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Abstract 

In this paper a multi-valued propositional logic - logic of agreement - in terms of its 
model theory and inference system is presented. This formal system is the natural 
consequence of a new way to approach concepts as commonsense knowledge, uncer- 
tainty and approximate reasoning - the point of view of agreement. Particularly, it is 
discussed a possible extension of the Classical Theory of Sets based on the idea that, 
instead of trying to conceptualize sets as “fuzzy” or “vague” entities, it is more adequate 
to define membership as the result of a partial agreement among a group of individual 
agents. Furthermore, it is shown that the concept of agreement provides a framework 
for the development of a formal and sound explanation for concepts (e.g. fuzzy sets) 
which lack formal semantics. According to the definition of agreement, an individual 
agent agrees or not with the fact that an object possesses a certain property. A clear 
distinction is then established, between an individual agent - to whom deciding whether 
an element belongs to a set is just a yes or no matter - and a commonsensical agent - the 
one who interprets the knowledge shared by a certain group of people. Finally, the logic 
of agreement is presented and discussed. As it is assumed the existence of several in- 
dividual agents, the semantic system is based on the perspective that each individual 
agent defines her/his own conceptualization of reality. So the semantics of the logic of 
agreement can be seen as being similar to a semantics of possible worlds, one for each 
individual agent. The proof theory is an extension of a natural deduction system, using 
supported formulas and incorporating only inference rules. Moreover, the soundness 
and completeness of the logic of agreement are also presented. 0 1999 Elsevier Science 
Inc. All rights reserved. 
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1. Introduction 

Commonsense reasoning and representation are particularly relevant topics 
in Artificial Intelligence [23]. The present approach to these issues is based 
upon the idea that commonsense derives from the knowledge that is held, used, 
and shared by a group of individuals. Recall that the etymology of the word 
“common-sense” is the “sharing of feelings” (among people about themselves 
and the world). In fact, it can be hypothesized that what people call reality 
derives from the agreement among a set of individuals. As a consequence, a 
commonsensical concept like “tall”, when characterizing a certain person, for 
instance, should be framed with respect to a certain group of individuals. Of 
course, being considered as tall differs strongly if commonsense emerges from a 
group of bushmen or Swedish individuals. 

The fact that agreement among individuals is not always perfect suggests a 
kind of uncertainty exhibiting some similarities with the concept of fuzziness 
introduced by Lofti Zadeh [27]. However, the fuzzy approach has been criti- 
cized due to its subjectivity: this is the reason logicists argue against “fuzzy 
logics” (see a reply from Sheridan to Dubois and Prade [8]). 

The controversy that has emerged since the introduction of Fuzzy Set 
Theory by Zadeh [27] involving their supporters and detractors is not sur- 
prising. On the one hand, the former assert that it captures the intuition re- 
garding a special kind of uncertainty - fuzziness - and, on the other hand, the 
later claim against the lack of a precise characterization of the theory and, 
particularly, the arbitrariness of the choice of operators and membership 
functions [4,16,20]. In fact, the lack of a strict semantic characterization of 
fuzzy sets makes impossible the task of establishing a well-founded fuzzy logic 
- a formal system which allows inference regarding some conceptualization of 
reality. For those who favour rigorous and precise foundations, it is clear that 
fuzzy logic should be improved. 

Although there are (several) different interpretations of the partial mem- 
bership concept, most of them are based on intuitive grounds, being presented 
a posteriori in order to justify the utilization of fuzzy sets. Moreover, the fuzzy 
operators commonly used are not semantically supported. As a consequence 
they could provide unacceptable results. 

In this paper a research exploring the idea of agreement and its use to model 
human knowledge and reasoning in what concerns commonsense is presented. 
Therefore, the concept of agreement is used for establishing a strict semantic 
characterization of fuzzy sets and operators, revisiting its foundations, rede- 
fining the basic operators, providing a rigorous meaning to them and shedding 
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light on certain difficulties which were already pointed out by others 
[3,5,10,16,20]. Also, the new definition of partial membership provides a 
framework for the development of a formal system to approximate reasoning - 
the logic of agreement, a multi-valued extension of the classical logic [2]. In 
Section 2 the concept of agreement is discussed in terms of commonsense 
knowledge, as a measure of a certain kind of uncertainty. It is also compared 
with other concepts that were presented to explain different types of uncer- 
tainty, namely fuzziness. In Section 3 the main definitions and results of the 
agreement notion - in terms of a set theory - are introduced. In Section 4, an 
example exploring the differences between agreement and classic fuzzy based 
operators is presented. In Section 5 some consequences of the agreement idea 
are presented. In Section 6 the semantic system of the logic of agreement is 
introduced and presented. Section 7 describes the corresponding proof theory. 
Section 8 discusses the operationalization issues of the logic of agreement, and 
finally in Section 9 conclusions and some considerations about current and 
future work are presented. 

2. Motivation and philosophical issues 

The point of view of the present work is that fuzziness results from an in- 
complete agreement among agents when faced with the characterization of a 
certain object. Moreover, it is hypothesized that each agent when considered 
separately is able of deciding on a yes or no basis, whether a certain object 
belongs or not to a given set. That “Paul is tall”, “Mary is middle-aged” and, 
“seven is much greater than two”, and so on, raises no difficulties of mem- 
bership characterization to a single agent. ’ This fact has already been stressed 
by Hayes [14]. A membership grade different from zero or one only comes up 
when someone tries to represent not a personal but a commonsensical inter- 
pretation of the reality. Reality - in fact, a certain conceptualization of it - 
derives from agreement among agents and, if no agreement at all is reached 
about an object, a fact, or an event, it is not possible to decide them as being 
“real”. In classical terms, for instance, when defining the semantics of First 
Order Logic it is usual considering not the “reality” (something that exists 
outside the agent) but a conceptualization of it, accepted by the agent [ 131. This 
is a way to circumvent the philosophical problems which derive from dis- 
cussing the existence of reality. In fact, the philosophical foundations of the 
present approach are based on constructing the reality through agreement. 
This perspective is similar to the one suggested by Edgar Morin when 

’ Notice that that is not a problem of evaluating the logical value of a proposition, but merely the 
acceptance or not acceptance of the meaning of the proposition. 
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discussing objectivity in science: objectivity is nothing but accepted inter-sub- 
jectivity. 

Therefore, if someone intends to characterize fuzziness, a clear distinction 
should be made: when an agent expresses a personal point of view (“an indi- 
vidual agent”) and when an agent interprets the points of view of a group (“a 
commonsensical agent”), Frequently, when confronting points of view with 
others individuals discover that some of their beliefs have less epistemic en- 
trenchment than others. 

The proposed semantic characterization of fuzzy sets is based on the concept 
of agreement: the ratio of agents agreeing with the membership of an object to 
a set w.r.t. the total number of questioned agents. This seems to be a neat and 
simple frequencist approach which has been around for centuries, successfully 
applied to other areas of research. 

Consider, for instance, the task of evaluating a paper submitted to a con- 
ference. Assume that each reviewer is only asked whether the paper should be 
accepted or not. The easiest way to sort the papers is to grade each paper in 
terms of the number of acceptances w.r.t. the total number of reviewers. The 
program chair of the conference can establish a semantics in terms of grades 
and labels: grade 0.0, definitely not accepted, grade 1.0, definitely accepted, 
grade 0.5 corresponding to maximum ignorance (or minimal discrimination 
between the two possible choices). 

Now imagine that the program chair asks reviewers to evaluate soundness 
and originality of papers in digital terms (accepted as sound, rejected as 
original, and so on). After processing the data, that is to say after calculating 
the agreement, the program chair has two grades (between zero and one) as- 
signed to each paper - one for soundness and one for originality. How should 
the program chair sort the papers? Probably, she/he will be tempted to sort the 
papers on the basis of the conjunction (sort the papers on the basis of being 
sound and original). For instance, if the program chair is an expert in fuzzy 
logic it is likely that she/he will use the min operator. Another approach is to 
find the ratio between the number of reviewers who gave positive answers to 
both aspects (the individual conjunctions) w.r.t. the total number of reviewers. 
The former procedure should not be used because it is generally unsound - 
usually it provides different results when compared with the later. Another 
possibility could be the utilization of the product (instead of min); however, 
this procedure is only sound when the two aspects of the problem are inde- 
pendent (in fact, soundness and originality are not independent 2). 

