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Abstract The present investigation deals with the propagation of Rayleigh waves in anisotropic

layer overlying a sandy medium. Anisotropic material is in the nature of most general case i.e. of

triclinic crystal and sandy medium is of alluvial soil type. The solutions for layer and half-space

are obtained analytically. The displacement components in x and z directions are obtained for both

the media. The dispersion relation is obtained subjected to certain boundary conditions. The special

cases are considered. The numerical results are presented in the form of wave number and phase

velocity (k � c) analytical curves.
� 2014 Production and hosting by Elsevier B.V. on behalf of Ain Shams University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

The study of wave propagation in elastic media with different
boundaries is of great importance to seismologists as well as to
geophysicists because the knowledge in this field helps them to

understand and predict the seismic behavior at different mar-
gin of earth. Elastic properties are generally anisotropic or
inhomogeneous in sedimentary layers. For sediments depos-

ited in horizontal layers or for rocks compressed by the
increasing weight of later sediments, all properties would be
expected to show the symmetry about the vertical, since all
horizontal directions are equivalent. Rasolofosaon and Zinsz-

ner [1] analyzed comparison between permeability anisotropy
and elasticity anisotropy of reservoir rocks. They developed
new experimental and theoretical tools for the measurement

and the characterization of arbitrary elasticity tensors and per-
meability tensors in rocks. In addition, they have given a com-
plete set of the 21 elastic coefficients for various types of

reservoir rocks. The problem of elastic waves propagating on
the free surface of a semi-infinite elastic body is a well-covered
research topic within the context of classical linear elasticity.
The surface waves are subjected, along the direction of

propagation, to the attenuation of horizontal and vertical dis-
placements due to mechanical and geometrical phenomena of
dissipation, and due to effects of dispersion (Richart et al.

[2]). The dispersion is the variation of the wave velocity in rela-
tion to the frequency of vibration (Ewing et al. [3]). The surface
waves, in an elastic half-space, have a velocity of propagation

independent by the frequency and have only one mode shape
of vibration. Instead in layered soil the velocity is dependent
by the frequency and the propagation is due to the different
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modes of vibration. Chadwick [4,5] presented very comprehen-
sive theory for the elastic wave propagation in a transversely
isotropic material and proved that three waves can propagate

in the material. He also discussed the surface waves in that
material.

Rayleigh waves propagation in layered heterogeneous

media has been studied in details by Wilson [6], Biot [7], New-
lands [8] and Stonely [9]. Dutta [10] illustrated Rayleigh waves
propagation in a two-layer anisotropic media whereas propa-

gation of Rayleigh waves in an elastic half space of orthotropic
material has been discussed by Abd-Alla [11]. Vishwakarma
and Gupta [12] have discussed the Rayleigh waves in a layer
over a sandy half space as one of the cases under the effect

of rigid boundary. Tomar and Kaur [13] have considered the
SH-waves at a corrugated interface between a dry sandy
half-space and an anisotropic elastic half-space. Vinh and

Ogden [14] have analyzed the formulas for the speed of
Rayleigh waves in orthotropic compressible elastic materials
are obtained in explicit form by using the theory of cubic

equations. Singh and Kumar [15] have studied the problem
of propagation of Rayleigh waves due to a finite rigid barrier
in a shallow ocean.

In the present investigation, an attempt has been made to
study the behavior of Rayleigh waves when upper boundary
plane is considered as free surface. Anisotropic material is in
the nature of most general case i.e. of triclinic crystal and

sandy medium is of alluvial soil type. The solutions for layer
and half-space are obtained analytically. The displacement
components in x and z directions are obtained for both the

media. The dispersion relation is obtained subjected to certain
boundary conditions. The special cases are reduced for (i)
when the layer is taken as orthotropic material, (ii) when the

layer is of isotropic material, (iii) when the depth is zero i.e.
only sandy half-space is considered and (iv) when the depth
is zero and g = 1 i.e. isotropic half-space. The numerical

results are presented in the form of wave number and phase
velocity (k � c) analytical curves.

2. Formulation of the problem

We have considered an anisotropic elastic layer of finite
thickness h lying over a semi-infinite sandy medium. The inter-
face of these two media is considered at z = 0 whereas the free

surface is at z = � h. Here, z axis is directed vertically down-
ward and x axis is assumed in the direction of the propagation
of wave with velocity c. The geometrical configuration is

depicted in Fig. 1. For Rayleigh waves the displacement do
not depend on y and if (u, v, w) be the displacement at any
Figure 1 Geometry of the problem.
point P(x, y, z) into the medium then v = 0 and u, w are func-
tion of x, z and t.

