

In Theorem 3.5, it is possible to have IlYlll = 0. Our next  result guarantees the existence of 
two nontr iv ia l  positive solutions. 

THEOREM 3.6. Let  5 e ]~(0, 1/2) be f ixed and assume  ( B 1 ) - ( B 3 ) ,  (3.3), (3.11), and (3.11)1Z= 3 

hold, where 0 < fl < a < ft. T h e n  (1.1),(1.2) has  (at least)  two pos i t i v e  so lu t ions  Yl,  Y2 C B such 

t ha t  

0 < fl < IlYlll < a < ]IY2[I < fl, min Yl (t) > kfl, min Y2 (t) > ka. 
- -  - -  t E [ c , d  I - -  tC[c,d] 

PROOF. The  existence o fy l  and Y2 is guaranteed from Theorem 3.4(b) and 3.4(a), respectively. | 

The  next  result generalizes Theorems 3.5 and 3.6 and gives the existence of mult iple  positive 
solutions of (1.1),(1.2). 

THEOREM 3.7. L e t  5 E R(0 ,1 /2)  be f ixed and a s sume  ( B 1 ) - ( B 3 )  hold.  L e t  (3.3) be satisfied 

w i th  ~ = c~l, l = 1, 2 , . . . ,  r,  and (3.11) be satisf ied w i th  fl = ill, l = 1, 2 , . . . ,  m. 

(a) I f  m =- r + 1 and 0 < fll < a l  < . . .  < fir < c~r < f ir+l,  t hen  (1.1) ,(1.2)  has  (at  least)  2r 

pos i t i ve  so lu t ions  y l  , • . . ,  Y2r E B such t ha t  

0 < ~1 ~ IlYlll < c~1 < . . .  < fir <- HY2r-II[ < ar  < HY2r[I ~ flk+l' 

(b) I f  m = r and 0 < fll < a l  < ' "  < fir < a t ,  t hen  (1.1) ,(1.2)  has (at  least)  2r - 1 pos i t i ve  

so lu t ions  y l , . . . ,  y2r-1  E B such that  

(c) I f  r = m +  1 and 0 < (~1 < fll < "'" < (~m < tim < a m + l ,  t hen  ( I .1) , (1 .2)  has (at  least)  

2 m  + 1 pos i t i ve  so lu t ions  yo, . • •, Y2m ~ B such t ha t  

0 < Ily01t < ~ < IMll < & ---"" -< Zm < Ily2m]l < ~m+l .  

(d) I[  r = m and 0 < a l  < fll  < "'" < a m  < tim, then  (1.1) ,(1.2)  has  (at least)  2 m  pos i t i ve  

so lu t ions  Yo , . .  . ,Y~m-1 E B such t ha t  

0 < Llyol[ < ~1 < Ilylll < A <__"" < am < Ily2m-~LI -< Zm. 
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PaOOF. Repet i t ive  appl icat ions  of Theorem 3.4 yield (a) and (b). In  (c) and (d), Theorem 3.3 is 
used to ob ta in  the  existence of Y0 E B wi th  0 < IlY011 < a l .  The  results  then  follow by repeated  
use of Theorem 3.4. | 

EXAMPLE 3.1. Let  T = N[0, 1) U Z +. Consider the  boundary  value problem, 

y ~  (t) + 
2eY(a(t)) 

e33~(t)_[~(t)] 2 - -  O, t E [0, 15], 

y (o) = y~ (~ (15)) = o. 
(3.16) 

Here, n = 2, p = 1, a = 0, and b = 15. We shall verify tha t  the  hypotheses  (B1)-(B3),  (3.3), 

and (3.11) are satisfied. Note tha t  (B1) obviously holds wi th  F ( t , y )  = 2eY/e  33~(t)-[z(t)]2. For 
Condit ions (B2) and (B3), we may  choose 

2 
q (t) = ~- (t) - and w (y) = e y. 

e33Cr(t)--[a(t)] 2 

Next,  we compute  di rect ly  to  get 

f 
~(;5) 

= a (a2 (15/,  s) q (s) A s  
J 0  

1 2s ds + 
e33~-~ 2 e33(~+1)-(,+1) 2 

= 1.847 x 10 -3.  

I t  follows tha t  the  inequal i ty  a > ~,. e ~ is t rue provided 1.85 x 1 0  - 3  < c~ < 8.43. We may choose 
a = 8.4 so tha t  (3.3) is satisfied. 

Using Theorem 2.3 with n = 2 and p = 1, we get 

t - - a ,  t < cr (s ) ,  
G (t, s) = - (3.17) 

(s) - a, t _> ~ ( s ) .  