Therefore, an essential result to achieve (with a semantic characterization) is 
demonstrating that if from a set of N agents result two membership grades 
for objects A and B in a set S, and if, from the very same agents result a 

2 This fact was already verified by the authors when organizing a conference. 



L.M.M. Cust6dio, C. Pinto-Ferreira I Internat. J. Approx. Reason. 20 (1999) 47-78 51 

membership grade for A U B (or A rl B) in the same set S, the chosen operators 
for union (and for intersection, respectively) should respect the results previ- 
ously determined. In a nut shell, the algebraic manipulation (syntax) should be 
consistent with the meaning (semantics) assigned to fuzzy sets and operators. It 
should be pointed out that the known operators (min, max, product, drastic 
sum, etc.) do not exhibit the intended characteristic of soundness. 

On the other hand, human beings usually prefer to produce simple evalu- 
ations and fast decisions instead of complex and time-consuming analyses. As a 
consequence of this quest for fast judgements, human reasoning loses fre- 
quently in terms of precision, raising therefore the issue of uncertainty. 
Moreover, the complexity of real situations is often too high to allow a com- 
plete and detailed description [28]. Also, since commonsense knowledge could 
usually be linked to symbols in some language, it raises the problem of symbol 
ambiguity, as it has been recognized by several authors [17,29]. 

These two aspects - lack of precision and symbol ambiguity - lead fre- 
quently to human reasoning and communication involving different types of 
uncertainty. For instance, fuzzy theory researchers consider a kind of uncer- 
tainty called fuzziness, which is usually associated with vagueness concerning 
the description of the semantic meaning of events or concepts [29]. On the 
other hand, Dubois and Prade [9] consider that “modelling vagueness is a 
problem of representing what is sometimes called lexical imprecision of lin- 
guistic terms”. 

In order to understand concepts as grade of membership it is important to 
study the way human beings define and establish categories or classes. The 
definition of a prototype constitutes one possibility to characterize the class 
and to determine the grade of membership for each element, being defined by 
the grade of similarity between the element and the prototype. However, this 
method is not applicable to problems where there are no way to find a pro- 
totype (e.g. the class of the numbers much greater than 2) or when it is possible 
to choose several prototypes (e.g. the class of good tennis players). 

Nevertheless, studies carried out on the area of psychology suggest that 
membership is not a “primitive” concept, meaning that a grade of membership 
is not generally defined absolutely by an individual [7]. Indeed, it varies from 
individual to individual according to certain internal and external factors, 
which in fact influence and characterize each individual. 

Albeit the initial idea of phenomena being inherently vague, it is now widely 
accepted that vagueness emerges from the observation and description of the 
world, i.e., it depends on the human observer. So, different observers could 
have different interpretations of the phenomena under consideration [9,19]. 

At first sight, a good candidate for representing and reasoning about 
vagueness is the fuzzy logic approach. However, “fuzzy logic” cannot be 
yet considered as a logic in the sense that, (i) it does not have a formal 
model theory - a semantic system, (ii) it does not rely on a unique inference 
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system - there are several inference mechanisms to be applied according to the 
situation, and (iii) fundamental concepts, as the membership function, for in- 
stance, are ill-defined. As recognized by Zimmermann [29]: “Fuzziness has so 
far not been defined uniquely semantically [...I”. 

So, in order to handle these problems, the following aspects of FST should 
be taken into account: 

(i) the choice of the rules of inference is usually arbitrary or at most based on 
algebraic arguments, 
(ii) whenever such a choice is not supported by a formal semantic justifica- 
tion, soundness cannot be ensured, 
(iii) in order to develop a formal model theory it is necessary to give a (for- 
mal and informal) semantic definition of basic concepts and operators (e.g., 
fuzzy connectives). 

Otherwise, when FST is applied to certain problems (see the pencil of Sheridan- 
Fine example in Section 4) it delivers puzzling answers and weird results. 

Nevertheless, the main problems are not in the “logic” itself but in its very 
foundations: the Fuzzy Set Theory. The basic element of FST is the notion of 
fuzzy set presented by Zadeh as a generalization of the classical set. Although 
there is some consensus about the intuitive meaning of a fuzzy set, the lack of a 
unified formal semantic characterization of this concept is a drawback of FST. 
Furthermore, basic operations such as union and intersection of fuzzy sets can 
be performed using different mechanisms as the min, max, drastic product and 
sum, to name but a few. 

As it was mentioned before, the representation of vague concepts depends 
on the observer (or agent). Considering this idea, fuzzy approaches usually 
assume that each agent is individually capable of defining the most adequate 
fuzzy set to represent a vague concept. So, the majority of fuzzy applications 
(including fuzzy expert systems) starts from this point, by defining fuzzy sets 
for the problem in hand, choosing the fuzzy operators and establishing infer- 
ence rules, only based on a problem-dependent basis. This methodology can be 
understood because of pragmatic reasons, as efficiency, computation time, and 
development effort. However, when one wants to justify the options made, the 
question “how the fuzzy sets were chosen”, i.e., “where did they come from”, 
should be considered seriously. 

A work that tries to answer these questions is the TEE model presented by 
E. Hisdal. This model is based on an assumption that the subjective meaning 
which an individual assigns to a fuzzy concept can be measured by performing 
three experiments: (i) a labelling experiment, in which an individual assigns a 
particular label (e.g. tall), from a set of labels (e.g. small, medium, tall), to every 
object at a given time, (ii) a yes-no experiment, in which the individual is re- 
quired to answer with yes or no concerning the adequacy of a label to every 
object, and (iii) a membership experiment, in which the individual is asked to 
give a degree, between zero and one, concerning the fitness of a label to every 
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object [16]. Using these experiments together with the probabilistic theory, 
Hisdal introduces a model for interpreting and explaining how an individual 
defines her/his membership function for a particular fuzzy concept. Based on 
the assumptions considered in the TEE model, the definitions of the fuzzy set 
operators are reformulated and justified, and some difficulties of the fuzzy set 
theory are circumvented. 

The main differences between the TEE model and the agreement framework 
lie not only on their foundations but also on their objectives: (i) the TEE model 
considers only an individual whereas the agreement concept considers a set of 
individuals, (ii) the degree of membership obtained by the TEE model is based 
on a probabilistic analysis of the experiments performed whereas the degree of 
agreement establishes a measure of consensus among a group of individuals, 
(iii) the TEE model provides a numeric formalism based on probability for 
handling fuzzy concepts, whereas the agreement framework underlies a rig- 
orous semantic system and a proof theory for a symbolic multi-valued logic 
that is capable to cope with partial agreement, and (iv) the TEE model assumes 
that the individual is capable of choosing membership degrees whereas the 
agreement framework is based on two kinds of agents: the individual agent, 
which can only give yes or no answers and the commonsensical agent, which 
interprets the points of view of a group of individual agents. So, the individual 
considered in the TEE model can be seen as a commonsensical agent. In fact, 
when Hisdal discusses the third experiment - the membership degree assign- 
ment - she questions where does a particular degree, between zero and one, 
which an individual assigns to an object, come from. Hisdal assumes that an 
individual must have some internally stored procedure for choosing this de- 
gree. The agreement framework is a possible way to explain how such proce- 
dure can be establish. For instance, Dubois and Prade [9] say that 
“Classification itself is not objective. Our way of classifying objects may differ 
from our neighbors’. At best, it may be a matter of consensus”. 

As mentioned before, agents can have two differing roles: as individual 
agents and as commonsensical agents. An individual agent is an abstract entity 
which uses the classical set theory (and classical logic) to make decisions. So, 
when asked if a women with, say, 1.70 height is tall, a particular individual 
agent answers on a yes or no basis. In this case, it is clearly a matter of true/ 
false decision on the logic value of a proposition [12,14]. However, when 
raising the same question to a group of individuals it is conceivable to finding a 
degree of acceptance of that particular proposition ranging from zero (com- 
plete rejection) to one (complete acceptance). When an agent associates non 
zero/one degrees of acceptance to propositions she/he is behaving as a com- 
monsensical agent, who interprets the feelings of a group with a sufficient 
number of individuals. 

