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Abstract—We consider the following boundary value problem,

(_l)n—l yA" (t) = (_1)p+1 F (t) Y (0""—1 (t))) s te [a'7 b] n Ty

y2" (@) =0, 0<i<p-1,

v® (@) =0, p<i<n—1,
where n > 2,1 < p < n—1is fixed and T is a time scale. Criteria for the existence of single,
double, and multiple positive solutions of the boundary value problem are developed. Upper and
lower bounds for these positive solutions are established for two special cases that arise from some

physical phenomena. We also include several examples to illustrate the usefulness of the results
obtained. © 2006 Elsevier Ltd. All rights reserved.

Keywords—Positive solutions, Boundary value problems, Two-point right focal boundary condi-
tions, Time scales.

1. INTRODUCTION

In this paper, we present results governing the existence of positive solutions to the differential
equation on time scales of the form,

(D" () = (1P F (Ly (0" @), tea,b], (1.1)
subject to the two-point right focal boundary conditions,
Al .
=0, 0<i<p-1,
v (a) <i<p 12)
y* (0(®) =0, p<i<n-—1,

where p,n are fixed integers satisfying n > 2,1 < p < n—1, a,b € T with a < o(b), and
p(o(b)) = b.
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To understand the notations used in (1.1), we recall some standard definitions as follows. The

reader may refer to (1] for an introduction to the subject.

(a) Let T be a time scale, i.e., T is a closed subset of R. We assume that T has the topology
that it inherits from the standard topology on R. Throughout, for any ¢,d (> ¢), the
interval [c,d] is defined as [c,d] = {t € T | ¢ < t < d}. We also use the notation
R[c,d] to denote the real interval {t € R | ¢ < t < d} and Z[c,d] to represent the set
{t € Z| c <t < d}. Analogous notations for open and half-open intervals will also be
used.

(b) For t < supT and s > infT, the forward jump operator o and the backward jump
operator p respectively are defined by

o@)=inf{reT|7>t}e€T and p(s)=sup{reT|7<s}eT

We define 0™ (t) = (o™ 1(t)) with o®(t) = t. Similar definition is used for p"(s).
(c) Fixt € T. Let y : T — R. We define y®(t) to be the number (if it exists) with the
property that given € > 0, there is a neighbourhood U of t such that for all s € U,

|ly (e ®) —y ()] —y* O [o (t) — s]| <elo(t) — s

We call y2(t) the delta derivative of y(t). Define y2"(t) to be the delta derivative of

YA (8) e y2T(0) = 27T (0)2
(d) If FA(t) = f(t), then we define the integral,

/ f(r)Ar = F(t)— F(a).

A solution of (1.1), (1.2) will be sought in Cla,c™(b)], the space of continuous functions {y :
[a,0™(b)] — R}. We say that y is a positive solution if y(t) > 0, for t € [a,c™(b)]. By utilizing
some fixed point theorems, we shall develop criteria for the existence of single, double, and
multiple positive solutions of (1.1), (1.2). In addition, we shall consider the following special
cases of (1.1),(1.2) when n =2 and p = 1: '

WO +hE (e + e e)f) =0,  telal,
y(@) =y* (@ (4) =0,

(Q1)

and

¥ () + h(t) SO =0 teql,

y(a) =y* (o (b)) =0.

It is assumed that 0 < a < 1 < 8, ¢ > 0 and h is nonnegative. We shall provide conditions under
which (Q1) and (Q2) have double positive solutions, and also establish upper and lower bounds
for these solutions. The importance of (Q1) is illustrated in [2,3] where particular cases in the
real and discrete domains are discussed. Boundary value problem (Q2) arises in applications
involving the diffusion of heat generated by positive temperature-dependent sources [4]. For
instance, when ¢ = 1 the boundary value problem (Q2) occurs in the analysis of Joule losses in
electrically conducting solids as well as in frictional heating.

Boundary value problems have attracted a lot of attention in the recent literature, due mainly
to the fact that they model many physical phenomena which, besides (Q1) and (Q2), include gas
diffusion through porous media, nonlinear diffusion generated by nonlinear sources, thermal self-
ignition of a chemically active mixture of gases in a vessel, catalysis theory, chemically reacting
systems, adiabatic tubular reactor processes, as well as concentration in chemical or biological
problems, just to name a few. In all these problems, only positive solutions are meaningful.

(Q2)
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Many papers have discussed the existence of positive solutions of boundary value problems on
the real and discrete domains, we refer to [5-9] and the monographs [10,11] which give a good
documentary of the literature. A recent trend is to consider boundary value problems on time
scales, which include the real and the discrete as special cases, see [12-17]. Our approach in the
present work not only unifies the analysis for the real and the discrete cases in [18,19], but also
leads to new results which, when reduced to R and Z, are also new in the literature.

The outline of the paper is as follows. In Section 2, we shall state two fixed-point theorems,
namely a nonlinear alternative of Leray-Schauder type and Krasnosel’skii’s fixed-point theorem,
and also present some properties of certain Green’s function which are needed later. Existence
criteria for single, double, and multiple positive solutions of (1.1),(1.2) are developed in Section 3.
As an application of the results obtained, in Section 4, we establish the existence of double positive
solutions of (Q1) and (Q2) as well as upper and lower bounds for these solutions. Throughout,
examples are included to illustrate the importance of the results obtained.

2. PRELIMINARIES

We shall first state two fixed-point theorems. The first theorem is the Leray-Schauder alterna-
tive [20] while the second is due to Krasnosel’skii [21].

THEOREM 2.1. (See [20].) Let B be a Banach space with E C B closed and convex. Assume U
is a relatively open subset of E with 0 € U and S : U — E is a continuous and compact map.
Then, either

(a) S has a fixed point in U, or
(b) there exists y € U and A € R (0,1), such that y = ASy. |

THEOREM 2.2. (See [21].) Let B = (B, || - ||) be a Banach space, and let C(C B) be a cone.
Assume € and €, are open bounded subsets of B with 0 € Q1,01 C Q2, and let
S:Cﬂ(ﬁ2\ﬂl) —C
be a continuous and completely continuous operator such that, either
(a) ISyl < llyll, y € CN O, and || Sy|| = |lyll, y € C N O, or
(b) 1Syl > llgll, v € €160, and Syl < Iyl v € € 9% '
Then, S has a fixed point in C N (Qy \ Q).

The Green’s function related to (1.1),(1.2) plays a central role in the development of our
results. We shall first state some definitions and notations, followed by the explicit expression of
the Green's function, as well as some related inequalities.