3. Basic equations and solution

3.1. Solution in the layer

The dynamical equations of motion for propagation of Ray-
leigh waves are given by

@sxx
@x
þ @sxz

@z
¼ q1

@2u1
@t2

; ð1Þ

@sxz
@x
þ @szz

@z
¼ q1

@2w1

@t2
; ð2Þ

where q1 is the density of the material of the layer, u1 and w1

are the displacement component in the layer along x and z
direction respectively.

The stress–strain relations for anisotropic layer are taken as

sxx ¼ C11exx þ C12eyy þ C13ezz þ C14eyz þ C15exz þ C16exy;

ð3aÞ

szz ¼ C13exx þ C23eyy þ C33ezz þ C34eyz þ C35exz þ C36exy ð3bÞ

and

sxz ¼ C15exx þ C25eyy þ C35ezz þ C45eyz þ C55exz þ C56exy:

ð3cÞ

Now, the equation of motion for propagation of Rayleigh
waves in anisotropic medium by using (1), (2) and (3), we have

C11

@2u1
@x2
þ C15

@2w1

@x2
þ C55

@2u1
@z2
þ C35

@2w1

@z2
þ 2C15

@2u1
@x@z

þ ðC13 þ C55Þ
@2w1

@x@z
¼ q1

@2u1
@t2

ð4Þ

and

C15

@2u1
@x2
þ C55

@2w1

@x2
þ C35

@2u1
@z2
þ C33

@2w1

@z2

þ ðC13 þ C55Þ
@2u1
@x@z

þ 2C35

@2w1

@x@z
¼ q1

@2w1

@t2
: ð5Þ

Assuming the solution of above equations as
u1(x, z, t) = U1(z)e

ik(x�ct) and w1(x, z, t) =W1(z)e
ik(x�ct) and

substituting in (4) and (5), we have

C55D
2 þ 2ikC15Dþ ðq1k

2c2 � c11k
2Þ

� �
U1

þ C35D
2 þ ikðC13 þ C55ÞD� c15k

2Þ
� �

W1 ¼ 0; ð6Þ

C35D
2 þ ikðC13 þ C55ÞD� c15k

2Þ
� �

U1

þ C33D
2 þ 2ikC35Dþ ðq1k

2c2 � c55k
2Þ

� �
W1 ¼ 0; ð7Þ

where k is wave number and c is phase velocity.
Following the orthodox method of solving simultaneous

linear equations with constant coefficients, we write U1-

(z) = Ae�ksz,W1(z) = Be�ksz and using in (6) and (7), we have

½C55s
2 � 2iC15sþ ðq1c

2 � C11Þ�A
þ ½C35s

2 � iðC13 þ C55Þs� C15�B ¼ 0 ð8Þ



Propagation of Rayleigh waves in anisotropic layer 623
and

½C35s
2 � iðC13 þ C55Þs� C15�A
þ ½C33s

2 � 2iC35sþ ðq1c
2 � C55Þ�B ¼ 0: ð9Þ

In order to obtain nontrivial solution of (8) and (9), we

have

a0s
4 þ a1s

3 þ a2s
2 þ a3sþ a4 ¼ 0; ð10Þ

where a0, a1, a2, a3 and a4 have been defined in Appendix A.
Let sj ( j= 1, . . ., 4) be the roots of (10) and the ratio of the

displacement component U1j,W1j from (8) corresponding to
s= sj is

W1j

U1j

¼ Bj

Aj

¼
�½C55s

2
j � 2iC15sj þ ðq1c

2 � C11Þ�
½C35s

2
j � iðC13 þ C55Þsj � C15�

¼ mj: ð11Þ

Thus the solution of (4) and (5) can be written as

u1 ¼ A1e
�ks1z þ A2e

�ks2z þ A3e
�ks3z þ A4e

�ks4z
� �

eikðx�ctÞ ð12Þ

and

w1 ¼ ðm1A1e
�ks1z þm2A2e

�ks2z þm3A3e
�ks3z

þm4A4e
�ks4zÞeikðx�ctÞ: ð13Þ
3.2. Solution in half space

The dynamical equations of motion for propagation of Ray-
leigh waves are given by