Therefore, to characterize a fuzzy set, several individual agents are 
questioned concerning the membership of an element on a particular class or 
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category. The proportion of the number of positive answers w.r.t. the total 
number of answers is called degree of agreement. If this degree is interpreted as 
the membership grade of the element in the class, it is possible to define a 
membership function representing the sethood of the class. For instance, if the 
number of individual agents that agree with the fact that a 1.7 m height in- 
dividual is tall, is 80 out of 100, then the degree of agreement within the group 
is 0.8. So the membership grade of a 1.7 m height element in the set of tall 
individuals is 0.8. A commonsensical agent would assign the logical value 0.8 to 
the proposition “An individual 1.7 m height is tall”. 

The idea of defining (or interpreting) the membership degree as the pro- 
portion of positive answers among a population was already suggested by 
others. For instance, Baldwin [l] introduced an interpretation of fuzzy set 
based on a voting model with constant thresholds. Each voter (person) accepts 
or rejects that a specific object satisfies a particular fuzzy concept. The pro- 
portion of voters who accept is associated with the membership degree. The 
constant threshold assumption means that anyone who accepts an object with 
a certain membership level will accept all objects with a higher membership 
level. That is to say, a voter should either know a priori the membership level 
for a particular object or define a metric suitable for classifying the object, in 
order to be consistent with the constant threshold assumption. However, both 
hypotheses can be questioned. In the former case, if a voter knows the 
membership level, how does it come from and what is the purpose of the 
voting process? In the later case, the problem lies on the fact that most of 
the fuzzy concepts do not have an unique and objective metric. On the con- 
trary, within the agreement framework, an individual agent needs not neither 
an a priori membership level nor a specific metric. Also, instead of considering 
the results of the voting process as a way to establish the probability that a 
member of population, drawn at random, answers in a particular manner, 
these results can be seen as a measure of the degree of agreement among the 
voters. 

3. Foundations of the agreement logic 

As it is assumed that individual agents use the classic set theory in order to 
answer questions relatively to the membership of an element in a set, the fol- 
lowing axioms express the traditional definitions of set complement, union and 
intersection. 

Let A be a subset of X and x an element of X, the universe of discourse. 

Axiom 1 (Omniscience). When an individual agent is questioned about the 
belongingness of an element x in a set A, she/he is always capable of deciding in 
an yes/no basis. 
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This axiom excludes the possibility of getting answers like “I do not know”, 
“maybe”, among others. There are two kinds of situations which can be found: 
one that presupposes a set with clear cut boundaries, and another where sets 
have blurred frontiers. As examples, consider respectively the questions “Is ten 
greater than one?“, and “Is ten much greater than one?“. The Classical Set 
Theory (CST) was defined mainly to handle the former. Some authors consider 
that the later should also be handled by CST as agents are always capable of 
establishing a clear cut frontier and act accordingly. In what concerns a single 
agent, this hypothesis can be accepted provided that this agent performs as an 
abstract entity. However, it is interesting to notice that children tend to use a 
kind of digital process for categorizing objects and, therefore, they show some 
difficulties to understand that usually things are not only “black and white”. In 
fact, when asking children about the belongingness of elements to sets answers 
are quick and direct. On the contrary, adults tend to feel uncomfortable when 
asked by children to answer in an yes/no basis, trying in certain cases to pa- 
thetically answer in a fuzzy fashion. That is to say, adults act normally as 
commonsensical agents (possibly because they were exposed to the opinions of 
others during their long life time). 

Therefore, it can be hypothesized that when a real agent (an adult human 
being) expresses doubts about the belongingness of an element in a set she/ 
he is acting as a “commonsensical agent” who takes into consideration a 
lack of agreement about a particular concept within a group of individuals. 
A difficult issue deserving discussion is the consistency of answers along time 
and in different situations. An agent could consider Mary as a tall person 
and Bea as a very tall, although they have the same height, just because 
Mary is fat and Bea is not.. Or considering Mary as tall now and very tall 
when wearing a vertical stripped dress. In order to avoid this kind of dif- 
ficulty, the proposed approach does not impose constraints or assumptions 
on how an individual agen’t should perform, beyond the acceptance of the 
present axioms. 

To represent the individual agent’s opinion a ternary function is defined as 
follows: 

Definition 1 (Concordant function). The belief of individual agent i with respect 
to the membership of x in a set A is represented by a concordant function 
cc(i, x, A) defined as: 

cc(i, x, A) = 
1 if agent i agrees with membership of x in A, 

0 otherwise. 

Axiom 2 (Negation). When an individual agent believes that an element x 
belongs to a set A then she/he also accepts that x does not belong to the 
complement of A, A, and vice-versa. 
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Certain human beings, in particular examples, do not respect this axiom. 
However, these cases correspond to elements presumably located near an 
imaginary borderline establishing the boundary between the set A and its 
complement. As real agents should perform like ideal (rational) individual 
agents, it is always possible to clear things up and restore consistency. In fact, 
the experiments of Hersh and Caramazza [15] also confirm the hypothesis 
stated in the Axiom 2. 

Based on Axiom 2 the concordance of an agent relatively to the membership 
in a complement set is given through the function cc. 

If k is the complement of a set A then 

cc(i,x,A) = 
{ 

1 ifcc(i,x,A) = 0 

0 ifcc(i,x,d) = 1 

= 1 - cc(i,x,A). 

Axiom 3 (Conjunction). When an individual agent believes that x belongs to a 
set A and also believes that x belongs to a set B, then she/he believes that x 
belongs to the intersection of sets A and B, and vice-versa. 

Human agents exhibit two kinds of behaviour when categorizing objects: a 
best@ approach (when the agent assigns one and only one label to the object, 
corresponding to the best describing characteristic), and a subsumption per- 
spective (when the agent assigns several labels which are “acceptable” to 
describe the object). For instance, consider an individual who is asked whether 
John Smith (2.35 m) is tall, and whether he is very tall. In the former case (best 
fit), the agent will only assign the label very tall, and in the later the agent will 
assign both labels, as all very tallpersons are also tall. Notice that this difficulty 
only arises when the labels are associated with the same characteristic (at- 
tribute) under evaluation (in this case, height). 

A more subtle example is the assignment of colors to objects. Suppose, say, 
a reddish orange pencil. Some individuals will consider its color as red and 
some as orange. On the one hand, the very same individual seldom considers 
the pencil as red and orange. However, on the other hand, almost all indi- 
viduals accept the fact that deep orange is a kind of light red. So there is an 
overlapping between these two sets (red and orange). 

Of course, when applying the best fit approach, individuals are consid- 
ering sets as disjoint (e.g., tall/very tall, red/orange, and so on). Also, the 
order by which the questions are raised is relevant to the answers got (if the 
question “Is John Smith tall?” is asked before the question “Is John Smith 
very tall?“, it is likely to get two positive answers even when a best fit ap- 
proach is considered). As the present axiom does not consider the order of 
conjuncts as a relevant aspect, a special care must be taken to avoid erro- 
neous results. 
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Another interesting case involving colors in a conjunction is the Portuguese 
flag example: the flag is divided vertically with colors green and red (the area of 
red being slightly bigger than the area of green). In the vertical line there is an 
heraldic sphere (yellow) with a complex drawing including small castles, shields 
in blue and white. When asked about the color of the flag, very few people 
accept green as the color of the flag. On the other hand,few people accept red 
as the color of the flag. However, almost all consider the Portuguese flag as 
being green and red. Notice that there is nothing fuzzy in the flag (colors are 
primitive, by definition). This is a case where people, although accepting the 
conjunction, do not accept each one of the conjuncts. (Can this be explained 
because the green and red is now a single predicate?). This example illustrates 
the difficulties of formalizing natural language concepts. 

It is important to notice that in any case (best fit or subsumption ap- 
proaches) the Logic of Agreement - which is based upon the present axioms - 
performs correctly although providing different results. It is however crucial 
that all agents (performing a.s individual agents) should adopt the very same 
methodology when categorizing objects, in order to maintain consistency. In 
fact, some interesting differences will arise depending on the approach taken: 
for instance, and not surprisingly, when the best fit approach is chosen, it is not 
possible to finding a “strong” implication between, say, being very tall and 
being tall as it happens if the other approach is considered. 

Again the function cc is used to represent the assumption introduced by 
Axiom 3. 