Let 5 = 0.2. Prom (2.2), we get c = 4 and d = 13. So, noting (3.17) and Lemma 2.5, we find 

k =  inf G(4 ,  s) 
,e[0,151 G (a 2 (15), s) 

= m i n ~  inf a ( s ) ,  inf 4 } 
t~(s)~[o,4) ~ (s) ~(s)e[4,~(15)] ~r (s) 

4 1 

o (15) 4 

Now, the inequal i ty  in (3.11) reduces to  

fp(d) : 21 ex .]4f12 e 33a(s)-[a(s)]2~T (8) " S (3.95 X 10 -61 ) e x, x < w (=)~c kC (~2 (15), s) ~ (s) ~ s  ! A : 

and is t rue  if x < 3.95 x 10 -61 or x > 144.05. Hence, (3.11) is fulfilled if we choose/3 = 580 or 
/3 = 3.9 x 10 -61. I t  now follows from Theorem 3.6 tha t  bounda ry  value problem (3.16) has (at 

least) two posit ive solutions Yl and Y2 such tha t  

3.9 × 10 -61 < IlYlll < 8.4 < IlY21] -< 580, 

min Yl (t) > 9.75 x 10 -62, rain Y2 (t) > 2.1. 
t e  [4,13] tE  [4,13] 

(3.18) 
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THEOREM 3.9. Let 5 • N(0, 1/2) be fixed and assume (B4)-(B6)  hold. Let w > 0 be given and 
suppose that f satisfies 

[z 0 < f (x)  < w ~(b) (--1)  p+~ G (a" (b) ,  s) v (s)  A s  , 0 < x < w.  (3.24) 

(a) / f-fo ---- 0% then (1.1),(1.2) has a positive solution Yl • B such that 0 < IImll -< ~.  
(b) If_foo = oo, then (1.1),(1.2) has a positive solution Y2 • B such that  

Ily211 > - w, with rain y2 (t) >_ Ow. 
te[c,d] 

(c) /ff--O = f--<¢ = 0% then (1.1),(1.2) has (at least) two positive so/utions Yl, Y2 • B such that 

0 < Ily~[I -< w <__ Ily211, with rain y2(t) >_ Ow. 
te[c,d] 

PROOF. 

(a) We let 

fcP~-i (d) ]--1 Q = 0 ( -1 )  p+~ a ( a  ~ (b), s) u (8)/%8 . 

Since -f0 = oe, there exists 0 < r < w, such tha t  

f ( x )  > Q x ,  O < x < _ r .  

Let y • C be such tha t  [[yll = ~. Then, applying (3.19), (3.26), and (3.25), we find 

]~ a(b) (--1) p+I 
s y  (a ~ (b)) > a (a ~ (b), 8) u (s) f (y (a ~-1 ( s ) ) ) /%s  

fp 
~- 1 (d) 

(--1) p+I C (an  (b ) , s )  u (8) Q y  ((; rn-1 (8))/%8 
,Ic 

> Q F ~-~(d) ( - 1 )  p+~ c (a  n (b),  s) u (s) 0 IlYll/%s = IlY[I • ,.'c 
This implies tha t  

(3.25) 

(3.26) 

Jlsy[] >_ liyf]. (3.27) 

If we set f~l = {Y C B I IlYll < r}, then IISyll > IlY[I for y E C N 0D1. 
Next,  we let y E C be such tha t  IlYll -- w. Applying (3.19), L e m m a  2.4, and (3.24), we 

get for t • [a,a~(b)], 

fa  a(b) (_ l )P+ l  Sy ( t )  <_ G ( a  s ( b ) , s ) v ( s ) f  (y (a  ~-1 (s))) As < w---- IlYlI. 

Hence, we have 

I1@11- IrY[I • (3.28) 

If we set 32 = {y • B I IlYll < w}, then IlSy[I <_ llyll for y • C A  032. 
Having obtained (3.27) and (3.28), it now follows from Theorem 2.2 tha t  S has a fixed 

point Yl • C n (f~2 \ f~l) such tha t  r _< IlYl II < w. It  is clear tha t  y~ is a positive solution 
of (1.1),(1.2). 
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(b) From the proof of Theorem 3.9(a), we note tha t  the condition (3.24) gives rise to (3.28). 
Hence, by letting ~1 -- {y E B I IlYI[ < w}, we have [ISyl[ <_ HyN, for y E c N 0gtl. 

Next, let Q be defined as in (3.25). Since fee = co, we may choose T > w such that  

f (x) >_ Qx, x >_ T. (3.29) 

Let  y E C be such tha t  ][y]] = T/O. Then, for t E [c, d], we have 

T 
y (t) _> 0 IlYl] --- 0 × -~ = T. 