DeriNITION 2.1.
(a) Define the functions hy : T x T — R, k € {0,1,...}, recursively as
ho(t,s) =1, for all 5,t € T,
and . :
hit1(t,8) = / hi (7,8) AT, foralls,te T, k=0,1,....

(b) Lett;, 1 <i<n be such that

a'=t1="'=tp<tp+1="'=tn=U(b)‘
(c) DefineT; :{a,b] =R, 0<i<n—1as
To(t)El

and

t T Ti—1
Ti(t)zTi(t:tl,...,ti)z// i [T An. AmAn,  1<i<n-1l.
t1 Jitg t

7
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To obtain a solution for (1.1),(1.2), we require a mapping whose kernel G(t,s) is the Green’s
function of boundary value problem (1.2),

(=" A7 () =0, te(a,b. (2.1)

THEOREM 2.3. (See [22].) The Green’s function G(t,s) of boundary value problem (2.1),(1.2)
can be expressed as

() T () B (0,0 () + (1) Bt (0()), ¢ < (),

G(t,s) = ;‘;
(D" L T (t) hn-ios (0,0 (9)), t>o(s),
where t € [a,0™(b)] and s € [a,b]. |

LEMMA 2.4. (See [24].) For (t,s) € |a,0™(b)] X [a, b],
0< (=P G(t,s) < (1) G (™ (b),s). ]

REMARK 2.1. In [22], it is noted that (—1)P*1G(¢, s) is a nondecreasing function in t € [a,0™(b)].
Throughout this paper, for a fixed number § € R (0,1/2), we let

c=min{teT|[t>a+6(c"(b) —a)},
d=max{t e T|t<o™(b)—6(c™(b) —a)}, (2.2)
and assume the existence of ¢ and d, such that a < ¢ < p" "' (d) < o (b).

LEMMA 2.5. (See [22].) For (t,s) € [c,d] x [a,b],
(1P G (t,s) 2 k(-1)PH G (o™ () ,9),

where 0 < k < 1 is a constant given by

. G (e, s)
F N T o), '
3. EXISTENCE RESULTS FOR (1.1),(1.2)
In this section, we let the Banach space B = Cla, 0™ (b)] be equipped with the norm,
lyll = sup Jy (@)l
tela,om(b)]
Let the operator S : B — B be defined by
o (b)
Sy (t) = / (—1)P*r @ (8, s) F (s,9 (0" (s))) As, t € [a,0™ (b)]. (3.1)

It is clear that a fixed point of the operator S is a solution of (1.1),(1.2).
For clarity, we shall now list some of the conditions used later. In these conditions, we let

K={yeB|y) >0, teaoc"(®)]}

and
K= {y e K|y (t) >0, for some t € [a,0™ (b)]} = K\ {0}.
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(B1) The function F is continuous on [a,o(b)] x K with
F(t,y) >0, (ty)€lao®)]xkK,
and
F(t,y)>0,  (t,y) €la,0(d)]xK.
(B2) There exist continuous functions w, g with w : R [0, oo)~ — R [0, 00) nondecreasing and
q:[a,a(b)] — R [0,00), such that for (¢,y) € [a,0(b)] x K,
F(ty) <q@t)w(y).

(B3) There exists 7 : [¢, p"~1(d)] — R* such that for (¢,v) € [¢, " 1(d)] x K,
Fty) =27)w(y)-

{B4) There exist continuous functions f,u,v with f : R [0,00) — R [0,00) and u, v : [a,o(b)] —
R [0, 00) such that for (¢,y) € [a,0(b)] x K,

w®) fy (@™ ®) SF(Ly ("' (1) Sv® F(y ("1 ()
(B5) u(t) is nonzero for some ¢ € [c, p"~1(d)), and there exists a number 7 € R (0, 1] such that
u(t) > nu(t), for t € [a, o (b)).
(B6) [P (—1)P+1G(0™(b), s)u(s)As < oo.

LEMMA 3.1. (See [22].) Let F : [a,0(b)] x R — R be continuous. Then, the operator S: B — B
is continuous and completely continuous.

We shall now provide an existence criteria for a general (not necessarily positive) solution of
(1.1),(1.2).

THEOREM 3.2. Let F : [a,0(b)] x R — R be continuous. Suppose there exists a constant 7,
independent of A, such that

lyll # 7,

for any solution y € B of the equation,

a(b)
y(t) = A / (1P G (t,8) F (5,4 (0" () As, £ € [a,0" (B)], (3.2)

where A € R (0,1). Then (1.1),(1.2) has at least one solution y € B such that ||y|| <.
ProoOF. Solving (3.2) is equivalent to obtaining a fixed point of the equation,

y = ASy,

where S is defined in (3.1). By Lemma 3.1, S is continuous and completely continuous. Next, in
the context of Theorem 2.1, we define

U={yeB||yll<r}.

The condition ||y|| # r ensures that we cannot have Conclusion (b) of Theorem 2.1, hence,
Conclusion (a) must hold, i.e., (1.1),(1.2) has a solution y € U with {y|| <. 1

The next result employs Theorem 3.2 to provide the existence of a positive solution.
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THEOREM 3.3. Let (B1) and (B2) hold. Suppose

there exists o > 0, such that a > v - w(a),
o (b) (3.3)

where v = / (—=1)PT1G(0™(b), s)q(s)As.

Then, (1.1),(1.2) has a positive solution y € B, such that |y|| < «, ie, 0 < y(t) < a, for

t € [a,0™(b)].

Proor. Consider the equation,

o(d) .
y(t) = / (—1)erl G(t,s)F (s,y (a"‘l (s))) As, t € [a,0™ (b)], (3.4)

where F : [a,0(b)] x R — R is defined by
F(t,y)=F 1yl (3.5)

Since jy| € K, by (B1) the function F is well-defined and is continuous.
We shall prove that (3.4) has a solution. For this, we consider the equation,

o®) .
v(t) = A / (=) G (4, 5) F (5,9 (6" (5))) As, t € [a,0™ (b)], (3.6)

where XA € R (0,1). Let y € B be any solution of (3.6). We shall show that ||y|| # o, then it will
follow from Theorem 3.2 that (3.4) has a solution.
By using (3.5), Lemma 2.4, and (B1), we get for ¢ € [a,0™(b)],

a(b) .
y(t) =X / (=1 G (4, ) F (5,5 (071 (5))) As
a(b)
= ,\/ (=P G (t,s) F(s, [y (6™ 1 (s))As = 0.

