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Abstract A relatively newmethod called q-Homotopy AnalysisMethod (q-HAM) is adopted in this

paper to obtain an analytical solution of the time fractional Rosenau–Hyman equation in series form.

Our analysis shows the simplicity nature of the application of q-HAM to nonlinear fractional differ-

ential equations. The convergence rate of themethod used is faster in the sense that just very few terms

of the series solution are needed for a good approximation due to the presence of the auxiliary param-

eter h comparable to exact solutions. Numerical solution obtained by this method is compared with

the exact solution and solutions obtained by other analytical methods of the equation under various

conditions. The numerical results are obtained using Mathematica 9 and MATLAB R2012b.
Production and hosting by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria University. This

is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

The frequent use of analytical methods in solving nonlinear
differential equations has the restriction that the variables

involved in such methods are discretized and therefore the
numerical techniques are always rounded off, see [1]. For some
other analytical methods for solving nonlinear differential

equations see [2,3].
The Rosenau–Hyman equation was found as a simplified

model for the study of the role which nonlinear dispersion
plays in pattern formation in liquid drops and it has found
diverse applications in modelling of various problems in phy-
sics and engineering.

Modern advances in fractional differential equations are
motivated by new examples of its applications in visco-
elasticity, fluid mechanics, electro-chemistry, mathematical

biology, and physics. Examples of such applications include
the use of fractional derivatives in the model of nonlinear oscil-
lation of earthquake [4] and in fluid-dynamic traffic model to
eliminate the deficiency arising from the assumption of contin-

uum traffic flow [5]. Experimental data obtained for seepage
flow in porous media suggest that the differential equations
associated with them are fractional and in recent times frac-

tional differential equations have proven to be valuable tools
for the modelling of many physical phenomena [6].

Many analytical methods have been successfully put to use

to obtain solutions of the Rosenau–Hyman equation, such as
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the semi-analytical methods, Dissipative perturbation
methods, Variational Iteration Method and Homotopy
Perturbation Method, see [7–9]. In recent, a modified HAM

called q-Homotopy Analysis Method was introduced in [10],
see also [11–17]. The reliability of this method in terms of
the rate of convergence was proven from the fact that the

algorithm contains fraction factor which aids the convergence.
The conclusion was reached that the method is better than the
usual HAM in terms of fast convergence.

No attempt has been made regarding analytical solutions of
the time-fractional Rosenau–Hyman equation using
q-Homotopy Analysis Method to the best of our knowledge.
In this paper, we consider this equation subject to some

appropriate initial condition. Comparative analysis of our
results is carried out with exact solution and with other
analytical results for this problem. The effects of the auxiliary

parameter h and the fractional order a on the solution are also
shown. The numerical results of the problems are presented
graphically.

2. Preliminaries

We give some definitions and some known results in this sec-

tion. Caputo’s fractional derivative is adopted in this work.

Definition 2.1. The Riemann–Liouville’s (RL) fractional inte-

gral operator of order a P 0, of a function f 2 L1ða; bÞ is given
as

IafðtÞ ¼ 1

CðaÞ
Z t

0

ðt� sÞa�1
fðsÞds; t > 0; a > 0; ð1Þ

where C is the Gamma function and I0fðtÞ ¼ fðtÞ.

Definition 2.2. The fractional derivative in the Caputo’s sense

is defined as [6],

DafðtÞ ¼ In�aDnfðtÞ ¼ 1

Cðn� aÞ
Z t

0

ðt� sÞn�a�1
fðnÞðsÞds; ð2Þ

where n� 1 < a 6 n; n 2 N; t > 0.

Lemma 2.1. Let t 2 ða; b�. Then

Iaðt�aÞb
h i

ðtÞ¼ Cðbþ1Þ
Cðbþaþ1Þðt�aÞbþa

; aP 0; b> 0: ð3Þ
3. q-Homotopy Analysis Method (q-HAM)

Differential equation of the form

N Da
t uðx; tÞ

� �� fðx; tÞ ¼ 0 ð4Þ
is considered, where N is a nonlinear operator, Da

t denote the

Caputo fractional derivative, ðx; tÞ are independent variables, f
is a known function and u is an unknown function. To gener-
alize the original homotopy method, the zeroth-order defor-
mation equation is constructed as

ð1� nqÞL /ðx; t; qÞ � u0ðx; tÞð Þ
¼ qhHðx; tÞ N Da

t/ðx; t; qÞ
� �� fðx; tÞ� �

; ð5Þ
where n P 1; q 2 0; 1
n

� �
denotes the so-called embedded param-

eter, L is an auxiliary linear operator, h – 0 is an auxiliary
parameter, and Hðx; tÞ is a non-zero auxiliary function.