So, it follows from (3.29) tha t  

f (y (t)) >_ Qy ( t) ,  t E [c, d], 

which implies 

f (y (~r ~-1 (t))) >_ Qy (a "~-1 (t)) ,  t E [c, pn-1 (d)] .  (3.30) 

Now, using (3.19), (3.30), and (3.25), we have 

f ~(b) (--1) p+I Sy(O "n (b)) ~__ G ( o  "n ( b ) , s ) u ( s )  f (y (O "n-1 (S))) AS 

f p"-I (d) (_ l )p+  i >_ G (b), s) (s) Qy ( n-1 (s)) 
Jc 

fp 
~ - l ( d )  

~__ Q ( - 1 )  p+I a (o -n (b),  s) ~t (s) 0 IlY]I A8 : Iiyil , 
Jc 

which leads to (3.27). If we set f/2 = {Y E B ] I]YI] < T/P}, then IISyH > ]]YH for 
y E CNO~2.  

It  follows from Theorem 2.2 tha t  S has a fixed point y2 E C M (~2 \ 121) such that  
w _< Iiy2II -< T/O. It is clear tha t  Y2 is a positive solution of (1.1),(1.2). 

(c) This follows from (a) and (b). I 

THEOREM 3.10. Let 5 @ N(0, 1/2) be fixed and assume (B4)-(B6) hold. Suppose that fo = 
fee = oc and f satisfies (3.24) with w = wl, l = 1, . . .  ,m, where wl < w2 < . . .  < Wm. Then, 
(1.1),(1.2) has (at least) two positive solutions yl,Y2 E B such tha t  

min y2(t) >_ Owm. 0 < Ily ll --- Ily211 >- win, 

PROOF. The result follows by repeated use of Theorem 3.9. l 

THEOREM 3.11. Let 5 E R(0, 1/2) be fixed and assume (B4)-(B6) hold. Let  w > 0 be given and 
suppose that f satisfies 

f ( x ) > _ w  ( - 1 ) P + l G ( a ~ ( b ) , s ) u ( s ) A s  , Ow<_x~<_w. (3.31) 
I.J c 

(a) If-re = O, then (1.1),(1.2) has a positive solution yl E B such tha t  0 < Ilylll _< ~.  
(b) If-fee = o and f is nondecreasing, then (1.1),(1.2) has a positive solution Y2 E B such 

tha t  
[]Y21[ -~ w, with rain y2 (t) > Ow. 

te[c,d] 

(c) I f f 0  = fee  = 0 and f is nondecreasing, then (1.1),(1.2) has (at least) two positive solutions 
Yl, Y2 E B such that 

0 <  ]]Ylf[-<w-iiY:H with min Y2( t )>Ow.  
' tE[c,d] -- 
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PROOF. 

(a) We define 

e = ( - 1 )  p+I G (or n (b), s) v (s) As (3.32) 

Since ]o  -- 0, there exists 0 < q, < w such that  

f (x) < ex, 0 < x < % (3.33) 

Let  y e C be such that  ]]Y[I = 3'. Then, applying (3.19), Lemma 2.4, (3.33), and (3.32), 
we find for t e [a, an(b)], 

~a a(b) (_ l )P+l  Sy(t) ~ e ( t , s )  V($)f (y ((7 n-1 ($))) AS 

L ~(b) (--1) p+I ( an-1  < a (f~ (b), s ) .  (s) ~y (s)) As 

L 
~(b) 

-~ e Ilyl] ( - 1 )  p+I a ( a n  (b ) , s )v  (s) As = Ityll. 

This immediately implies (3.28). If we set f/1 = {Y e B I IlYll < ~}, then IlSYll _< Ilyll for 
y E c n o t 2 ~ .  

Next, let y E C be such that  Ilyll = w. Clearly, 

Ow <_ y (a ~-1 (t)) <_ w, t • [c, p,~-i (d)] ,  

which, together with (3.19) and (3.31), gives 

[p~-'(d) (--1) p+I Sy (fin (b)) ~ a (a N (b), s) u (s) f (y (fn--1 (S))) AS ~_~ W = tlYll • 
dc 

Hence, we have (3.27). Set i22 = {y • B I IlYll < ~},  then we get IlSyll _ Ilyll for 
y • Cncgft2. 

It now follows from Theorem 2.2 tha t  S has a fixed point Yl • C n (122 \ f l l)  such that  
-< Ily~ll -< w. It  is clear tha t  Yl is a positive solution of (1.1),(1.2). 

(b) From the proof of Theorem 3.11(a), we note that  the condition (3.31) gives rise to (3.27). 
So, by letting •1 = {Y • B I Ilyll < w}, then IlSyll - Ilyll for y • C r l  0 a l .  