This means that

ly@®l=y(t), tela,o™ (). 3.7
Applying (3.7), (B2), and Lemma 2.4, for ¢t € [a, o™ (D)], we see that
ly(®) =y ()

o(b)
<[ ErreF (sl () As
o (b)
< / (=P G (t,s)q(s)w (Iy (e™ 1 (s)) |) As

o(b)
< / (~1)P G (0™ (8), 8) () w (llyl) As
= v-w(lyll),

which immediately leads to
lyll <v-w(liyl). (3.8)

Comparing (3.8) and (3.3), we conclude that ||y|| # o
It now follows from Theorem 3.2 that (3.4) has a solution yo € B with |jyo|| < @, and

a(b) .
vo (£) = / (—1PL G (¢, 8) E (5,50 (0" () As,  t € [a,0™ (B)].



Positive Solutions 561

Using a similar argument as above, it can be seen that
oMl =), telao™®)], and |yl #a (3.9)

Thus, yo is positive and ||yo|| < a. Further, noting (3.5) and (3.9), we have for t € [a, 0™(b)],

o (b)
W)= [ P EEIF (s lw (0 () As
o(b)
= / (=1)"* G (t,s) F (5,90 (6™ (5))) As.

Hence, yo is in fact a solution of (1.1),(1.2). The proof is complete. 1
REMARK 3.1. We note that the last inequality in (B1), viz.,

Flty)>0, () €lao®)xK,

is not needed in Theorem 3.3.

Theorem 3.3 provides the existence of a positive solution, which may be trivial. Our next
result guarantees the existence of a nontrivial positive solution in the cone Cj, defined, for a
fixed 6 € R (0,1/2), as

Ge={ue Bly® 20, tefo.om )i min v > klul | (3.10)

where k is given in Lemma 2.5.
THEOREM 3.4. Let § € R (0,1/2) be fixed and assume (B1)-(B3) and (3.3) hold. Suppose

there exists 8 > 0 such that for z € R [kf3, 8], we have

) (3.11)
z < w(z)/ k(—=1)PL G (o™ (b), )7 (s) As.

Then, (1.1),(1.2) has a positive solution y € B such that

(a) a<|ly|| < B and min;e(eq y(t) > ko if @ < B;
{b) B< |yl < @ and minge(q g y(t) > kB if a > B.

Proor. We shall employ Theorem 2.2. To begin, the operator S : B — B is continuous and
completely continuous by Lemma 3.1. .
Next, we shall show that S maps the cone Cy, into Cy. For this, we let y € Cy. Since C; C K,
it follows from (B1) that
F(t,y)20,  (ty) € la,0 ()] x Cr. (3.12)

Noting (3.12), we obtain for t € [a,o™(b)],

o(b) 1
Sy(t) = / (=1 G (t,8) F (s,y (6™ (s))) As > 0. (3.13)

In view of (3.13) and Lemma 2.4, we find

o(b)
ISy (£)] = Sy (t) < / (—1)P*L G (0" (), ) F (5,9 (6™ (s)) As,  t € [a,0™(B)],

a
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which implies
o(b)
Syl S/ (=11 G (™ (0),9) F (5,9 ("7 (9))) As. (3.14)

Now, using Lemma 2.5 and (3.14), we get for ¢ € [¢, d],

o(b)
SOz [ R G 0),9)F (5,3 ("7 (1)) As 2 K|Sy

Hence,

min Sy (t) > k| Syl|. (3.15)
te€[e,d]

Finally, we combine (3.13) and (3.15) to obtain S(Cy) C Ck.
To proceed to the next part of the proof, let

Q={yeB|lyll<a} and Qp={yeB]|lyll <5}

We shall verify that

®) ISyl < llyll for y € Ci N80, and
(i) 1Syl = llyll for y € Ci N 09p.

To show (i), let y € Cx N 8Q4. Then, |jy|| = . Using (3.13), (B2), Lemma 2.4, and (3.3), we
get for t € [a,o™(b)],

ISy ()] = Sy (t)
o(b) 1
< / (1P G (t,5) g (s)w (y (6™ (5))) As
o(b)
< [T erteErm9a@u@as =y u@<a= i,

and so
ISyl < llyll-

Next, we shall prove (ii). Let y € Cx N 8Qg. Then, |y|| = 8. Moreover, kG < y(t) < 3, for
t € [c,d], and this implies

kB <y (U"'l (t)) <g, te [c, Pt (d)] .
Applying (B3) and (3.11), we find

ISy (o™ (6))] = Sy (o™ ()

= /a(b) (1P G (o™ (b),s) F (s,y (0™ 1 (s))) As

P l(d
Z/
c

)
> / o (=P G (6™ (b),8) T (s)w (y (6™ (5))) As

o™= 1(d) " (an—l (s)) )
_1yp+1 n r A
2/0 (DTEE©.) (s)<kf;"“<d) PG (), 57 @) Az)

)
(=1)P*1G (o™ (8),9) F (s,y (6™ () As

pn»l d

) kB
1P+l n A
2), e (b)‘s)”s)<k f;"~1<d>(_1)p+lc(an<b>,z)f<z)m> ’

=p=1yll,

which implies
1Syl = llyll -



Positive Solutions 563

Having established (i) and (ii), it follows from Theorem 2.2 that S has a fixed point y €
C N (Qmax{a,8) \Qmin{a,5)) Thus, min{e, 8} < ||ly|| < max{a, 8}. Using a similar argument as
in the first part of the proof of Theorem 3.3, we see that ||y|| # o. Hence, we obtain the first
part of Conclusions (a) and (b). Further, since y € C, we have

min y (t) > k ||y|| = min {o, 5},
te€{e,d]

which, together with ||y|| # «, gives the second part of Conclusions (a) and (b). ]

Our next result gives the existence of double positive solutions.

THEOREM 3.5. Let § € R(0,1/2) be fixed and assume (B1)-(B3), (3.3), and (3.11) hold with
a < 3. Then, (1.1),(1.2) has (at least) two positive solutions y1,y2 € B such that

0< ||nall < o< |ly2ll €8, with min ys () > ka.
t€{c,d)
Proor. The existence of y; and y, is guaranteed by Theorems 3.3 and 3.4, respectively. ]
In Theorem 3.5, it is possible to have |ly1|| = 0. Our next result guarantees the existence of

two nontrivial positive solutions.