@sxx
@x
þ @sxz

@z
¼ q2

@2u2
@t2

; ð14Þ

@sxz
@x
þ @szz

@z
¼ q2

@2w2

@t2
; ð15Þ

where q2 is the density of the sandy medium, u2 and w2 are the
displacement component in the layer along x and z direction

respectively.
For sandy medium, the stress displacements relations are

sxx¼ g ðk2þ2l2Þ
@u2
@x
þk2

@w2

@z

� �
;

szz ¼ g ðk2þ2l2Þ
@w2

@z
þk2

@u2
@x

� �
and sxz¼ gl2

@u2
@z
þ@w2

@x

� 	
: ð16Þ

where k2; l2 are Lame constants and g is sandiness parameter

given by E
l2
¼ 2gð1þ m2Þ (Weiskopf [16]), where E and m2 are

the Young modulus and Poisson’s ratio respectively.
Putting (16) into (14) and (15), the two equations become

gðk2 þ 2l2Þ
@2u2
@x2
þ gl2

@2u2
@z2
þ gðk2 þ l2Þ

@2w2

@x@z
¼ q2

@2u2
@t2

ð17Þ

and

gl2

@2w2

@x2
þ gðk2 þ 2l2Þ

@2w2

@z2
þ gðk2 þ l2Þ

@2u2
@x@z

¼ q2

@2w2

@t2
:

ð18Þ

For time harmonic wave propagating in positive x-direc-
tion, we have

u2 ¼ ½Ce�kpz þDekpz�eikðx�ctÞ; ð19Þ

w2 ¼ ½Ee�kpz þ Fekpz�eikðx�ctÞ; ð20Þ
where p is the parameter to be determined, c is the phase veloc-

ity and k is the wave number.
Now putting (19) and (20) into (17) and (18), the following

four equations are obtained:

½q2c
2 � gðk2 þ 2l2Þ þ gl2p

2�C� igðk2 þ l2ÞpE ¼ 0

½q2c
2 � gðk2 þ 2l2Þ þ gl2p

2�Dþ igðk2 þ l2ÞpF ¼ 0

½q2c
2 � gl2 þ gðk2 þ 2l2Þp2�E� igðk2 þ l2ÞpC ¼ 0

½q2c
2 � gl2 þ gðk2 þ 2l2Þp2�Fþ igðk2 þ l2ÞpD ¼ 0

ð21Þ

Eliminating C, D, E and F from four equations in (21), we

get a bi-quadratic equation with reference to p, (a dimension-
less parameter) as follows:

g2 b2
2

a2
2

p4 þ g2 1� b2
2

a2
2

� 	2

þ g
c2

a2
2

� g

� 	
þ g

b2
2

a2
2

c2

b2
2

� g

 !" #
p2

þ b2
2

a2
2

c2

a2
2

� g

� 	
c2

b2
2

� g

 !
¼ 0; ð22Þ

where a2
2 ¼

ðk2þ2l2Þ
q2

and b2
2 ¼

l2
q2
.

Let ±p1, ±p2 are the roots of Eq. (22). Then from (19) and
(20) the displacements in the sandy layer are given by

u2 ¼ ½C1e
�kp1z þ C2e

�kp2z þD1e
kp1z þD2e

kp2z�eikðx�ctÞ; ð23Þ

w2 ¼ ½n1C1e
�kp1z þ n2C2e

�kp2z � n1D1e
kp1z

� n2D2e
kp2z�eikðx�ctÞ; ð24Þ

where Ej = njCj and Fj = - njDj, in which

nj ¼
c2

a2
2

� gþ g b22
a2
2

p2j

ig 1� b22
a2
2


 �
pj

ðj ¼ 1; 2Þ: ð25Þ

The approximate solution to Eqs. (23) and (24) for half-
space is given by

u2 ¼ ½C1e
�kp1z þ C2e

�kp2z�eikðx�ctÞ ð26Þ

and

w2 ¼ ½n1C1e
�kp1z þ n2C2e

�kp2z�eikðx�ctÞ: ð27Þ
4. Boundary conditions

(1) At the interface, z = 0, the continuity of the displace-
ment along x direction requires that u1 = u2 and
w1 = w2.

(2) At the interface, z= 0, the continuity of the stress
requires that (sxz)1 = (sxz)2 and (szz)1 = (szz)2, where
sxz and szz are the stress component. Subscript ‘1’ is

taken for the layer and ‘2’ for the half space.
(3) At the upper boundary plane (Free Surface) i.e. z = �h,

the stresses vanish i.e. (sxz)1 = 0 and (szz)1 = 0.