Next, let e be defined as in (3.32). Since foo = 0, we may choose T > w, such that  

f (x) < ex, x > T. (3.34) 

Let y • C be such that  IlyH -- T. Then, using (3.19), Lemma 2.4, the fact that  f is 
nondecreasing, (3.34) and (3.32), we find for t • [a, a'~(b)], 

f~(b) (-1) p+I Sy(t) ~ C(O "n (b),s)V(S) f (y (fn--1 (8))) A~ 

L a(b) ( - 1 )  p+I 
< G (or n (b), s) v (s) f (liy[I) As  

f ~(b) (--1F +1 
_< G (an (b), s) v (s) e liyll As = Ilyll • 

Thus, we have (3.28). If we set f~2 = {Y • B I Ilyll < T},  then IISYll < IlYll for y • CnOfh .  
We have now obtained (3.27) and (3.28). Once again, it follows from Theorem 2.2 that  

S has a fixed point Y2 • C n (~2 \ 12~) such tha t  w _< Ily211 -< r .  It is clear that  Y2 is a 
positive solution of (1.1),(1.2). 

(c) This follows from (a) and (b). I 



P o s i t i v e  S o l u t i o n s  569 

THEOREM 3.12. Let 5 C R(0, 1/2) be fixed and assume (B4)-(B6) hold. Suppose that-]o = f o~ = 
O, f is nondecreasing and f satisfies (3.31) with w = wl, l = 1 , . . . ,  m, where Wl < w2 < . . .  < w,~. 
Then, (1.1),(1.2) has (at least) two positive solutions Yl,Y2 C B such that 

o < l]y~l] --- w~, Ily2Jl >-- ~m,  rain Y2 (t) _> Owm. 
tE [c,dl 

PROOF. Repeated applications of Theorem 3.11 yield the result. 

EXAMPLE 3.2. Let m E R + and T = mZ. Consider the boundary  value problem, 

24 [y(a(t)) 2 + 1872m 4] 
y A2 (t) + = 0, t e [0, l l m ] ,  

[300ma( t ) -  12 (a (t))2] 2 + 1872m 4 

y (0) = y/ '  (12m) = 0. 

(3.35) 

Here, n = 2, p = 1, a = 0, and b = l l m .  Taking f(y) = y2 + 1872m 4, we may choose 

~ ( t )  = v ( t )  = 
24 

[3oom~ (t) - 12 (o (t)) 2] 2 + lS72m4 

It is easy to check that  (B4)-(B6) are satisfied with 77 = 1. Clearly, f-o = f--o~ = c~. We shall find 
some w > 0 such that  condition (3.24) is fulfilled. First, using (3.17) we obtain 

a(b)( -1)p+lG(a '~(b) ' s )v (s )As= jofX~m(s+m)[300ma(s) - 12 (2:(s)) 2] 

f l2m > 24 s + m As  
-- J0 (1872m2) 2 + 1872m 4 

1872m 2 1 

(1872m2) 2 + 1872m 4 1873m 2 

As 
2 

+ 1872m 4 

where we have substi tuted s = 11m to get the inequality. Next, to  ensure tha t  (3.24) is true, we 
set 

0 < f ( y ) _ < w  2 + 1 8 7 2 m  4 

_< ~ ( - 1 )  p+~ a (o~ (b),  s) v (s) A s  
J ~  

< 1873rn2w, 0 < y _< w, 

which gives the inequality w 2 + 1872m 4 _< 1873m2w. This holds if and only if 

m 2 < w < 1872m 2. (3.36) 

Hence, (3.24) holds for any w E ~[m 2, 1872m2]. By Theorem 3.10, there exist two positive 

solutions Yl and Y2 of (3.35) such that  for a fixed ~ E R(0, 1/2), 

0 < Ily111 < .~2, HY2][ >-- 1872m2, min Y2 (t) >_ 9 (1872rn2) . (3.37) 
te[c ,d]  

Let 5 = 0.3. Then, c = 4m, d = 9m and 0 = k = 1/3. We note tha t  one positive solution of 
(3.35) is given by y(t) = 12t(25m - t) with HYll -- 1872m2 and mintc[4m,9,q y(t) = 1008m 2, both 
are within the ranges given in (3.37). 
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4 .  A P P L I C A T I O N S  

In this section, we shall apply the results obtained in Section 3 to two special cases of (1.1),(1.2), 
namely, (Q1) and (Q2). In addition to providing easily verifiable criteria for the existence of 
double positive solutions, we also establish upper and lower bounds for these solutions. 