THEOREM 3.6. Let § € R(0,1/2) be fixed and assume (B1)~(B3), (3.3), (3.11), and (3.11)|5_5

hold, where 0 < 3 < a < 8. Then (1.1),(1.2) has (at least) two positive solutions y1,ys € B such
that

0<fB< < i t) > kB, i t) > ka.
<B<|nll <a<lyl <8, tlgfi’r;]yl()_ B tg[’éfé]”() o

PRrOOF. The existence of y1 and y, is guaranteed from Theorem 3.4(b) and 3.4(a), respectively. &

The next result generalizes Theorems 3.5 and 3.6 and gives the existence of multiple positive
solutions of (1.1),(1.2).

THEOREM 3.7. Let § € R(0,1/2) be fixed and assume (B1)-(B3) hold. Let (3.3) be satisfied
witha =, 1 =1,2,...,7, and (3.11) be satisfied with B = 3, | =1,2,...,m.

(@) fm=r+1land0<f <o << fBr <o < Bry1, then (1.1),(1.2) has (at least) 2r
positive solutions yi, . ..,Yysr € B such that

0< B <)l <an < < Br < |lyzr—ill < ar < |ly2r]l £ Bra1-

(b) fm=rand0< fB; <ay <--+< B <y, then (1.1),(1.2) has (at least) 2r — 1 positive
solutions y1, . ..,y2r—1 € B such that
0<B < nll <o <+ <6 < lyarall < .

© Ifr=m+1land0<a; <Py <+ < am < Bm < my1, then (1.1),(1.2) has (at least)
2m + 1 positive solutions yo, . . ., Yam € B such that

0<|lyoll <y <flmall € B1 <+ < B < ¥2m|| < @m1-

(d) Ifr=mand0 < a; < B <+ < am < Bm, then (1.1),(1.2) has (at least) 2m positive
solutions yo, . .. ,Yam—1 € B such that

0 S “yOH <oy < “ylll S ﬂl S e <oy < “y2m—1” S ﬂm-
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PRrooF. Repetitive applications of Theorem 3.4 yield (a) and (b). In (c¢) and (d), Theorem 3.3 is
used to obtain the existence of yo € B with 0 < |jyo}j < 1. The results then follow by repeated
use of Theorem 3.4. |

ExaMpLE 3.1. Let T = R[0,1) UZ™*. Consider the boundary value problem,

2 200
vo () + 3O OF O

y(0) =y* (0 (15)) =0,
Here,n =2, p=1, a = 0, and b = 15. We shall verify that the hypotheses (B1)-(B3), (3.3),

and (3.11) are satisfied. Note that (B1) obviously holds with F(t,y) = 2e¥/e33¢®=[®*  For
Conditions (B2) and (B3), we may choose

€[0,18], (3.16)

2
. — e e = Y
gty =7() = TR and w(y) =ev.

Next, we compute directly to get

Y /00(15) G (0_2 (15) ,S) q (S) As

15
2(s+1)
=/0 esss ey +Zeag(s+1) (s+1)?

=1.847 x 1073,

It follows that the inequality a > 7y - e® is true provided 1.85 x 1073 < o < 8.43. We may choose
o = 8.4 so that (3.3) is satisfied.
Using Theorem 2.3 with n = 2 and p = 1, we get

t—a, t<o(s),

o(s)—a, t>o(s). (3.17)

G(t,s):{

Let 6 = 0.2. From (2.2), we get ¢ = 4 and d = 13. So, noting (3.17) and Lemma 2.5, we find

e O
_se[015]G(02(15) s)

. i o (s) . 4
= min nf inf
o(s)el0.4) 7 (3) o(s)clho(15)] 7 (5)
__4 1
T o(15) 4

Now, the inequality in (3.11) reduces to

pld) 1 12 o (s)
2 _ T _ —61 T
x S w (.’Z?) /c kG (0' (15) , S) T (S) As = 56 A mAS = (3.95 x 10 ) €

and is true if z < 3.95 x 107%! or = > 144.05. Hence, (3.11) is fulfilled if we choose 3 = 580 or
B = 3.9 x 10751, It now follows from Theorem 3.6 that boundary value problem (3.16) has (at
least) two positive solutions y; and y, such that

3.9 x 107 < lyi || < 8.4 < [lya < 580,

> 9.75 x 1072, in t) > 2.1.
téﬁlﬁls] 1 (t) terﬁ,ls} va2 ()

(3.18)
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In fact, a known positive solution is y(t) = ¢(33 — ) with lyll = 272 and min;eq 13 y(t) = 116,
both are within the ranges given in (3.18).

We have so far established results based on assumptions (B1)~(B3) on the nonlinear term F.

We shall now consider Conditions (B4)-(B6) on F and develop further existence criteria.
Note that if (B4) holds, then for (¢,y) € [a,0™(b)] x K,

o(b)
/ (1P Gt ) u(s) f (y (0"1 (s))) As |
< Sy(t) (3.19)

a(b)
< / (1P G (¢, 8)v(s) £ (y (6" 1 (s))) As

To obtain a positive solution of (1.1),(1.2), we shall seek a fixed point of the operator S in the
cone C, defined, for a fixed § € R(0,1/2), as

0={yeBiy<t>zo, te fao™ ()] mmy()>9uyn} (3.20)

where 6 = k7, k and n are defined in Lemma 2.5 and (B5), respectively. It is clear that 0 < 8 < 1.

LEMMA 3.8. Let (B4) and (B5) hold. Then, the operator S maps C into C.
ProoOF. Let y € C. Then, for all t € [a,0™(b)], we see from (3.19) that

o(b)
Sy (t) > / (1P G s)u(s) f (y (0™ (5))) As > 0. (3.21)
It also follows from (3.19) and Lemma 2.4 that for ¢ € [a, o™ (b)],
o(b)
SO < [ UG v e £ (v (0" () As
o(b) " .
< [ e 0,006 £ (0 (0" o) s

Hence,

®) 1 1
ISyl < / (1P G (™ (b),5) v (s) £ (u (071 (s))) As. (3.22)

For t € [¢,d], using (3.19), Lemma 2.5, (B5), and (3.22) provides
o ()
SO [ kDTG 0), () f (v (o™ () s

o(b)
Z/ k(=171 G (0™ (b),8) v (s) f (v (6™ () As > oSyl

Thus,
in Sy(t) > 6| Sy|. 3.23
in 5y (t) 2 0[|Syll (3:23)
Having established (3.21) and (3.23), we have shown that Sy € C. 1
Next, we introduce the following notations which will be used in subsequent results,
fo—hmmff( z) fo —hmsupf( z)
- z—0 -0

f =liminf (m), Foo = limsup f_(m_)
=00 r—00 T Z—00 x
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THEOREM 3.9. Let 6 € R(0,1/2) be fixed and assume (B4)-(B6) hold. Let w > 0 be given and
suppose that f satisfies

-1

a(b)
0< f(z)<w [/ (—1)p+1 G(o" (b),s)v(s)As| 0<z<w. (3.24)
(a) Ifio = 00, then (1.1),(1.2) has a positive solution y; € B such that 0 < ||y1] < w.