It is clearly seen that when q ¼ 0 and q ¼ 1
n
, Eq. (5) becomes

/ðx; t; 0Þ ¼ u0ðx; tÞ and / x; t;
1

n

� �
¼ uðx; tÞ ð6Þ

respectively. So, as q increases from 0 to 1
n
, the solution

/ðx; t; qÞ varies from the initial guess u0ðx; tÞ to the solution
uðx; tÞ.

If u0ðx; tÞ;L; h;Hðx; tÞ are chosen appropriately, solution

/ðx; t; qÞ of Eq. (5) exists for q 2 0; 1
n

� �
.

Expansion of /ðx; t; qÞ in Taylor series gives

/ðx; t; rÞ ¼ u0ðx; tÞ þ
X1
m¼1

umðx; tÞqm: ð7Þ

where

umðx; tÞ ¼ 1

m!

@m/ðx; t; qÞ
@qm

����
q¼0

: ð8Þ

Assume that the auxiliary linear operator L, the initial
guess u0, the auxiliary parameter h and Hðx; tÞ are properly

chosen such that the series (7) converges at q ¼ 1
n
, then we have

uðx; tÞ ¼ u0ðx; tÞ þ
X1
m¼1

umðx; tÞ 1

n

� �m

: ð9Þ

Let the vector un be defined as follows:

~un ¼ u0ðx; tÞ; u1ðx; tÞ; . . . ; unðx; tÞf g: ð10Þ
Differentiating Eq. (5) m-times with respect to the (embed-

ding) parameter q, then evaluating at q ¼ 0 and finally dividing
them by m!, we have what is known as the mth-order deforma-

tion equation [18] as

L umðx; tÞ � v�mum�1ðx; tÞ
� � ¼ hHðx; tÞRm ~um�1ð Þ: ð11Þ

with initial conditions

uðkÞm ðx; 0Þ ¼ 0; k ¼ 0; 1; 2; . . . ;m� 1: ð12Þ
where

Rm ~um�1ð Þ ¼ 1

ðm� 1Þ!
@m�1 N½Da

t/ðx; t; qÞ� � fðx; tÞ� �
@qm�1

�����
q¼0

ð13Þ

and

v�m ¼
0 m 6 1

n otherwise;

(
ð14Þ
4. Fractional Rosenau–Hyman equation

We consider the time-fractional Rosenau–Hyman equation.

Let

@au

@ta
¼ u

@3u

@x3
þ u

@u

@x
þ 3

@u

@x

@2u

@x2
; t > 0; 0 < a 6 1 ð15Þ

subject to the initial condition

uðx; 0Þ ¼ � 8c

3
cos2

x

4

	 

: ð16Þ



Figure 1 q-HAM solution plot of u for h ¼ �1:02; n ¼ 1; c ¼ 1

and a ¼ 1 against exact solution.
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The exact solution to this problem for a ¼ 1 and c arbitrary
constant, is given [19] as follows:

uðx; tÞ ¼ � 8c

3
cos2

x� ct

4

	 

: ð17Þ

Analytical solution of this problem is considered in [7] using
VIM and HPM.

4.1. Application of q-HAM

To solve the problem given in (15) by q-HAM, we choose the
linear operator

L½/ðx; t; qÞ� ¼ Da
t/ðx; t; qÞ ð18Þ

with property that L½d1� ¼ 0; d1 is constant.

Using u0ðx; tÞ ¼ � 8c
3
cos2 x

4

� �
as initial approximation, we

define the non-linear operator as

N½/ðx; t; qÞ� ¼ Da
t/ðx; t; qÞ � /ðx; t; qÞ/xxxðx; t; qÞ

� /ðx; t; qÞ/xðx; t; qÞ � 3/xðx; t; qÞ/xxðx; t; qÞ:

We construct the zeroth order deformation equation

ð1� nqÞL /ðx; t; qÞ � u0ðx; tÞ½ �
¼ qhHðx; tÞN Da

t/ðx; t; qÞ
� �

: ð19Þ

Choosing Hðx; tÞ ¼ 1, the mth-order deformation equation
is

L umðx; tÞ � v�mum�1ðx; tÞ
� � ¼ hRm ~um�1ð Þ; ð20Þ

with initial condition for m P 1; umðx; 0Þ ¼ 0; v�m is as defined

in (14) and

Rm ~um�1ð Þ ¼ Da
t um�1 �

Xm�1

k¼0

uk um�1�kð Þxxx

�
Xm�1

k¼0

uk um�1�kð Þx � 3
Xm�1

k¼0

ukð Þx um�1�kð Þxx: ð21Þ

So, the solution to Eq. (15) for m P 1 becomes

umðx; tÞ ¼ v�mum�1 þ hIat Rm ~um�1ð Þ½ �: ð22Þ
Therefore, we obtain components of the solution using q-