Before proceeding further, it is noted that  (Q1) and (Q2) are particular cases of (1.1),(1.2) 
when n = 2 and p = 1. Hence, by Theorem 2.3 the related Green's function is explicitly given 
in (3.17). Moreover, for a fixed 8 • R(0, 1/2), using Lemma 2.5 and (3.17), we get 

C (c, s) C (c, s) 
k = inf - inf 

~<o,~] c ( ° 2  (b) ,  ~) ~[o,~] ~ (s )  - a (4 .1)  

----min~ inf a ( s ) - a  inf c - a  } _  c - a  

We shall begin with the boundary value problem, 

yA 2 
(t) + h (t) ([y (~ (t))] ~ + [y (a ( t ) ) ] ' )  = 0, t • [a, b] 

(q l )  
y (a) = ya  (a (b)) = 0 

where 0 _< a < 1 </3. It is assumed that  

(C1) h(t) is continuous and nonnegative on [a, cr(b)]; 
(C2) h(t) is nonzero for some t • [c,p(d)); 

(C3) f~(b)C(cr2(b) ' s ) h ( s ) A s  = f~(b)[a(s) - a]h(s)As  < oo. 

THEOREM 4.1. Let  6 • ~(0, 1/2) be fixed and let w > 0 be given. Suppose that  

~ (4 .2 /  ~(b) [~ (s )  - a] h (s )  A s  _< ~ + ~ .  

Then, boundary value problem (Q1) has (at least) two posit ive solutions y l ,  y2 • C[a, ¢2(b)] such 

that  

0 < ]iYl[i < w < Iry211 with min y2 (t) > ( c -  a ) w  
- - ' t e I ~ , d ]  - -  a ( b ) - a "  

PROOF. The boundary value problem (Q1) is a particular case of (1.1),(1.2) when F ( t , y )  = 

h( t ) (y  ~ + y~). Pick f ( x )  = x ~ + x ~ and u(t) = v(t)  = h(t).  Then, in view of (C1)-(C3), 
Conditions (B4)-(B6) are now satisfied with 7 /=  1. Moreover, -f0 = fo~ = oo. We shall apply 
Theorem 3.9. Since we have 

0 < f ( x ) _ <  w ~ + w  z ,  0 < x _ < w ,  

to ensure that  (3.24) is satisfied, we shall impose (noting (3.17)) 

w ~ + w ~  < ~ a (~2  (b) ,  8) v ( s )  A s  = ~ [~ (s )  - a] h ( s )  A s  , 

which leads to (4.2). The conclusion now follows immediately from Theorem 3.9(c) and (4.1). | 

THEOREM 4.2. Let  6 • R(0, 1/2) be fixed. Suppose (4.2) is satisfied wi th  w = wl, l = 1, . . .  , m, 
where wl  < w2 < ""  < Wm. Then, (Q1) has (at least) two posit ive solutions Yl, Y2 • C[a, cr2(b)] 
such that  

(c -- a) wrn 
0 < IMLi < ~ 1 ,  ily2il > win,  rain y2 (t) > 

- - te[c,~] - ~ (b) - a 

PROOF. The result follows by repeated use of Theorem 4.1. | 

We shall now establish upper and lower bounds for the two positive solutions of (QI). 
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THEOREM 4.3. Let  5 • N(0, 1/2) be/~xed. We de/~ne 

( ¢(x)=  ~ N - - a J  J~ 

Let 
wl : [¢ (a)] 1/1-~ and w2 : [¢ (/9)] 1/1-z • 

Suppose that w > 0 is given and (4.2) holds. Then, boundary value problem (Q1) has (at least) 
two positive solutions y~, Y2 • C[a, a2(b)] such that 

(a) i f w  < min{wl,w2}, then 

0 < I]Yl I1 < w < tly2tl < min {w~, w2} with min y2 (t) > (c - a)________~w. 
. . . .  te[¢,d] -- a (b) - a '  

(b) i f m i n { w l , w 2 }  < w < max{wl,w2}, then 

min {wl,w2} < [lYlll -< w _< IlY2[I -< max{Wl,W2}, 

min Yl (t) > (c - a) min {wl, w2 } min Y2 (t) > (c - a)_________~w. 
ts[¢,a] - a (b) - a ' tS[c,d] - -  ~ (b) - a '  

(c) i f w  > max{wl ,w2} ,  then 

max{wl ,w2} _< IlylH - w _< IlY211, 

( c - ~ ) ~  min Yl (t) > (c -- a) max {Wl, w2} min Y2 (t) > - - .  

PROOF. 

tions Y3 and Y4 such that 

0 < lJy311 -< w _< b~II. 

Next, the operator S defined in (3.i) becomes 

j~(b)  
(t, s) h (s) ([y (~ (s))]" + [y (~ (s))]') Sy (t) G As ,  

Since (4.2) is satisfied, it follows from Theorem 4.1 tha t  (Q1) has double positive solu- 

(4.3) 

Thus, 

lls~ll _< Ilyll. 

By setting f~ = {y • B ] I]yll < w}, we see that  (4.6) holds for y • Ck Cl Off. 