(b) If f = oo, then (1.1),(1.2) has a positive solution y; € B such that

lyoll 2w,  with trr%in Y2 (t) > Ow.

€le,d]

(c) If f,=f_ = oo, then (1.1),(1.2) has (at least) two positive solutions y1,yz € B such that
0<|nll £w <yl with tn%ixlli] ya(t) > fw.
€le,
Proor.
(a) We let
1 (d) -
Q=9 / (—1)P* G (o™ (), s)u(s) As| . (3.25)

Since f 0 = there exists 0 < r < w, such that
f@)>Qs, O<z<n (3.26)

Let y € C be such that [|y|| = r. Then, applying (3.19), (3.26), and (3.25), we find

o(b) .
Sy @)z [ ()G ), ()] (v (07 () As

d)
> [ T P e o (1), ) u () Qu (o™ (5)) As
Pt (d)
2Q [0 TG ),9)u ()0l As = .

This implies that
1Syl > Hlyll - (3.27)

If we set Q; = {y € B | |ly| <}, then ||Sy|| > ||y| for vy € C N 8Qy.
Next, we let ¥ € C be such that ||y|| = w. Applying (3.19), Lemma 2.4, and (3.24), we
get for t € [a,0™(b)],

o(b) 1
SIS [ PG ),99(9)F (v (0" () As S w =l

Hence, we have
1Syl < vl (3.28)

If we set Q2 = {y € B | ||ly|| < w}, then ||Sy| < ||y|| for y € C N Q.

Having obtained (3.27) and (3.28), it now follows from Theorem 2.2 that S has a fixed
point y; € C N (Q2\ Q;) such that r < |ly1|| < w. It is clear that y; is a positive solution
of (1.1),(1.2).
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(b) From the proof of Theorem 3.9(a), we note that the condition (3.24) gives rise to (3.28).
Hence, by letting O, = {y € B | ||y|| < w}, we have ||Sy|| < |||, for y € C N Q.
Next, let Q be defined as in (3.25). Since f., = oo, we may choose T > w such that
f@)2Qe, z>T (3.29)

Let y € C be such that ||y|| = T/8. Then, for ¢ € [c, d], we have
T
Y1) 200yl =0x 5 =T
So, it follows from (3.29) that
Fa@)2Qu®), teled,

which implies

Flu@ @) 2Qu(e™ @), telep" (). (3.30)
Now, using (3.19), (3.30), and (3.25), we have

o(b

)
Sy )z [ (DGO ), 9u() f 1 (" () As

n—1

" d)
>[0T U e ),9u () Qu (o7 (5) As

"1(d)
2a [ )e " ®),9u) 0l s =Tl

which leads to (3.27). If we set Q» = {y € B | |lyll < T/6}, then ||Sy|| > |y| for
y € CNos.
It follows from Theorem 2.2 that S has a fixed point yo € C N (g \ Q1) such that
w < ||ly2ll £T/0. 1t is clear that ys is a positive solution of (1.1),(1.2).
(c) This follows from (a) and (b). |

THEOREM 3.10. Let 6 € R(0,1/2) be fixed and assume (B4)-(B6) hold. Suppose that f =
£ =00 and f satisfies (3.24) with w = wy, l = 1,...,m, where w1 < wg < -++ < Wy,. Then,
(1.1),(1.2) has (at least) two positive solutions y;,y2 € B such that

0<|lyll w1, [lg2ll 2 wm, mnin, Ya2(t) = Owp,.
PRroOOF. The result follows by repeated use of Theorem 3.9. i

THEOREM 3.11. Let 6 € R(0,1/2) be fixed and assume (B4)-(B6) hold. Let w > 0 be given and
suppose that f satisfies

-1

n—l(d)
f@)zw [/ (-1)P* G (0™ (b),s)u(s)As| fw <z < w. (3.31)

(a) If fo =0, then (1.1),(1.2) has a positive solution y, € B such that 0 < ||y1|| < w.
(b) If foo = 0 and f is nondecreasing, then (1.1),(1.2) has a positive solution y, € B such
that
lyell 2w,  with min y () > fw.
t€le,d)

(c) If?o = 700 = 0 and f is nondecreasing, then (1.1),(1.2) has (at least) two positive solutions
y1,Yy2 € B such that i

0< |l €w < ||y, with min ys () > fw.
t€le,d]
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Proor.

(a)

(b)

()

We define
-1

o(b)
e=[ / (1P G (07 (b),s)v(s) As| . (3.32)

Since f, = 0, there exists 0 < ¥ < w such that
f(z) < ex, 0<z<y. (3.33)

Let y € C be such that ||y = ~. Then, applying (3.19), Lemma 2.4, (3.33), and (3.32),
we find for ¢ € [a, 0™ (b)],

o(b)
Sy (t) < / (-1)P* G (t,s)v(s) f (y (6™ 1 (s))) As
o(b)
< / (=P G (o™ (b)), s) v (s) ey (e™1(s)) As

Tew
<ellyl / (—1)P*1 G (o™ (b)) v (s) As = ]

This immediately implies (3.28). If we set Q; = {y € B | [Jy|l < v}, then ||Sy| < ||y for
y € CNoy.
Next, let y € C be such that ||y|| = w. Clearly,

bw <y (o™ (t)) < w, te e, (d)],

which, together with (3.19) and (3.31), gives

pn—l(d

)
Sy (o™ (0) 2 / (=DPF e (o™ (0),8)u(s) f (y (6771 (5))) As 2w = |lyl.-

Hence, we have (3.27). Set Q3 = {y € B | ||y| < w}, then we get ||Syl| > |ly|| for
y € CNoQs.

It now follows from Theorem 2.2 that S has a fixed point y; € CN (ﬁg \ 1) such that
7 < |lyi]l € w. Tt is clear that y; is a positive solution of (1.1),(1.2).
From the proof of Theorem 3.11(a), we note that the condition (3.31) gives rise to (3.27).
So, by letting ; = {y € B | ||ly|| < w}, then ||Sy|| > |ly|| for y € C N OQy.