HAM successively as follows:

u1ðx; tÞ ¼ v�1u0 þ hIat Da
t u0 � u0ðu0Þxxx � 3 u0ð Þxðu0Þxx � u0 u0ð Þx

� �
¼ 2hc2

3
sin

x

2

	 
 ta

Cð1þ aÞ
u2ðx; tÞ ¼ v�2u1 þ hIat Da

t u1 � u0ðu1Þxxx � u1ðu0Þxxx
�

�3 ðu0Þxðu1Þxx þ ðu1Þxðu0Þxx
� ��

� hIat u0ðu1Þx þ u1ðu0Þx
� �

¼ 2ðnþ hÞhc2
3

sin
x

2

	 
 ta

Cð1þ aÞ

þ h2c3

3
cos

x

2

	 
 t2a

Cð1þ 2aÞ

þ 4h2c3

9
ðcosðxÞ � 1Þ t2a

Cð1þ 2aÞ :

ð23Þ
Following the same approach, umðx; tÞ for m ¼ 3; 4; 5; . . .

can be obtained using Mathematica.
Then the series solution expression by q-HAM can be writ-
ten in the form of

uðx; t; n; hÞ ¼ � 8c

3
cos2

x

4

	 

þ
X1
i¼1

uiðx; t; n; hÞ 1

n

� �i

: ð24Þ

Eq. (24) is an appropriate solution to the problem (15) in

terms of convergence parameter h and n.

5. Numerical results

In this section, we give some numerical results using series
solution obtained above. Comparison is made with exact solu-
tion for a special case using the 2-term series solution. We also

show the graph displaying the best choice of h for fast conver-
gence and the effects of different fractional order a on the solu-
tion obtained.

5.1. Approximate solution vs exact solution

Exact solution is known in the case of a ¼ 1 and so we present
the numerical result (2-term series solution) obtained by the q-

Homotopy Analysis Method and the exact solution of Eq. (15)
under some conditions.

Remark 5.1. It should be noted that we have used only 2-term

of the series solution obtained by our method to make Fig. 1 as
against 5-term series solution obtained by the variational
iterative method and homotopy perturbation method used in
[7]. Fig. 1 shows a perfect match with exact solution. This

shows the effectiveness of the homotopy analysis method over
other analytical methods due to the ability to control or choose
appropriately the auxiliary parameter h.
5.2. The h-curve

The question that comes to mind when following this method
of solution is how does one choose the auxiliary parameter h to
get a good approximate solution. The answer is in the h-curve.

Apparently, our choice in the plots can be seen directly from
the graph, the range of which is by drawing a horizontal line
on the curve parallel to x-axis. Fig. 2 is made with

c ¼ 1; n ¼ 1 and a ¼ 1.



Figure 2 q-HAM solution plot against h with fixed x ¼ p
13

and

t ¼ 0:01.

Figure 3 q-HAM solution plot of Eq. (15) for different values of

a with fixed x ¼ p=13; c ¼ 1; h ¼ �1:02 and n ¼ 1.

Figure 4 q-HAM solution plot of Eq. (15) for different values of

a with fixed t ¼ 0:5; c ¼ 1; h ¼ �1:02 and n ¼ 1.
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5.3. Solution plots with different values of a

Here, we give the solution plots of the 2-term series solution
given by our method. This shows the effect of the fractional

order a on the obtained solution (see Figs. 3 and 4).
6. Conclusion

The main achievement of this paper is the demonstration of
the successful application of the q-Homotopy Analysis

Method (q-HAM) in obtaining an analytical solution of the
time fractional Rosenau–Hyman equation. Our results confirm
that the method is very effective for handling solutions of a

class of non-linear partial differential equations of fractional
order system.

The comparisons made with the exact solution and other
analytical methods such as a variational iterative method

(VIM) and homotopy perturbation method (HPM), see [7],
expose the accuracy nature of q-HAM in the sense that just
two terms of the series solution are needed to obtain better

approximation using the auxiliary parameter h. This method
is a potential analytical method for further works in strongly
nonlinear fractional differential equations.
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