(4.~) 

where G(t ,s)  is given in (3.17). Moreover, the cone Ck C B = C[a,(r2(b)] defined in (3.10) 
becomes (noting (4.1)) 

{ y E B , y ( t )  >_0, t e  [a,(y2(b)] " min y(t)>_ c - a  } Ck= 
' t e [ c , d ]  ~ r ~ b ~  a Ityll • (4.5) 

We shall employ Theorem 2.2. Let y E Ck be such that  ]IY[] = w. Then, in view of Lemma 2.4, 
(3.17) and (4.2), we have 

~a °'(b) 
Sy (t) < C (°2 (b), s) h (s) ([y (~ (s))] ~ + [y (a (s))] ~) As 

/ a  ~(b) 
< [a(s) - a] h (s) (w ~ + w ' )  As _< w = I]YlI, t e [a ,a  2 (b)]. 

t E [a, cr 2 (b)], (4.4) 
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Next, it is clear tha t  for y E Ck, 

fo(b) 
] l@ll--  sup i G(t,s)h(s)([y(a(s))l"+[y(a(s))l~)As 

tC[a,a~(b)l Ja 

if(b) 
p(d) 

> [° (s) - a] h (s) ([y (a (s)) F + [y (~ ( s ) ) f )  As  
J c  

_>fp(d)  [ (  e _ a  ) ~  ( c_a ~ 1 [ ~ ( s ) - a ] h ( s )  -~(b)~a Ilyll'~+ \a~)-~--~ ] Ilyll z As. 

It follows that 

liSYll > ¢ (a)  iBYF + ¢ (~) ] lYlf ,  y ~ C~. (4.7) 

Let y E Ck be such tha t  [lYJ] -- Wl. Then, (4.7) provides 

iisyii > ¢ (~ ) i i y iF  > ¢(4)Ilyll "-1 liy[i = liyli • (4.8) 

If we set ~1 = {Y C B ] ]IYll < wl}, then (4.8) holds for y E Ck Cl 0121. Having obtained (4.6) 
and (4.8), it follows from Theorem 2.2 tha t  S has a fixed point Y5 E Ck such tha t  

min {wl ,w} <_ [ly51i-< m a x { w l , w } .  (4.9) 

Similarly, if we let y E Ck be such tha t  ]IYll = w2, then from (4.7), we get 

IISYll > ¢ (~)IlylI z ~ ¢ (~)Ilyll ~-1 JlylI = Ilyi[ • (4.10) 

By setting ~2  = {y  E B I IIyll < ~2},  we see that (4.10) holds for y ~ Ck a 0a2. With (4.6) 
and (4.10), once again by Theorem 2.2, we conclude tha t  S has a fixed point Y6 E Ck, such that  

min{w2,w}  < Ily~ll < m a x { w 2 , w } .  (4.11) 

Our result follows by combining (4.3), (4.9), and (4.11). For Case (a), we may  pick 

Yl = Y3 and Y2 = 
Yh, Wl < W2~ 

L y6, Wl >_ w2. 
In Case (b), we choose 

(Y5, Y6), ?D1 ~ W2, 
(Yl'Y2) = (ys,u~), ~ _> ~ : .  

Finally, in Case (c), we take 

Y6, Wl < w 2 ,  i 
Yl = -- and Y2 ---- Y4. 

Yh, wl > w2, 
EXAMPLE 4.1. Consider boundary  value problem (Q1) with 

T =  {2k I k e Z } u { 0 } ,  a = l ,  b = 8 .  

Let w = 1. Then, condition (4.2) reduces to 

1 (4.12) ~(8) (2~ - 1) h (~) a s  _< g. 

By Theorem 4.1, for any h(t) tha t  satisfies (4.12), the boundary  value problem has (at least) 
double positive solutions yl and Y2 such tha t  for a fixed 5 c ]R(0, 1/2), 

e - 1  
0 < ]IYll[ < 1 ~: Ily2l] with min y2 (t) > 

-- -- te[c,d] -- 15 

Some examples of such h(t) are 1/180 and 1/160 sin 2 t. 
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EXAMPLE 4.2.  Let T = {2 k [ k C Z} tJ {0}. Consider boundary value problem, 

( t ) +  [Y (dr (t))]°'1 + [Y (dr (t))]L1 = 0 ,  t e W½,4l, yA2 

((1/2)dr (t) + 5)2 - - (4.13) 

y ( 1 )  = yA (4) = 0. 

Here,  a = 0.1, t3 = 1.1 and h(t) = ((1/2)dr(t)  + 5) -2 .  Condition (4.2) yields 

F (4) f0 s W0.1 "~- w l . 1  > [dr (S) -- a] h (s) A s  = 2s -- 0.5 - -  J1/2 .5 ( ( 1 / 2 ) a  (s) + 5) 2 A s  = 0.563, 

and  this is satisfied for  a n y  1.39 < w < 302. 
Le t  5 = 0.05. Then ,  c -- 2 and  d = 8. By direct computation, we get 

wl  --  [¢ (0.1)] 1°/9 = 0.0962 and w2 -- [¢ (1.1)] -1°  = 1.38 × 1016. 