Next, let € be defined as in (3.32). Since f,, = 0, we may choose T > w, such that

f(z) Lex, z>T. (3.34)

Let y € C be such that |ly|| = T. Then, using (3.19), Lemma 2.4, the fact that f is
nondecreasing, (3.34) and (3.32), we find for ¢ € [a, o™ (})],

o(b) 1
Sy(t) < / (C1PLG (0™ (8),5) v (s) f (3 (0" (5))) As
o(b) 1
< / (—)P* G (0™ (b)) v (s) £ (lyll) As

o(b)
<[ ErtaEn @ veelvlas = vl

Thus, we have (3.28). If we set Qy = {y € B | ||ly|| < T}, then || Sy|| < |ly|| for y € CNN,.
We have now obtained (3.27) and (3.28). Once again, it follows from Theorem 2.2 that

S has a fixed point y2 € C N (€ \ ©) such that w < ||yz|| < T. It is clear that y; is a

positive solution of (1.1),(1.2).

This follows from (a) and (b). 1
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THEOREM 3.12. Let § € R(0,1/2) be fixed and assume (B4)—~(B6) hold. Suppose that fo = foo =
0, f is nondecreasing and f satisfles (3.31) withw =w;, | =1,...,m, wherew; < wy < -+ < Wp,.
Then, (1.1),(1.2) has (at least) two positive solutions y,ys € B such that

0 < flya]l € wy, lyall = wm, min s (t) 2 Owp.
te(e,d]
ProOF. Repeated applications of Theorem 3.11 yield the result. |

EXAMPLE 3.2. Let m € Rt and T = mZ. Consider the boundary value problem,

24 [y (o () + 1872m4]

v () + ~0, te[0,1lm],

[3ooma (t) —12(o (t))z] ? £ 1872me (3.35)
y (0) = y* (12m) = 0.

Here,n=2,p=1,a =0, and b = 11m. Taking f(y) = y? + 1872m*, we may choose

24

u{t) =v(t) = 5 .
[300ma (t) —12(o (t))2] + 1872m#

It is easy to check that (B4)—~(B6) are satisfied with 7 = 1. Clearly, f, = f_ = co. We shall find
some w > 0 such that condition (3.24) is fulfilled. First, using (3.17) we obtain

() 12m
/ (—1)P+1 G (o™ (b),s)v(s)As = / (s +m) 24 — As
a 0 [300ma (s) —12(o (%)) ] +1872m4

> 94 /12'" s+m

~ 7 Jo (1872m?)* + 1872m?
1872m? 1

(1872m2)? + 1872m¢  1873m?2

where we have substituted s = 11m to get the inequality. Next, to ensure that (3.24) is true, we

set
0 < f(y) <w?+1872m*
-1

o(b)
<w / (=11 G (0™ (b),5) v (s) As

<1873m’w, O<y<w,

which gives the inequality w? + 1872m* < 1873m2w. This holds if and only if
m? < w < 1872m?. (3.36)

Hence, (3.24) holds for any w € R[m?,1872m?]. By Theorem 3.10, there exist two positive
solutions y; and ye of (3.35) such that for a fixed § € R(0,1/2),

0 < [ly1]] < m?, ly2|l > 1872m?, rrfirtli] y2 (t) > 6 (1872m?) . (3.37)
telc,
Let 6 = 0.3. Then, ¢ = 4m, d = 9m and § = k = 1/3. We note that one positive solution of
(3.35) is given by y(t) = 12¢(256m — t) with ||y = 1872m? and minse(gm,om) ¥(t) = 1008m?, both
are within the ranges given in (3.37).
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4. APPLICATIONS

In this section, we shall apply the results obtained in Section 3 to two special cases of (1.1),(1.2),
namely, (Q1) and (Q2). In addition to providing easily verifiable criteria for the existence of
double positive solutions, we also establish upper and lower bounds for these solutions.

Before proceeding further, it is noted that (Q1) and (Q2) are particular cases of (1.1),(1.2)
when n = 2 and p = 1. Hence, by Theorem 2.3 the related Green’s function is explicitly given
in (3.17). Moreover, for a fixed § € R(0,1/2), using Lemma 2.5 and (3.17), we get

. Gc,s) . Gc,s)
- sc}ﬁf,b] G2 (b),s) sclano(s)—a

4.1)
=min{ inf m inf e 4 }= e
a(s)€fo(a),e] 0 (8) — a’ a(s)€fc,o®)] 0 (s) —a c(b)—a
We shall begin with the boundary value problem,
2 [¢7
v O +h0 (WO +@m)) =0, tefab] Q
y(a) =y (a(b) =0
where 0 < o < 1 < 8. It is assumed that
(C1) h(t) is continuous and nonnegative on [a, o (b)];
(C2) h(t) is nonzero for some t € [c, p(d));
(€3) [7® G(02(b), s)h(s)As = [7P[o(s) — a]h(s)As < co.
THEOREM 4.1. Let 6 € R(0,1/2) be fixed and let w > 0 be given. Suppose that
o(b)
— < —. 4.2
/a lo (s) a]h(s)As_wa+wﬂ (4.2)

Then, boundary value problem (Q1) has (at least) two positive solutions y1,ys € Cla, 0?(b)] such

that
(c—-a)w

<w< i i > —
0<lyill < w<lyall,  with min yo ) 2 o) —a

ProOF. The boundary value problem (Q1) is a particular case of (1.1),(1.2) when F(t,y) =
ht)(y™ + y#). Pick f(z) = 2% + 2P and wu(t) = v(t) = h(t). Then, in view of (C1)-(C3),
Conditions (B4)—(B6) are now satisfied with = 1. Moreover, fo=1f =00 We shall apply
Theorem 3.9. Since we have

0< f(z) < w*+wP, 0<z<w,

to ensure that (3.24) is satisfied, we shall impose (noting (3.17))

o (b) : -1
=w{/ [U(s)—a]h(s)As} ,

which leads to (4.2). The conclusion now follows immediately from Theorem 3.9(c) and (4.1). 1

-1

o(b)
wa+wﬁ§w[/ G(U2(b),S)U(S)AS]

THEOREM 4.2. Let 6 € R(0,1/2) be fixed. Suppose (4.2) is satisfied with w =w;, I =1,...,m,
where w; < wy < +++ < Wy,. Then, (Q1) has (at least) two positive solutions y1,y2 € Cla,o%(b)]
such that

. (c—a)wn
< > t) > ——urt—o.
0 <l <wi, g2/l = wm, trerfiﬁ]”( )= o) —a
PROOF. The result follows by repeated use of Theorem 4.1. |