If A and B are two sets then 

CC(i,X,A nB) = cc(i,x,.4)cc(i,x,B). 

Axiom 4 (Disjunction). When an individual agent believes that x belongs to a set 
A or that x belongs to a set B (or both) then she/he should also accept that x 
belongs to the union of sets A and B, and vice-versa. 

This axiom establishes the semantics of the connective “or”. In natural 
language, the “or” is, in most cases, utilized in the exclusive sense, presumably 
because it allows direct inferences. For instance, knowing that “Mary is either 
tall or very tall,” as soon as it is found out that “Mary is tall” it can be inferred 
that “Mary is not very tall” (best fit approach). However, this axiom is based 
on an inclusive sense for the connective “or” because it is more general than the 
previous one. (Notice that it is always possible to associate conjunctions and 
disjunctions for expressing propositions involving exclusive “or”). Therefore, 
agents performing as individual agents should understand the “or” in the in- 
clusive sense. 

Once again the function cc is utilized to represent the assumption introduced 
by Axiom 4. 
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If A and B are two sets then 

cc(i,x,A u B) = cc(i,x,A) + cc(i,x, B) - cc(i,x,A)cc(i,x, B). 

Based on the former axioms it is possible to define the degree of agreement for 
operations on sets. Suppose that N individual agents are asked concerning the 
membership of x in a set A. 

Definition 2 (Degree of agreement). The degree of agreement ac(x E A) among 
N individual agents relatively to the membership of x in a set A is defined by the 
proportion of the number of agents agreeing that x belongs to A, i.e. 

This definition of the concept of agreement among a group of individual agents 
assumes basically that the process is democratic, i.e. (i) the group includes a 
relevant sample of individual agents, (ii) the agents are not influenced by 
others, (iii) all agents have the same relative importance in terms of the 
agreement calculus, and (iv) the agreement value depends only of the agents’ 
opinion. 

Using this definition, the extension of the concept of agreement for set 
operations can be easily performed. 

Proposition 1 (Degree of agreement for the complement of a set). The degree of 
agreement ac(x E A) among N individual agents 1v.r. t. the membership of x in a 
set A- is 

= xi”=, 1 - cc(~,x,‘4 
N 

= 1 - ac(x E A). 

Proposition 2 (Degree of agreement for the intersection of two sets). The degree 
of agreement ac(x E A n B) among N individual agents w.r. t. the membership of x 
in a set A n B is 

ac(xEAnB)= 
CL, cc(i,x,A)cc(i,x, B) 

N 

Proposition 3 (Degree of agreement for the union of two sets). The degree of 
agreement ac(x E A U B) among N individual agents w. r. t. the membership of x in 
a set A U B is 

a+ EAUB) = 
C;“=, cc(i,x, A) + cc(i,x, B) - cc(i,x, A)cc(i,x, B) 

N 
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The following definition establishes a function that assesses the covariance 
between the two collection of answers obtained concerning the membership of 
an element x in a set A and in a set B. It measures the quantity of individual 
agents giving the same answer for both questions and the quantity of agents 
giving different answers. 

Definition 3 (Couariunce). A covariance function in terms of agreement is 
defined as 

cov(xEA,xEB)= 
=g,[cc(i,x,A) - uc(x E A)][cc(i,x,B) - ac(x E B)] 

N 

Now the following propositions can be proved: 3 

Proposition 4. 

ac(x E A n B) = uc(x E A)uc(x E B) + cov(x E A,x E B). 

Proposition 5. 

UC(XEAUB)=~~(XEA)+~~(XEB)-uc(xeAnB). 

Proposition 6. 

uc(xEArlB)6uc(xE‘4) ( or uc(x E B)) < uc(x E A U B). 

Proposition 7. 

cov(x E A,x E A) = uc(.x E A)[1 - ac(x E A)]. 

Proposition 8. 

cov(x E .4,x E B) = -cov(x E A,x E B). 

(1) 

(2) 

(3) 

(4) 

(5) 

Proposition 9. 

cov(xEA,xEB)=cov(xEA,xEB). (6) 

Proposition 10. 

uc(x E A)uc(x E B) + uc(x E A)uc(x E B) 

+ ac(x E A)uc(x E B) + uc(x E A)uc(x E B) = 1. (7) 

3 For sake of paper length the proofs of the following propositions are not included. However, 
all of them are available in Ref. [6]. 
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Proposition 11. 

ac(xEAnC)=cov(xEA,xEC)-t 
cov(x E A,x E B) - ac(x E A n B) 

ac(x E B) 
x cov(x E B,x E C) - ac(x E B n C) 

ac(x E B) 
ifac(x E B) > 0. 

(8) 

Proposition 12. 

jcov(x E A,x E B)l < 0.25. (9) 

4. The pencil of Sheridan-fine: a simple example 

In this section, an example suggested by Sheridan in a reply to Dubois and 
Prade [8] is presented. The example is particularly interesting because it raises 
some of the difficulties found when Fuzzy Set Theory is used. 

Sheridan writes: 
‘Say we have a pencil that is fairly red, and fairly orange. I claim that it is at 

least conceivable that it is very red or orange. (In fact there is such a pencil, but 
that does not matter.) With the “most popular” choice of operatos (Dubois 
and Prade’s equations (14) and (15)) this is impossible: the pencil is fairly red or 
orange (t(P V Q) = max(t(P), t(Q)). t(p) is the degree of truth of the proposi- 
tion P.)“. 

(Sheridan’s emphasis; Eq. (14) and (15) correspond to max and min oper- 
ators, respectively). 

The purpose of presenting this example is twofold: on the one hand, it will 
be used to demonstrate that the agreement-based operators do not exhibit the 
type of problems pointed out by Sheridan and, on the other hand, to illustrate 
the two possible ways individuals use for categorizing objects ~ best fit or 
subsumption (see Section 3). Suppose that N agents were questioned con- 
cerning the acceptance of the membership of p in the set of orange pencils 0 
and in the set of red pencils R. To ease the understanding of this example, 
assume that the following labels are associated with degrees of agreement: 0.6 
“slightly”, 0.7 “fairly”, 0.8 “strongly”, 0.9 “very”, and 1 .O “completely”. 

Consider first the subsumption approach. In this case, 

ac(p E 0) = 0.7, ac(p E R) = 0.7. 

That is to say, 70% of the individual agents consider that the pencil belongs to 
the set of orange pencils (the commonsensical agent considers it fairly orange), 
and the same proportion of the individuals agents consider that the pencil 
belongs to the set of red pencils (the commonsensical agent considers it fairly 
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red). This means that there are individual agents considering that the pencil 
belongs to both sets - red and orange. In fact, at least 40% of them, or at most 
70% of them. 4 This is not surprising as the pencil is reddish orange (the only 
explanation for the answers got) and because of the approach taken - sub- 
sumption. On the other hand, as a direct consequence of proposition 2, it is not 
possible to find the degree of agreement for a disjunction only on the basis of 
the degrees of agreement of each one of the disjuncts: it is also necessary to 
know the degree of agreement for the conjunction. (Union and intersection are 
the two side of the very same coin). For those who are used to evaluate 
membership degrees utilizing the max and min operators this conclusion could 
seem a bit complex; however, this is the price to pay on being precise. Par- 
ticularly, in this example, the utilization of max leads to the (strange) con- 
clusion that the pencil is also fairly red or orange. Now suppose that the degree 
of agreement for the membership of p in the set Url R is 0.5, i.e. 
ac(p E 0 II R) = 0.5. In other words, 50% of the individual agents consider the 
pencil simultaneously red and orange. (This means that there is a maximum 
disagreement concerning that p E 0 n R). Based on expression 2, it is possible 
to determine a& E 0 U R). 

ac(p~OUR)=ac(p~O)+ac(p~R)-uc(p~OnR) 

= 0.7 + 0.7 - 0.5 = 0.9 

Then it can be concluded that the pencil is very red or orange (the conclusion 
suggested by Sheridan). As the union (disjunction) operation depends on the 
intersection (conjunction) one, it is possible to obtain different grades of 
agreement for p E 0 U R. For instance, if the conjunction degree of agreement 
is 0.4, the disjunction degree i.s 1 .O, meaning that the pencil is completely red or 
orange. On the other hand, if the conjunction degree of agreement is 0.7, the 
disjunction degree of agreement is 0.7. Only in this case the result given by the 
fuzzy operator max equals the one obtained by agreement-based operators. 