Since wl < w < w2, by Theorem 4.3(b), boundary value problem (4.13) has (at least) two positive 
solutions Yl and Y2 such that 

0.0962 _< Ilylll -< ~ < Ily211 < 1.38 × 1016, 

Since 1.39 < w < 302, we further conclude that 

0.0962 < Ilylll < 1,39, 

min  Yl (t) > 0.01924, 
tc[2,Sl 

min  y2 (t) >__ 0.2w. 
tel2,8] 

302 < Ily2[I ~ 1.38 × 1016, 

min  Yl (t) > 0.01924, min  Y2 (t) > 0.2 (302) = 60.4. 
tE[2,81 - -  tel2,81 - -  

For  the  rest  of this  section,  we shall  consider  b o u n d a r y  value p rob l em,  

y~2 (t) + h (t) e ¢[y(~(t))] = 0, t e [a, b], (Q2) 

y (a) = yA (dr (b)) --  0 

where  ( > 0. I t  is a s sum e d  t h a t  h(t) satisfies Condi t ions  (C1) - (C3) .  

THEOREM 4.4.  Let 5 E ~(0 ,  1 /2)  be fixed and  let w > 0 be given. Suppose that 

/ o(b) [dr ( s )  --  a] h ( s )  A s  _< ( 4 . 1 4 )  w e - ~  w. 

Then, boundary value problem (Q2) has (at  least) two positive solutions yl, y2 E C[a, dr2(b)] such 
that 

O<l[yl l l<w<[ly2H,  wi th  min y2( t )>  ( c - a ) w  
- - teIc,~] - ~ ( b ) -  a "  

PROOF. B o u n d a r y  value p rob l e m  (Q2) is a special  case of (1.1),(1.2) when  F ( t , y )  = h(t)e ¢y. 
Choose  f (x )  = eCX and  u(t) = v(t) = h(t). Then ,  in v iew of (C1) - (C3) ,  Condi t ions  (B4) - (B6)  
are now sat isf ied wi th  r] = 1. Fur ther ,  f-0 = -foo -- c~. We shall  e m p l o y  T h e o r e m  3.9. Since 

f (x) <_ e ¢w, 

condi t ion  (3.24) will be  satisfied if we set  

e ~ _< ~ a (dr~ (b), s) ~ (s) As  

O<x<_w,  

--1 

= w [dr (s) - a] h (s) A s  , 
i, J a  

which is inequa l i ty  (4.14). T h e  conclusion is now i m m e d i a t e  f rom T h e o r e m  3.9(c) and  (4.1). | 
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THEOREM 4.5. Let 5 E R(0, 1/2) be fixed. Suppose (4.14) is satisfied with w = wl, l = 1,. . .  ,m, 
where wl < we < . . .  < w,~. Then, (Q2) has (at least) two positive solutions yl, y2 c C[a, ae(b)] 
such that 

( c  - ~) ~ 
0 < Ilylll <//31, I lye l l  -> wm, min Ye (t) __ t~[c,d] a ( b )  - a 

PROOF. The result is obtained by repeated use of Theorem 4.4. i 

The next result offers upper  and lower bounds for the two positive solutions of (Q2). 

THEOREM 4.6. Let 5 e N(0, 1/2) be Fixed and i , j  C Z[2, oo) U {0} be fixed distinct integers. We 
define 

1 ¢ ~ ( c - a ) ~ X  f p ( d ) ( a ( s ) _ a ) h ( s ) A s .  
¢ (~) = 77., \ 7 -~@) :a )  £ 

Let 
wl = [¢ (j)]l/(1-y) and we = [¢ ( i)]1/(1-0.  

Suppose that w > 0 is given and (4.14) holds. Then, the boundary value problem (Q2) has (at 
least) two positive solutions yl,ye 6 C[a, ~2(b)] such that Conclusions (a)-(c) of Theorem 4.3 
hold. 

PROOF. Since (4.14) is satisfied, by Theorem 4.4 the boundary  value problem (Q2) has double 
positive solutions y3 and Y4 such tha t  (4.3) holds. 