We shall now establish upper and lower bounds for the two positive solutions of (Q1).
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THEOREM 4.3. Let § € R(0,1/2) be fixed. We define

b(z)= (aﬁ:*) / " 0 () — ol k() A,

Let
wy=[p(@)]/7  and  wy=[g(A) ",

Suppose that w > 0 is given and (4.2) holds. Then, boundary value problem (Q1) has (at least)
two positive solutions yi1,y, € Cla,0?(b)] such that

(a) if w < min{wy,ws}, then

. . . (c—a)w
> .
0 <lfy1ll <w < flyoll < min{wy,we},  with min 4o O 2 B —a
(b) if min{wy,ws} < w < max{w;,ws}, then
min {wy,wa} < [ly1fl £ w < Jy2f| < max {wy, wa},
(¢ — a) min {wy, we} (c—a)w
1) 22—
trerftl:r(ll] nlt)z o(b)—a ’ trelfmd] w2 ob)—a
(¢} if w > max{w;,wy}, then
max{wl,wQ} S ||Z/1|| S w S ”yZ“ ’
. (¢ — a) max {wq,wa} (c—a)w
> t —
tgfiﬁ] nlt) 2 o(b) —a ’ tre’fi% ()= ob)—a

PROOF. Since (4.2) is satisfied, it follows from Theorem 4.1 that (Q1) has double positive solu-
tions y3 and y4 such that
0 < [lysll < w < [iyall- (4.3)

Next, the operator S defined in (3.1) becomes

o (b)
si0 = [ cahe) (We@ +eEN)as,  telad )], @4

where G(t,s) is given in (3.17). Moreover, the cone C; C B = C[a,c?(b)] defined in (3.10)
becomes (noting (4.1))

C={veBlv®20 tefac?®) mnv®> s} 65)

We shall employ Theorem 2.2. Let y € Cy, be such that ||y|| = w. Then, in view of Lemma 2.4,
(3.17) and (4.2), we have

o(b)
i < [ G 0),5) hs) (1w @ @I + (o (D) As
o(b)
S/ [o(s) —alh(s)(w® +w)As<w—|]y|] t € [a,0%(b)].

Thus,
1Syl < vl (4.6)

By setting @ = {y € B | |jy|| < w}, we see that (4.6) holds for y € C; N Q2.
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Next, it is clear that for y € Cy,

o(b)
su s)h(s o (s))]* o (s)]?) As
Iul = _s p(b)] / &(t,s)h(s) (o @)° + v (o @)IF)

a(b

b),5)h(s) Iy (@ (N +ly (@ (<)) ) As

v

v

[
/p o(s)—alh(s) ([y (0 (N +[y(o (s))]ﬂ) As
/p(d) h(s) [(%)a lyll* + ( OF ) ”y”ﬁ}

It follows that

ISyl > ¢ (@) vl + 4B Ivl”, v e Ce. (47)
Let y € Ci be such that ||y|| = w1. Then, (4.7) provides
1Syl = ¢ (@) [lyll™ = ¢ (o) Iyl * ™" llyll =l (4.8)

If we set Q1 = {y € B | ||yl < w1}, then (4.8) holds for y € C N 9. Having obtained (4.6)
and (4.8), it follows from Theorem 2.2 that S has a fixed point ys € C such that

min {wy,w} < |lys|| € max {wy,w}. (4.9)
Similarly, if we let y € Cx be such that ||y|| = w2, then from (4.7), we get

1Syl > & (8) llwll® = & (8) lyll”~* iyl = Iyl - (4.10)

By setting Q5 = {y € B | |ly| < wa}, we see that (4.10) holds for y € Cx N 0y. With (4.6)
and (4.10), once again by Theorem 2.2, we conclude that S has a fixed point ys € Ck, such that

min {we, w} < ||ys|| < max {we,w}. (4.11)
Our result follows by combining (4.3), (4.9), and (4.11). For Case (a), we may pick
{ Ys, W1 < wy,
Y1=193 and Y2 =
Ye, w1 2> wz.

In Case (b}, we choose
(y57y6) , Wi S wa,

(ye,us), w1 > wa.

(v00) = {

Finally, in Case (c), we take

Ye, w1 < Wy, 1
Y1 = and Y2 = Ya.
Ys, wy 2> wa,

ExaMPLE 4.1. Consider boundary value problem (Q1) with
T={2¢|kcz}u{0}, a=1 b=8
Let w = 1. Then, condition (4.2) reduces to
o(8) 1
/1 (25~ 1)h(s) As < 5. (4.12)

By Theorem 4.1, for any h(t) that satisfies (4.12), the boundary value problem has (at least)

double positive solutions y; and y; such that for a fixed § € R(0,1/ 2),
-1
0 <1< ith min >,

<yt ST < lwall  wi min ]yz( )2 5

Some examples of such h(t) are 1/180 and 1/160sin’t.
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EXAMPLE 4.2. Let T = {2* | k € Z} U {0}. Consider boundary value problem,

A? v (e @) + (e @) _ 1
O e € [2’4]’

y (%) =y*(4) =

Here, « = 0.1, § = 1.1 and h(t) = ((1/2)o(t) + 5)~2. Condition (4.2) yields

(4.13)

0’(4) 0
w >/ [0 (s) — a] h (s) As f ——————5—2As=0.563,
12 05 ((1/2)0

wO.l +w1.1 - )+5)

and this is satisfied for any 1.39 < w < 302.
Let § = 0.05. Then, c= 2 and d = 8. By direct computation, we get

wy = [¢(0.)]*° =0.0962 and  wy=[p(1.1)]*° =1.38 x 106,

Since w; < w < wq, by Theorem 4.3(b), boundary value problem (4.13) has (at least) two positive
solutions y; and yy such that

. < . 16 i > 0. i t) > 0.2w.
0.0962 < [ly|l < w < [lyzl < 1.38 x 10%, in, 1 (t) = 0.01924, 2in ¥z (t) 202w

Since 1.39 < w < 302, we further conclude that

0.0962 < |jy1| < 1.39, 302 < ||y2|| < 1.38 x 10,

i t) > 0.01924 i £) > 0.2(302) = 60.4.
tg{l%g]m()_ ; té‘iﬂ]”()— (302)

For the rest of this section, we shall consider boundary value problem,

y2* (&) + h(t) Ve = o, te[a,b],

(Q2)
y(a) =y (0 (0) =
where ¢ > 0. It is assumed that h(t) satisfies Conditions (C1)-(C3).
THEOREM 4.4. Let 6 € R(0,1/2) be fixed and let w > 0 be given. Suppose that
o(b)
/ [0(s) —a] h(s)As < we™¢v. (4.14)
a

Then, boundary value problem (Q2) has (at least) two positive solutions y1,y2 € Cla, 0%(b)] such

that
{c—a)w

. : > 7
0< HylH <w< “y2||, with trerféflli] Y2 (t) = o(b) —a

PROOF. Boundary value problem (Q2) is a special case of (1.1),(1.2) when F(t,y) = h(t)ev.