Using the boundary conditions first, second, third and Eqs.
(12), (13), (26) and (27) respectively, we have

A1 þ A2 þ A3 þ A4 � C1 � C2 ¼ 0 ð28Þ

m1A1 þm2A2 þm3A3 þm4A4 � n1C1 � n2C2 ¼ 0 ð29Þ
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K1A1þK2A2þK3A3þK4A4�gl2ðin1�p1ÞC1�gl2ðin2�p2ÞC2 ¼ 0 ð30Þ

K5A1 þ K6A2 þ K7A3 þ K8A4 � gfik2 � ðk2 þ 2l2Þp1n1g
C1 � gfik2 � ðk2 þ 2l2Þp2n2gC2 ¼ 0 ð31Þ

K1A1e
ks1h þ K2A2e

ks2h þ K3A3e
ks3h þ K4A4e

ks4h ¼ 0 ð32Þ

K5A1e
ks1h þ K6A2e

ks2h þ K7A3e
ks3h þ K8A4e

ks4h ¼ 0 ð33Þ

Eliminating A1, A2, A3, A4, C1 and C2 from (28)–(33), we
have

1 1 1 1 �1 �1

m1 m2 m3 m4 �n1 �n2

K1 K2 K3 K4 �gl2ðin1�p1Þ �gl2ðin2�p2Þ

K5 K6 K7 K8 �gfik2�ðk2þ2l2Þp1n1g �gfik2�ðk2þ2l2Þp2n2g

K1e
ks1h K2e

ks2h K3e
ks3h K4e

ks4h 0 0

K5e
ks1h K6e

ks2h K7e
ks3h K8e

ks4h 0 0

�������������������

�������������������

¼ 0

ð34Þ

Eq. (34) gives the dispersion relation of Rayleigh waves in
anisotropic layer lying over sandy medium.

5. Special cases

Case I: When we consider C15 = C35 = 0, then Eq. (34)
reduces to dispersion relation of Rayleigh waves in ortho-
tropic layer lying over sandy half space.

Case II: When we take C11 ¼ C33 ¼ k1 þ 2l1;C13 ¼ k1;
C55 ¼ l1;C15 ¼ C35 ¼ 0, then Eq. (34) reduces to dispersion
relation of Rayleigh waves in isotropic layer lying over

sandy half space.
Case III: When h= 0, then Eq. (34) reduces to

ðin � p Þ ðin � p Þ�� ��
1 1 2 2

fik2 � ðk2 þ 2l2Þp1n1g fik2 � ðk2 þ 2l2Þp2n2g
�� �� ¼ 0 ð35Þ

Eq. (35) gives the dispersion relation of Rayleigh waves in
sandy half space.

Case IV: When h = 0 and g = 1, the Eq. (34) reduces to

ðin0 � p0 Þ ðin0 � p0 Þ�� ��

1 1 2 2

fik2 � ðk2 þ 2l2Þp01n01g fik2 � ðk2 þ 2l2Þp02n02g
�� �� ¼ 0 ð36Þ
12
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Figure 2 Variation of Re(c) and Im(c) with k for different va
where p01 and p02 are roots of

b2
2

a2
2

p4 þ 1� b2
2

a2
2

� 	2

þ c2

a2
2

� 1

� 	
þ b2

2

a2
2

c2

b2
2

� 1

 !" #
p2

þ b2
2

a2
2

c2

a2
2

� 1

� 	
c2

b2
2

� 1

 !
¼ 0

and n01 and n02 are given by

n0j ¼
c2

a2
2

� 1þ b22
a2
2

p0j
2

i 1� b22
a2
2


 �
p0j

ðj ¼ 1; 2Þ:

Eq. (36) gives the dispersion relation of Rayleigh waves in

isotropic half space.
6. Numerical results and discussion

We have taken data for inhomogeneous anisotropic medium
from Rasolofosaon and Zinszner [1].

C11 ¼ 106:8 GPa; C22 ¼ 99:00 GPa; C33 ¼ 54:57 GPa;

C12 ¼ 27:10 GPa

C13 ¼ 9:68 GPa; C14 ¼ �0:03 GPa; C15 ¼ 0:28 GPa;

C16 ¼ 0:12 GPa

C23 ¼ 18:22 GPa; C24 ¼ 1:49 GPa; C25 ¼ 0:13 GPa;

C26 ¼ �0:58 GPa

C34 ¼ 2:44 GPa; C35 ¼ �1:69 GPa; C36 ¼ �0:75 GPa;

C44 ¼ 25:97 GPa

C45 ¼ 1:98 GPa; C46 ¼ 0:43 GPa; C55 ¼ 25:05 GPa;

C66 ¼ 37:82 GPa

C56 ¼ 1:44 GPa and q1 ¼ 2727 kg=m
3
:

For sandy half space, the data are taken as

k2 ¼ 2:46 GPa;l2 ¼ 5:66 GPa; and q2 ¼ 7800 kg=m3:
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Figure 4 Variation of Re(c) and Im(c) with k for different value of h when g = 2.54 and layer is of orthotropic material.
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Figure 3 Variation of Re(c) and Im(c) with k for different value of g when h= 2.5 km and layer is of anisotropic material.
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Figure 5 Variation of Re(c) and Im(c) with k for different value of g when h= 2.5 km and layer is of orthotropic material.
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The dispersion relation (34) is a complex function. The Eq.
(34) can be expressed in the form of Re(c) + iIm(c), where

Re(c) and Im(c) are functions of k and constants of both
media. The real part gives the dispersion of phase velocity
and imaginary gives the damping effect. The graphs are plotted

separately for both real and imaginary parts for phase velocity
against wave number. In Fig. 2, the graphs are plotted for
Re(c) and Im(c) against wave number k for different values
of h and for fixed value of g = 2.54. It can be observed from
the figure that both Re(c) and Im(c) increases as h increases

with increasing wave number k. In Fig. 3, the graphs are plot-
ted for Re(c) and Im(c) against wave number k for different
values of g and for fixed value of h = 2.5 km. The figure

reflects that as g increases Re(c) increases while Im(c)
decreases. In both the figures, the Re(c) and Im(c) increases
with increasing wave number k. In Fig. 4, the graphs are
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plotted for Re(c) and Im(c) against wave number k for differ-
ent values of h and for fixed value of g = 2.54 when the layer is

considered of orthotropic materials. It can be observed from
the figure that both Re(c) and Im(c) increases as h increases
with increasing wave number k. In Fig. 5, the graphs are plot-

ted for Re(c) and Im(c) against wave number k for different
values of g and for fixed value of h= 2.5 km when the layer
is considered of orthotropic materials. The figure reflects that

as g increases Re(c) increases while Im(c) decreases. In
Fig. 6, the graphs are plotted for Re(c) and Im(c) against wave
number k for different values of h and for fixed value of
g = 2.54 when the layer is considered of isotropic materials.

It can be observed from the figure that both Re(c) and Im(c)
increases as h increases with increasing wave number k.In
Fig. 7, the graphs are plotted for Re(c) and Im(c) against wave

number k for different values of g and for fixed value of
h= 2.5 km when the layer is considered of isotropic materials.
The figure reflects that as g increases Re(c) increases while

Im(c) decreases.
7. Conclusions

The Rayleigh wave propagation in anisotropic layer lying over
sandy half-space solid medium has been investigated. The
dispersion relation is obtained analytically. The numerical
results are discussed through figures by plotting graphs

between phase velocity and wave number. It can be concluded
from figures that as the thickness of layer increases magnitude
of both real and imaginary phase velocity increase with wave

number. Also, for increase of sandiness parameter the real
phase velocity increases while imaginary decreases with wave
number. The nature of effects of sandiness and depth is similar

for different types of materials but the anisotropy of materials
affects the phase velocity significantly. The velocity of seismic
waves depends not only on the direction of wave propagation
but also on the elastic properties and density of materials. The

velocity of waves of seismic waves varies drastically in different
materials and also at different depth. The sandiness of materi-
als produces heterogeneity in the medium and has a great

impact on the phase velocity. The heterogeneity and anisot-
ropy plays a key role in the seismic wave propagation.
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Appendix A

a0 ¼ C33C55 � C2
35; a1 ¼ �2iðC15C33 � C13C35Þ

a2 ¼ ðC33 þ C55Þq0c
2 � 4C15C35 � C11C33 þ C2

13 þ 2C13C15

þ 2C15C35

a3 ¼ �2ifðC15 þ C35Þq0c
2 � C11C35 þ C13C15g

a4 ¼ q2
0c

4 � ðC55 þ C11Þq0c
2 þ C11C55 � C2

15

K1 ¼ iC15 �m1s1C35 þ ðim1 � s1ÞC55;

K2 ¼ iC15 �m2s2C35 þ ðim2 � s2ÞC55

K3 ¼ iC15 �m3s3C35 þ ðim3 � s3ÞC55;

K4 ¼ iC15 �m4s4C35 þ ðim4 � s4ÞC55

K5 ¼ iC13 �m1s1C33 þ ðim1 � s1ÞC35;

K6 ¼ iC13 �m2s2C33 þ ðim2 � s2ÞC35

K7 ¼ iC13 �m3s3C33 þ ðim3 � s3ÞC35;

K8 ¼ iC13 �m4s4C33 þ ðim4 � s4ÞC35
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