The mentioned conclusions deserve some comments. First of all, how can be 
explained that the degree of agreement of the disjunction is less than l.O? The 
only explanation is that there are individual agents considering simultaneously 
that the pencil does not belong to the set 0 and does not belong to the set R. 
Perhaps they consider the pencil as yellow. Possibly there are individual agents 
considering that the color of the pencil is reddish-orange and decided not to 
accept the only two labels provided: red, orange. This situation is strange as 
agents were advised to use the subsumption approach. Recall that in this ap- 
proach, individual agents assume that there could be an overlapping between 
sets and they should answer yes to both membership questions when the 

4 From Proposition 2, ac(x E A U B) = ac(x E A) + ac(x E B) - ac(x E A rl B) < 1, it can be 
derived that ac(x E A rl B) 2 ac(x E A) + ac(x E B) - 1, and so ac(x E A n B) 3 0.4. 
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element belongs to the intersection. Notice that, due to the fact that the 
perception mechanisms of individuals are different, allows to getting, for the 
very same pencil, the answers “red”, “orange”, and “red and orange”. 

Consider now the best fit approach. In this case individual agents will assign 
one and only one color label to the pencil. So, the sum of the degrees of 
agreement for both colors cannot be higher than 1.0. 

Suppose that the degrees of agreement for both membership relations, p E 0 
and p E R, is 0.5. This means that there is a maximum disagreement among 
individual agents and, therefore, they do not provide any useful information 
for discriminating between red and orange as the color of the pencil. As the 
degree of agreement for the conjunction is zero (best fit approach), using 
proposition 2 it is obtained, 

ac(p~OUR)=ac(p~O)+ac(p~R)-ac(pEOnR) 

= 0.5 + 0.5 - 0 = 1. 

That is to say, the pencil is definitely red or orange. This is an interesting case 
of maximum ignorance on the disjuncts (impossibility of discriminating be- 
tween red and orange) and minimum ignorance on the disjunction (it is certain 
that the pencil is either red or orange). 

Of course, depending on the color of the pencil, it is possible to obtain, say, 
ac@ E 0) = 0.3 and ac(p E R) = 0.7. In this case, the commonsensical agent 
considers the pencil as fairly red, and fairly not orange. But, it is also possible 
that a& E 0) = 0.4 and UC@ E R) = 0.4. In this case there are, possibly, 
agents who think that the label reddish-orange is a better classification for p. 

As individual agents are answering under a best fit approach, the commons- 
ensical agent is not completely sure that the pencil is either orange or red 
(ac(p E 0 U R) = 0.8). 

It should be stressed that the agreement-based operators perform correctly 
in both cases - best fit and subsumption - provided that the individual agents 
be advised to maintain consistency in their judgements. It is claimed that the 
formal semantics which results from the agreement approach delivers conclu- 
sions that are acceptable in a commonsense framework. In other words, the 
formal semantics fits the informal one - in a nut shell, it makes sense. 

5. Consequences of the agreement-based semantics 

Interpreting the grade of membership ,u~((x) of an element x in a fuzzy set A 
as the degree of agreement among N individual agents w.r.t. the membership of 
x in A, demonstrates that the operators usually used in fuzzy set theory should 
be re-evaluated. 

The most popular choice of operators for intersection and union is min and 
max, respectively [7,29,26]. Based on the new interpretation of grade of 
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membership it is clear that both operators are not adequate considering 
Propositions 1 and 2. Also the pair product/probabilistic sum has been fre- 
quently used as operators for those operations. However, based on the 
agreement definitions, this pair is also inadequate to represent the intersection 
and union of fuzzy sets. Notice that only when the covariance is zero, the in- 
tersection is given by the product. 

With the agreement interpretation of the meaning of vague concepts, it is 
possible to define a rigorous but clear semantics of a logic involving classic and 
non-classic propositions. A classic one is represented by a degree of agreement 
that it is one (or zero), i.e., all the agents agree (or disagree) on the membership 
of an element in a class. 

Since it is supposed that each agent is a rational individual using first order 
logic to reason about the world [24], the logic of agreement is an extension of 
the classical logic. When propositions involved are classic ones (O,l), the logic 
provides the same results as the classical logic, giving only two logical values: 
true and false. 

Moreover, each proposition is logically evaluated by a set of N individual 
agents generating a degree of agreement in the interval [0, 11. Based on the 
proof theory, presented in Section 7, this logic is capable of inferring new 
propositions, with the corresponding degrees of agreement. 

The key issue in what regards reasoning under agreement is to determine 
whether the mechanisms of derivation used by people are sound with respect to 
a given semantics. In other words, for instance, if a group of individuals agrees, 
in some extent, with propositions A, A --) B, and B, (given a degree of agree- 
ment for each proposition), then, there should be an inference system capable 
of deriving, say B (and the corresponding degree of agreement) given A, and 
A + B. If such an inference system would not exist, then it would be impossible 
to reason under agreement (at least with some degree of accuracy). This should 
be a very puzzling conclusion as people usually derive conclusions from 
premises stated under agreement. For instance, most of the people agrees that 
Spielberg movies are good. When a new Spielberg movie comes up, people 
should agree, at least a priori, that it should be good. Of course, the degree of 
agreement of the former proposition should positively influence the degree of 
the latter. 

In terms of inference, the logic of agreement is based on a natural deduction 
system using therefore only rules of inference. It takes propositions and their 
respective degrees of agreement and it generates other propositions and the 
corresponding degrees of agreement. It works as multi-valued logic through 
the manipulation of degrees of agreement. By comparison with fuzzy logic, the 
logic of agreement is less expressive, since the former uses membership func- 
tions in its inference process and it allows the inference of new membership 
functions. However, this process is justified only in mathematical terms using 
the idea of fuzzy relation as an extension of classic (crisp) relation [7]. As there 
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is no semantic system, there are no semantic justifications for this kind of in- 
ference methodology. Besides that there are several multi-valued logics [7] each 
one based on its own set theory, i.e., each one satisfying a particular set of 
axioms, but none having a semantic framework to justify its utilization. 

6. Semantic system 

In order to create the semantics of a logic, it is necessary to establish a 
conceptualization of reality, to define the relevant objects of the world for a 
specific problem, as well as to establish the relations among the objects. The set 
of objects of the conceptualization is called universe of discourse. 

Since the existence of several individual agents is assumed, the semantic 
system incorporates the perspective that each agent defines her/his own con- 
ceptualization of reality. However, when agents are asked about a property of 
an object, each one conceptualizes the property differently, but the object in- 
volved should be the same so the aggregation of answers would make sense. 
For instance, if agents are asked whether John is tall, all the agents must be 
considering the same John. The same hypothesis is assumed for functions. For 
instance, when the question involves the son of Peter (for example, John), all 
agents should consider the same John. Finally for the relations of the con- 
ceptualizations of reality, it is assumed that the agents have total freedom of 
conceptualizing each relevant property. Therefore, supposing that there are N 
agents, the semantic system considers N conceptualizations of reality, with the 
same objects and functions, but (possibly) different relations. Prior to the full 
definition of the semantic system, it is essential to have a formal language al- 
lowing the representation of propositions about the conceptualized world. 
These propositions are represented by formulas of the language, according to a 
specific alphabet and certain rules of formation. 

The evaluation of a formula depends on the interpretation given to each 
element in the formula, i.e., it depends on the relation between the elements of 
the language and the elements of the conceptualization - objects, functions and 
relations. As usual, the concept of interpretation Z is defined as the mapping 
from the elements of the language to the elements of the conceptualization. 

Since there are different conceptualizations, it is also assumed that there are 
different interpretations Zi, one for each agent. As the objects and functions are 
the same in all conceptualizations, all the interpretations map an object or 
function constant of the language into the same objects or functions of the 
conceptualization. 

Each agent should conceptualize a property by a classical relation through 
the definition of a classical set of objects that satisfy the property. Fig. 1 shows 
a graphical representation of the connection among conceptualizations, in- 
terpretations and language. 
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Fig. 1. Representation of the concept of interpretation. All sets of objects and functions are 
identical, i.e. 0, = Dj and F, = F,. 