Next,  the operator  S defined in (3.1) becomes 

L 
~(b) 

S y ( t ) =  V ( t , s )  h(s)eCv(¢(S))As, t e  [a, ae(b)},  (4.15) 

where G(t, s) is given in (3.17). Moreover, the cone Ck defined in (3.10) reduces to tha t  in (4.5). 
We shall once again employ Theorem 2.2. Let y E Ck be such tha t  liY]I = w. Then,  in view of 
Lemma 2.4, (3.17), and (4.14), for t E [a, ae(b)] we have 

L ~(b) L ~(b) 
Sy (t) <_ G (a  e (b), s) h (s) eCY(~(~))As <_ [a (s) - a] h (s) e¢~As <_ w = I lyl l  • 

Thus, (4.6) holds. By setting a = {y e B I IlYll < ~ } ,  we see that IISYll < IlYll for y e C n aa .  
Now, using the inequality, 

X i xJ 
e~ -> ~ + -~-.l ' x > 0, (4.16) 

we find for y E Ck, 

Ilmyll = sup fz(b) G (t, s) h (s) eiY(~(s))As 
tE[a,o'2(b)] Ja 

L 
~(b) 

i 
p(d) 

_> [a (s) - a] h (s) eCY(~('))hs 
J c  

_ > f ( d )  

d c  

~ i p(d) 
Jc 

Hence, we have 

( 4 ( c - ? )  ) 
[ a ( s ) - a l h ( s ) e x p  \ c r ( b ) - a  IlYl[ As  

[o (~) - al h (~) @) - a )  _~11.. ' (c - ~) ~ i l l  I j 

IlSyl] > ¢ (i) ilytl i + ¢ (j)iiyN j , y e ck. (4.17) 
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Using a similar technique as in the proof of Theorem 

IlSyll > Ilyll 

4.3, from (4.17), we get 

575 

(4.18) 

for y c C n 0f~l and for y e C n 0f~2, where f~l = {y e B I Ilyll < wl} and ft2 = {y e B ] I[yll < 
w2}. Having obtained (4.6) and (4.18), by Theorem 2.2 the operator S has fixed points Y5 and 
y6 satisfying (4.9) and (4.11). Finally, just as in the proof of Theorem 4.3, Conclusions (a)-(c) 
follow from a combination of (4.3), (4.9), and (4.11). | 

EXAMPLE 4.3. Let T = mZ where rn E R +. Consider the boundary  value problem 

yA2 (t) + h (t) e O/2)y(~(t)) = O, t E [0, 11m] 
(4.19) 

y (0) = yA (12m) = 0. 

Here ~ = ½. Let w = 1 be given. Then, condition (4.14) reduces to 

0~2m(s + m)h(s)As  _< ~-1/2. (4.20) 

By Theorem 4.4, if h(t)  satisfies (4.20), then the boundary  value problem (4.19) has double 
positive solutions Yl and Y2 such that  for a fixed 5 E N(0, 1/2), 

C 
0 < Ily~ll < 1 < Ily2ll with min y2(t)  > 

-- -- tE[c,d I -- 12rn" 

Some examples of such h(t)  are 1/150m 2 and 1/130 cos 2 t. 

EXAMPLE 4.4. Let T = R[0, 1) U Z +. Consider the boundary  value problem, 

2eY(a(t))/2 
y ~  (t) + e[~9(~(t>)_(~(t))~]/2 = o, t e [0, 81 (4.21) 

y (0) = y~ (~ (8)) = o. 

Here, ~ = 1/2 and h(t)  = 2e  - [19 (a ( t ) ) - (a ( t ) )2 ] /2 .  We check that  condition (4.14) is true provided 

if0 ~(s) J C  28 8 2 ( s + 1 )  w e  - (1 /2 )w  ~ [(7 ( s ) ]  h (s)  A s  ~-- e[198_82]/2 ds  -t- E e[19(s+1)-(s+1)2]/2 -~ 0.0229, 
s=1 

and this inequality is satisfied for any 0.0232 < w < 12.6. 
Fix 5 = 0.1, i = 3, and j = 0. Then, c = 1, d = 9, and by direct computation,  we have 

wl = ~ (0) = 1.6582 x 10 -7  and w2 = [~ (3)] -1/2 = 459370. 

Since wt < w < w2, by Theorem 4.6(b), boundary  value problem (4.21) has two positive solutions 
Yl and Y2 such tha t  

1-6582x10-~-< tly~ll < ~ < Ily211 < 459370, min yl (t) > 1.8424X10-s,  rain Y2 ( t ) >  w 
- -  - -  - -  tE[1,9] - -  re [ l ,9 ]  - -  -9"  

Since 0.0232 < w < 12.6, we can further conclude that  

1.6582 x 10 -7  < Hy~II < 0.0232, 12.6 < Ily211 < 459370, 

12.6 (4.22) 
rain YI ( t )  _~ 1 . 8 4 2 4  X 10 -8, rain Y2 (t) >_ - -  = 1.4. 

t e l l ,9 ]  tE[1,g] 9 

In fact, a positive solution is given by y( t )  = t(19 - t) and we notice tha t  Ilyl[ = 90 and 
mints[i,9] y( t )  = 18 are well within the ranges obtained in (4.22). 
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