Choose f(x) = € and u(t) = v(t) = h(t). Then, in view of (C1)~(C3), Conditions (B4)—(B6)

are now satisfied with 7 = 1. Further, fo=1f =0 We shall employ Theorem 3.9. Since
f(z) < e, 0<z<w,

condition (3.24) will be satisfied if we set

a(8) -1 o () -1
ecwgwli/ G(gz(b),s)'v(s)Asjl =w{/ [a(s)—a]h(s)As} ,

which is inequality (4.14). The conclusion is now immediate from Theorem 3.9(c) and (4.1). §
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THEOREM 4.5. Let é € R(0,1/2) be fixed. Suppose (4.14) is satisfied withw =w;, I =1,... ,m,
where wy < wg < -+ < Wy,. Then, (Q2) has (at least) two positive solutions y1,y2 € Cla,a%(b)]
such that

. (¢ —a)wm
< > t) > ————.
0<liyall w1, |yl > wm, in, y2 (t) = o0 —a
ProorF. The result is obtained by repeated use of Theorem 4.4. [

The next result offers upper and lower bounds for the two positive solutions of (Q2).

THEOREM 4.6. Let § € R(0,1/2) be fixed and i,j € Z[2,00) U {0} be fixed distinct integers. We

define .
Y(z) = L (C_(c_—_a)) /cp (o (s) —a) h(s) As.

2l \o(b)—a
Let |
wi =YY and w =@M

Suppose that w > 0 is given and (4.14) holds. Then, the boundary value problem (Q2) has (at
least) two positive solutions y;,y2 € Cla,0?(b)] such that Conclusions (a)-(c) of Theorem 4.3
hold.
Proor. Since (4.14) is satisfied, by Theorem 4.4 the boundary value problem (Q2) has double
positive solutions y; and y4 such that (4.3) holds.

Next, the operator S defined in (3.1) becomes

o(b)
Sy (t) = G(t,s)h(s)eVeENAs,  te [a,0% ()], (4.15)

a

where G(t, s) is given in (3.17). Moreover, the cone Cy defined in (3.10) reduces to that in (4.5).
We shall once again employ Theorem 2.2. Let y € Ci be such that ||y|l = w. Then, in view of
Lemma 2.4, (3.17), and (4.14), for t € [a,0?(b)] we have

a(b) o(b)
Sy(t) < / G (0 (b),s) h(s) eV "D As < / [0(s) —alh(s)es¥As < w = |y]|.

Thus, (4.6) holds. By setting (2 = {y € B | |ly|| < w}, we see that ||Sy|| < |jy|| for y € C N Q.
Now, using the inequality,

i J
612%4‘%, $>O’ (4-16)
we find for y € Cy,
a(b)
[Syll =  sup / G (t,5) h (s) ¥ As
tefa,02(b)] Ja

o(b)
= / G (02 (b),s) h(s) eV As

p(d)
> / [0 (s) — a] h(s) ¥ TN As

2 [ b (S5 ) as

o Cle=a)\ Il | (¢le—a)\ P
2/C [U(s)_a]h(s)[(a(b)—a) il +(a(b)—a> 7 ]As'

Hence, we have

ISyl =% @) Iyl + ¥ G) vl . y € (4.17)
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Using a similar technique as in the proof of Theorem 4.3, from (4.17), we get

1Syl > Nyl » (4.18)

fory € CNoQy and for y € C N AN, where Q) = {y € B| |ly]l <w1} and Qe ={y € B | |ly| <
wo}. Having obtained (4.6) and (4.18), by Theorem 2.2 the operator S has fixed points y5 and
ye satisfying (4.9) and (4.11). Finally, just as in the proof of Theorem 4.3, Conclusions (a)—(c)
follow from a combination of (4.3), (4.9), and (4.11). |

ExXAMPLE 4.3. Let T = mZ where m € R*. Consider the boundary value problem

v @)+ h () /WD) —0 e (0,11m]

(4.19)
y (0) = y* (12m) = 0.
Here ¢{ = 1. Let w = 1 be given. Then, condition (4.14) reduces to
12m
/ (s + m)h(s)As < e™ /2, (4.20)
0

By Theorem 4.4, if h(t) satisfies (4.20), then the boundary value problem (4.19) has double
positive solutions y; and y, such that for a fixed § € R(0,1/2),

c
<1KL i i t)y > —.
O<luf <1<l with min () 2 5o

Some examples of such h(t) are 1/150m? and 1/130 cos?¢.
EXAMPLE 4.4. Let T = R[0,1) UZ*. Consider the boundary value problem,

2e¥(a(t))/2
el19(e(®)—(a(1))?]/2
y(0)=y*(c(8) =

Here, ¢ =1/2 and h(t) = 2e~119(e ()= ((t)*1/2 We check that condition (4.14) is true provided

ey =0, telo,8] (4.21)

—(1/2)w o®) ! (s+1) 022
we > A [o ()} h(s)As = ) [193 52 ds+§: 19(s+1) (s+1)%]/2 = 00229,

and this inequality is satisfied for any 0.0232 < w < 12.6.
Fix 0 =0.1,7=3,and j = 0. Then, c=1, d =9, and by direct computation, we have

=¢(0)=16582%x10"7 and  wy=[C(3)]"/* = 459370.

Since w) < w < wy, by Theorem 4.6(b), boundary value problem (4.21) has two positive solutions
11 and y2 such that )

1.6582x1077 < <w< < 459370 i t)>1.8424x 1078 min >
<yl €w <ol € , tgﬁg]yl( )= ) te[lgly 2 (1) >

nolé

Since 0.0232 < w < 12.6, we can further conclude that

1.6582 x 1077 < |ly1]| < 0.0232, 12.6 < ||lyz|| < 459370,
(t) > 1.8424 x 1078, ) > 126 _ 14 (4.22)
n min — = 1.4,
tgfl 9] 0 te[1,9] Y2 9

In fact, a positive solution is given by y(f) = t(19 — t) and we notice that |y|| = 90 and
mingeq; 0y ¥(t) = 18 are well within the ranges obtained in (4.22).
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