Definition 4 (Interpretation). An interpretation Zi (used by the agent &i) is a 
mapping from the elements of the language to the elements of the conceptu- 
alization satisfying the following properties: 

(i) if c is a constant symbol of object, then Ii(c) E D and Vj Z;(c) = Zi(c), 
where D represents the universe of discourse common to all conceptualiza- 
tions. 
(ii) if f is a constant symbol of function, with rank n, then Z@) : D” + De 
vj Zi(j-) = zj(j-). 
(iii) if p is a constant symbol of relation, with rank n, then Zi(p) C_ D’. 

Now it is possible to define the concept of concordance, denoted by FI, 4, 
representing the fact that the individual agent using the interpretation Zi accepts 
the proposition represented by the formula 4. 

Definition 5 (Concordance). 
(i) an agent &i concords with the proposition represented by the atomic for- 
mula p(c, , . . . , cn), according to her/his interpretation Zi, if and only if 
(Zi(Cl), . . . ,Zi(C,)) E Zi@)y i.e., 

h, P(Cl, . . . , Cn) iff (Zi(Cl), . . . ,Zj(C,)) E Zi(p). 
(ii) an agent &i concords with the proposition represented by the formula 
-4, according to her/his interpretation Zj, if and only if the agent Ai does 
not concord with the proposition represented by the formula 4, i.e., 



66 L.M.M. Custbdio, C. Pinto-Ferreira I Internat. J. Approx. Reason. 20 (1999) 47-78 

(iii) an agent di concords with the proposition represented by the formula 
4 A $, according to his/her interpretation Zi, if and only if the agent Ai con- 
cords with the proposition represented by the formula 4 and concords with 
the proposition represented by the formula *, i.e., 

11, 4 A $ iff !==I, 4 and FI, $. 

(iv) an agent &i concords with the proposition represented by the formula 
4 V $, according to her/his interpretation Zi, if and only if the agent Ai con- 
cords with the proposition represented by the formula 4 or concords with 
the proposition represented by the formula $ (or both), i.e., 

b, 4 V Ic/ iff I=,, 4 or 11, $. 

(v) an agent di concords with the proposition represented by the formula 
4 + $, according to her/his interpretation Zi, if and only if the agent Ai does 
not concord with the proposition represented by the formula C$ or concords 
with the proposition represented by the formula t+k, i.e., 

I=I, 4 --+ ti iff PI,@ or I==,, $. 

(vi) an agent di concords with the proposition represented by the formula 
q5 H $, according to his interpretation Zi, if and only if the agent A, concords 
with the proposition represented by the formula 4 A $ or concords with the 
proposition represented by the formula V#I A -II/, i.e., 

I=I, 4 ++ * iff b, 4 A ti or !=I, -4 A 3. 

The concordance concept can be defined by a mathematical function 
ccwzc : Z x 2 -+ (0, I}, where Z is the set of interpretations and 2 is the set of 
formulas. The new form of the former definition is as below: 

Definition 6 (Function cone). 

(0 

conc(&,p(q, . . . , c,)) = 
1 if&(q), . . . ,zi(cn)) E 4(p). 

0 otherwise, 
(ii) 

conc(4, -74) = 1 iff conc(Z,, 4) = 0. 

(iii) 

conc(Z,, 4 A $) = 1 iff conc(4, 4) = 1 and conc(Zi, $) = I 

i.e., 

conc(Zi, 4 A $) = conc(Zj, 4) COIlC(Zi, $). 

(iv) 

conc(Zj, 4 V tj) = 1 iff COnC(Z;, 4) = 1 or COllC(Zj, $) = 1 
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i.e., 

COnC(Zi, 4 V l/l) = conc(&, 4) + COIlC(Zi, I//) 
- COIlC(Zi, 4) conc(Zi, $). 

09 

COIlC(Zi, t#J -b $f) = 1 iff COIlC(Zi, 4) = 0 or COnC(Zi, lj!/) = 1 

i.e., 

COIlC(Zi, 4 + $) = COIlC(Zi, + V $). 

64 

conc(Zi, q5 ts $) = 1 iff COIlC(Zi, f$ A II/) = 1 Or conc(Zi, 74 A -II/) = 1 
i.e., 

COIlC(Zi, 4 * lj) = COIlC(Zi, (4 A 1c/) V (-4 A +)) 

= conc(,Zi, q!J A $) + COnC(Zi, 14 A -$). 

When an individual agent creates a conceptualization of reality, it can be said 
that the agent defines a possible world. Assuming N agents, N possible worlds 
are created, each one associated with a particular interpretation. Let 
W={w1,... , wN} be the set of possible worlds created by N agents. 

Definition 7. Let w  be the possible world defined by an individual agent d. A 
function In : W + Z associating the possible world w  with the interpretation 
In(w) used by the agent S! is defined. Then, In(W) = {Ii,. . . ,ZN} = Z is the set 
of all interpretations. 

In order to aggregate the information provided by N agents, the concept of 
(agreed) satisfaction, in the logic of agreement (LA), is defined. 

Let A be a formula of the language and a a real number in the interval [O,l]. 
If the formula A is satisfied (agreed) by a degree a, in the set W of possible 
worlds, this is denoted by W f=k* A. 

Definition 8 (Satisfaction). The set W of possible worlds satisfies with a degree a 
a formula in the following cases: 

(1) W bk” A iff exist in IV, ctN worlds wi such that +m(wi) A, where A is an 
atomic formula, i.e., 
(1.1) W k$” A iff exist in IV, aN worlds wi such that conc(Zn(wi), A) = 1, i.e., 
(1.2) W kt* A iff 

CL, conc(Zn(wi), A) 
N 

= a, 

(2) W kLA 1A iff exist in W, CrN worlds wi such that bmtwi) TA, i.e., 
(2.1) W k 1A iff exist in W, CrN worlds wi such that conc(Zn(Wi),A) = 0, i.e., 
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(2.2) W k,“” TA iff 

Xi”=, conc(ZhJ,A) = 1 _ a 

LANAiEWbL! A 

> 

(2.3) w k, l 
(3) W b,“” A A B iff exist! i: Fk, olN worlds wi such that kln(Wl,~ A A B, i.e., 
(3.1) W +b” A A B iff exist in W, MN worlds wi such that conc(Za(wi),A) = 1 
and conc(Zn(wj), B) = 1, i.e., conc(Zn(w;),A) conc(Zn(wi), B) = 1, i.e., 
(3.2) W bi” A A B iff 

CL, conc(Zrz(wi),A) conc(Zn(wi), B) = 

N 6 

(4) W kk” A V B iff exist in W, OCN worlds wi such that /=ln(W,~ A V B, i.e., 
(4.1) W /=i” A V B iff exist in W, aN worlds w, such that conc(Zn(w,), A) 
=l or conc(Zn(wi), B) = 1, i.e., conc(Zti(wi),A) + conc(Zn(w,), B)- 
conc(Zrz(wi),A) conc(Zn(wi), B) = 1, i.e., 
(4.2) W bb” A v B iff 

CL, conc(Zn(w,), A) + conc(Zn(wi), B) - conc(Zn(wi),A) conc(Zn(wj), B) 
N 

= u> 

(5) W k:” A -+ B iff exist in W, EN worlds wi such that +m(wz) A --+ B, i.e., 
(5.1) W /=,“” A -+ B iff exist in W, cdv worlds wi such that conc(Zn(wi),A) 
= 0 or conc(Zn(wi),B) = 1, i.e., 1 - conc(Zn(wi), A) -I conc(Zn(w,), A) 
conC(Zn(wi), B) = 1, i.e., 
(5.2) W /=ZLA A --f B iff 

Cc, 1 - conc(Zn(wi),A) + conc(Zn(wi),A) conc(Zn(wi), B) = 
N u, 

(6) W bk” A H B iff exist in W, odv worlds wi such that k,n(W,) A H B, i.e., 
(6.1) Wb,L”A++B iff exist in W, crN worlds wi such that 
conc(Zn(wi), A A B) = 1 or conc(Zn(wi), -A A -B) = 1, i.e., 1 - cone 
(Zn(wl), A) - conc(Zn(wi), B) + 2 conc(Zn(wi), A) conc(Zn(w,), B) = 1, i.e., 
(6.2) W bk” A H B iff 

cp, 1 - conc(Zn(wi), A) - conc(Zti(wi),B) + 2 conc(Zn(wi), A) conc(Zn(wi),B) 
N 

= Lx. 

Definition 9 (Logical value). If a formula A is satisfied in a value CI, by the set of 
possible worlds W, then it is said that a is the logical value of the formula A. 

Next it will be defined the concept of collective or simultaneous satisfaction, 
that is to say the satisfaction of a set of formulas. 
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Definition 10 (Collectiue or simultaneous satisfaction). A set of formulas 
{Pl,... , P,,,} is satisfied by the set of possible worlds W, according to the set of 
logical values a = { czi , . . . , u,}, denoted by W bk* {PI,. . . , P,}, iff 

W k:Pj Vi: i= l,...,m 

i.e., the set of possible worlds satisfies the formula Pi with the corresponding 
logical value Gli. 

Definition 11 (Logical consequence). Let r = {PI,. . . , P,,,} be a set of formulas 
andti={cri,... , CC,} a set of logical values, where ai is the logical value of the 
formula Pi. Let A also be a formula with the corresponding logical value a. It is 
said that A is a logical consequence of r, according to ~3 and ~1, denoted by 
r 1:; A, if for the set of possible worlds W r has a collective satisfaction Cr, 
then ‘A is satisfied in the value LX. 

7. Proof theory 

The syntactic system of the logic of agreement is a natural deduction system: 
Natural deduction systems include, instead of logical axioms, as usual, a set of 
inference rules, normally two per connective (one for introduction and another 
for elimination). To start a proof, it is usually provided a “rule of hypothesis” 
which allows the introduction of assumptions that will be the premises of the 
derived conclusions. 

The present natural deduction system has several predecessors, namely the 
systems of Lemmon [21], Fitch [ll], Martins and Shapiro [22], and Pinto- 
Ferreira and Martins [25], among others. One of the major differences between 
the present proof theory and others is that some rules of inference need three 
(instead of two) formulas (premises) to infer a consequence. For instance, 
consider the Modus Ponens rule. In the logic of agreement, it is not enough A 
and A -+ B to infer B. In fact, it is also needed A H B, a “measure” of the 
proportion of agents having the same opinion (concordance or not) about A 
and B. This could seem strange at first sight; however, to infer under agreement 
more information is needed. 

The proof theory of the logic of agreement will be defined in terms of three 
aspects: alphabet, rules of formation and rules of inference. 

7.1. Alphabet 

The alphabet defines all symbols that could and will be used to establish the 
proof theory. 
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Definition 12 (Alphabet). The alphabet of the syntactic system of the logic of 
agreement is the union of the following disjoint sets: 

(i) 9: non-empty set of predicate symbols. Each element of 9 has associated 
a non-negative number called rank. 9’ is the set of proposition symbols. 
(ii) 9: set of function symbols. Each element of 9 has associated a non-neg- 
ative number called rank. F” is the set of constant symbols. This set includes 
all the symbols representing objects of the universe of discourse. 
(iii) Set of connectives: {7,-+, A, V, H}. 

(iv) Set of punctuation symbols: {(, ), , }. 

7.2. Rules of formation 

This section presents rules that must be followed in order to define formulas 
accepted in the language of the logic of agreement. Since this logic is for now a 
zero-order logic, the rules of formation allow only the definition of zero-order 
formulas. 

Definition 13 (Term). A term v is an element of the set 9’ or v = q@, . . ,x,,), 
where4EFandxiisaterm,i=l,,.., n. 

Definition 14 (Rules offormation). The rules of formation of formulas of the 
logic of agreement are the following ones: 

(i)ifBE~andxiisatenn,i=1,...,n,thenP(xl,...,x,)isawell-formed 
formula (WI?) called atomic formula. 
(ii) is A and B are well-formed formulas, then -A, A V B, A A B, A --) B and 
A et B are also well-formed formulas. 
(iii) Nothing else is a well-formed formula. 
Natural deduction systems allow the establishment of a distinction between 

hypothesis (assumptions) and derived formulas. As mentioned, assumptions 
are introduced by a rule of hypothesis and derived formulas are the ones in- 
ferred through the application of inference rules. Certain rules of inference 
demand the knowledge about which hypothesis underlie a given conclusion. 
This implies that the computational system which implements the proof theory 
ought to have a dependency recording mechanism, that is to say, to each derived 
formula is associated the set (or sets) of premises which were utilized to reach 
the conclusion. (In fact, this dependency record is one of the crucial aspects of 
the Assumption Based Truth Maintenance Systems - ATMS - see De Kleer 
[18], and Martins and Shapiro [22].) 

On the other hand, as inference in the present proof theory should provide 
not only a derived formula but also its degree of credibility (a value in the 
interval [O,l] which is the counterpart of the degree of agreement in the proof 
theory), the inference system should process not only formulas but also sup- 
ported formulas. Supported formulas are aggregated objects including a for- 
mula and the degree of credibility. 
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Definition 15 (Supported formula). A supported formula is a pair (A, cr), 
where A is a well-formed formula and cr is the corresponding degree of 
credibility. 

7.3. Rules of inference 

This section introduces rules of inference allowing the derivation of a for- 
mula from a set of others. As any traditional natural deduction system, the 
logic of agreement includes typically two rules for each logical connective plus 
two rules for introducing and eliminating hypothesis and a Reductio ad Abs- 
urdum rule. Therefore, its rules of inference are as following (as usual, the 
symbol k means “infer”): 

Rule of Hypothesis Introduction (HIP-I). At any point of a proof it is possible 
to introduce an hypothesis (,a, cr) . 

Rule of Hypothesis Elimination (HIP-E). This rule allows the elimination of 
hypothesis, i.e., 

If {(Al,crl), . . . , &,cr,), (4x)) k (B,cr) 
and cr does not depend on x 
then {(Al,crl),...,(A,,cr,)) k (44 

Rule of Implication Introduction (+I). Given a supported formula (A, crA), a 
supported formula (A * B, cr) and a supported formula (B, erg), this rule 
allows to derive the formula A + B with the corresponding support. 

(A ++ B, cr) 

(4 crB> 

In order to guarantee consistency among formulas used as premises, the fol- 
lowing condition should be satisfied: 

max[l - crA - crB, -(I - crA - crB)] 

< cr < min[cr, - cr8 + l,crB - crA + 11. 

This and the following conditions are obtained using a set of theorems pre- 
sented in Ref. [6]. 

Rule of Implication Elimination 1 (MP). Given (A, crA), (A + B, crl) and 
(A c) B, crz), this rule allows to derive the formula B with the corresponding 
support. 
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(B, 2crl - cr2 + crA - 1) 

In order to guarantee consistency among formulas used as premises, the fol- 
lowing conditions should be satisfied: 

1 - CT, 6 CYI < 1 

and 

crl + cry - 1 < cr2 < cq . 

Rule of Implication Elimination 2 (MT). Given (‘B, CT+), (.4 + B, WI) and 
(A H B, CQ), this rule allows to derive the formula --A with the corresponding 
support. 

(14 c-r+) 

(A -+ 44 

(A c--t B, cr2) 

(TA, 2crl - cr2 + cr+ - 1) 

In order to guarantee consistency among formulas used as premises, the fol- 
lowing conditions should be satisfied: 

1 - cr+ < crl < 1 

and 

crl + cr,B - 1 < cr2 < cr1. 

Rule of Negation Introduction (4). Given any supported formula (A, cr), this 
rule allows to derive the negation of the formula A and the corresponding 
support. 

(A, cr) 
(-A, 1 - cr) 

Rule of Negation Elimination (1E). Given any supported formula (TA, cr), this 
rule allows to derive the formula A and the corresponding support. 

(4 4 
(A,1 -cr) 

Rule of Conjunction Introduction (AI). Given (A, CY~), (B, cre) and (A H B, cr), 
this rule allows to derive the formula A A B with the corresponding support. 
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(A, cr.4 
(B, crB) 

(A +-+ B, cr) 

(AA4 
cr+crA+crg-l 

2 ) 

In order to guarantee consistency among formulas used as premises, the fol- 
lowing condition should be satisfied: 

max[l - crA - crB, -( 1 - crA - crB)] 

Rule of Conjunction Elimination (AE). Given (A,cr~), (A A B,crl) and 
(A c) B, crz), this rule allows to derive the formula B with the corresponding 
support. 

(A, CrA) 

(A A&m) 

(A ++ 4 cn) 

(B,2crl-cr2-o-A+11:; 

In order to guarantee consistency among formulas used as premises, the fol- 
lowing conditions should be satisfied: 

0 < crl < crA 

and 

crl < cr2 < 1 - crA + crI 

Rule of Disjunction Introduction (VI)]. Given (A, crA), (B, erg) and (A c-) B, cr), 
this rule allows to derive the formula A v  B with the corresponding support. 

b&C’-A) 

(4 crB) 

(A +-+ B, cr) 

(AVB, 
crA+cr~-cr+l 

2 ) 
In order to guarantee consistency among formulas used as premises, the fol- 
lowing condition should be satisfied: 

max[l - crA - crB, -(l - crA - crB)] 

~cr~min[crA-crg+l,crg-crA+l] 

Rule of Disjunction Elimination (VE). Given (A,cr~), (A V B, crl) and 
(A c) B, crz), this rule allows to derive the formula B with the corresponding 
support. 
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(B, 20, + cr2 - cr.4 - 1) 

In order to guarantee consistency among formulas used as premises, the fol- 
lowing conditions should be satisfied: 

Cl-A 6 ct.1 < 1 

and 

1 - Cri < cr2 < 1 + crA - crI. 

Rule of Equivalence Introduction (++I). Given (A, crA), (B, cre) and one of the 
following supported formulas (A A B, cr), (A v B, cr) or (A + B, cr), this rule 
allows to derive the formula A H B with the corresponding support. 

6% CrA) 

(6 cd 

(A A B, cr) 
(A c-) B, 1 - cr.., - CrB + 2cr) 

In order to guarantee consistency among formulas used as premises, the fol- 
lowing condition should be satisfied: 

max[o, crA + crB - l] < cr 6 min[cr,, erg] 

(4 crA) 

(4 cd 

(A V B, cr) 
(A tf B, 1 + crA + crB - 2cr) 

In order to guarantee consistency among formulas used as premises, the fol- 
lowing condition should be satisfied: 

max [crA , erg] < cr < min [ 1, crA + erB] 

(4 CrB) 

(A --f B, cr) 

(A +-+ B, crA - crB - 1 + 2cr) 

In order to guarantee consistency among formulas used as premises, the fol- 
lowing condition should be satisfied: 
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Rule of Reductio ad Absurdurn @AA). Given a proof of (B,yr) derived from a 
set of supported formulas A = {(Al, WI), . . . , (A,, cr,)} and a proof of (B,y2), 
where y2 # yi (a contradiction), derived from a set of formulas A U { (A,x)}, 

where x # CT. Then it is possible to infer (A, CP-) only from the set A. 

Rule of Classical Logic (TX). Let r = {ui, . . . ,A,} a set of formulas. From 
A = {(AI,~),..., (A,, l)}, if A is derivable from r using classical logic, then it 
can be derived (A, 1). 

7.4. Derivability, soundness and completeness 

In this section, the concepts related to derivability in the logic of agreement 
are introduced. It is also shown that the logic is sound and complete, which 
means that a formula that was derived from a set of premises, by the appli- 
cation of inference rules, is a logical consequence of that set, and vice versa, 
respectively. 

Definition 16 (Deductive sequence). A deductive sequence is a finite sequence of 
supported formulas PI, 9, . . . , P,,, where for all i, 1 < i < n, Pi is obtained 
through the application of an inference rule with the premises included in the 
set {PI, . . . , Pi-l}. 

Definition 17 (Prooj). A proof of a supported formula P from a set of supported 
formulas A is a deductive sequence PI, Pz, . . . , P,,, where P,, = P and 
A C (9,. . . ,Pn). 

Definition 18 (Derivability in the logic of agreement). If there is a proof of a 
supported formula P from a set of supported formulas A, then it is said that P 
is derived from A, denoted by A t- P. 

The following two theorems show that the logic of agreement is both sound 
and complete. 

Theorem 1 (Soundness of the logic of agreement). Let A = 
{(AI, CT-~), . . . , (A,, CT-~)} be a set of supported formulas and (A, cr) a supported 
formula. If A k (A, cr) then r kk,i A, where I’ = {Al,. . . ,A,}, CT = {crl, . . . , cm} 
and CI = cr. 

Proof. The proof is available in Ref. [6]. 

Theorem 2 (Completeness of the logic of agreement). Let r = {AI, . . . , An} be a 
set of propositions and A another proposition. If r bk$ A, where 
cl= {a,,... , an}, then A k (A, CC) where A = {(Al, CI~), . . . , (A,, tl,)}. 
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Proof. The proof is available in Ref. [6]. 

8. Operationalization issues 

A relevant aspect concerning a new theory is its operationalization. Does the 
agreement approach demand the elaboration of questionnaires to be distrib- 
uted to a (high) number of individuals in order to get degrees of agreement? Is 
not it too heavy to have practical applicability? In fact, there are two per- 
spectives. One concerns the field experiments to establish whether the system 
performs according to the human agreement approach. This phase demands 
experimentation with a high number of agents and is advisable to be performed 
(some work has already been done in this direction). 

On the other hand, the utilization of the agreement-based approach can be 
done using a commonsensical agent who provides values for the degrees of 
agreement. However, she/he should be supported by an expert who should en- 
sure the consistency of her/his assessments. (The commonsensical agent should 
understand, for instance, that a value near 0.5 means inability of discriminating 
(ignorance), a value near zero means not belongingness (negation), and so on.) 

Of course, this is much more complicate than just using classical theory of 
sets. However, the semantics of the classical theory of sets is (at least at first 
sight) very simple and obvious, so it is possible to base inference only on al- 
gebraic arguments. 

In order to illustrate how the logic of agreement can be utilized to perform 
inference consider the Sheridan-Fine pencil example discussed previously. 
Suppose that the knowledge base A is composed by the following formulas: 

A = {(R,0.7),(0,0.7),(R A 0,0.5)}, 
where R and 0 denote propositions “the pencil is red” and “the pencil is or- 
ange”, respectively. 

Based on A and the proof theory of the Logic of Agreement it is possible to 
perform the following inference steps: 
1. using the rule of equivalence introduction (H I i) 

(R,O.7) 
(QO.7) 

(R A 0,0.5) 
(R H 0,l - 0.7 - 0.7 + 2 * 0.5) 

2. using the rule of disjunction introduction (VI) 

(RjO.7) 
(0,0.7) 

(R t-f 0,0.6) 
(R v 0, 0.7+0.;-0.61-l). 



L.M.M. Custbdio, C. Pinto-Ferreira I Internat. J. Approx. Reason. 20 (1999) 47-78 17 

So based on A it is inferred that (R V 0,0.9), confirming therefore the result 
obtained in the Sheridan-Fine pencil example. 

9. Conclusions 

In this paper, a semantic approach to formalizing approximate reasoning, 
based on the concept of agreement, was introduced. The relation between 
agreement and fuzzy membership was used to emphasize some aspects of the 
fuzzy theory that have been criticize by other research communities. For in- 
stance, the notion of agreement was utilized to allow a formal semantic defi- 
nition for the concept of degree of membership. Moreover, some fuzzy set 
operators were re-evaluated in terms of the new way to define fuzzy mem- 
bership. Based on the agreement concept, a multi-valued propositional logic - 
logic of agreement - was developed, in terms of its semantic system. and its 
proof theory which is supported in a natural deduction system. This logic is a 
extension of the classical logic and it was proved that is sound and complete. 

One of the main conclusions of this work is the need for introducing either 
the covariance in the set operators or the equivalence connective in several 
inference rules of the proof theory. So, to infer under agreement more infor- 
mation is necessary. Albeit increasing complexity of the inference system, this is 
what one has to pay in order to guarantee a sound and complete logic. 

Finally, although the traditional foundations of FST have been questioned 
in this paper, the authors consider that the fundamental ideas of FST continue 
to be relevant, interesting and worth pursuing. The objective was to give a 
formal semantic explanation for the definition of fuzzy sets, which should 
improve the confidence on the utilization of fuzzy set based approaches. 
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