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This paper proposes a fast algorithm for computing multiplicative inverses in 
GF(2m) using normal bases. Normal bases have the following useful property: In 
the case that an element x in GF(2”‘) is represented by normal bases, 2k power 
operation of an element x in GF(2”‘) can be carried out by k times cyclic shift of its 
vector representation. C. C. Wang et al. proposed an algorithm for computing mul- 
tiplicative inverses using normal bases, which requires (m - 2) multiplications in 
GF(2”‘) and (m - 1) cyclic shifts. The fast algorithm proposed in this paper also 
uses normal bases, and computes multiplicative inverses iterating multiplications in 
GF(2m). It requires at most 2[log,(m - 1)] multiplications in GF(2m) and (m - 1) 
cyclic shifts, which are much less than those required in the Wang’s method. The 
same idea of the proposed fast algorithm is applicable to the general power 
operation in GF(2m) and the computation of multiplicative inverses in GF(q”) 
(q = 2”). 0 1988 Academx Press, Inc. 

1. INTRODUCTION 

Finite field arithmetic is widely used in various fields, such as coding 
theory and cryptography and so on. Most of public-key cryptosystems are 
constructed over finite fields of large order, hence their running-time of 
encryption and decryption is dominated by multiplication and division. 
Therefore, it is very important in a practical sense to develop a fast 
algorithm for carrying out such operations. 

This paper proposes a fast algorithm for computing multiplicative inver- 
ses in GF(2”‘) using normal bases. C. C. Wang et al. proposed an algorithm 
for computing multiplicative inverses in GF(2”) using normal bases, which 
requires (m- 2) multiplications in GF(2m) and (m - 1) cyclic shifts. The 
algorithm proposed in this paper also uses normal bases in GF(2’“), and 
requires at most 2[log,(m - 1 )] ([xl: Gauss’ symbol) multiplications in 
GF(2”‘) and (m - 1) cyclic shifts to compute multiplicative inverses in 
GF(2”‘). It is also shown that the same idea of the proposed algorithm is 
applicable to the computation of multiplicative inverses in GF(q”) (q = 2”). 
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2. PRELIMINARIES 

DEFINITION (MacWilliams and Sloane, 1979). A normal basis of 
GF(q”) (q = 2”) over GF(q) is a basis of the form 

a, a4, ay2, . . . . a4 
m-t 

, (1) 

where “a” is a non-zero element in GF(q”) (q = 2”). (# ) 

LEMMA 1 (Itoh and Tsujii, 1986). Let an element x in GF(q”) (q = 2”) 
be represented by a normal basis (Eq. ( 1)) in the form 

x=x,a+x,aY+ ... +a+,aYmm’= [x0,x ,,..., x,_~], (2) 

where {a, ay, . . . . aqm-‘}: normal bases over GF(q). Then, xYk can be computed 
by k cyclic shifts of Eq. (2) such that 

x4” = [X,-k, .x,-k+ 1, . . . . x,-I, x,,, . . . . -x,-k- ,]. (3) 

We call the cyclic shift in Eq. (3) “cyclic shift over GF(q)” in the rest of 
this paper. 

LEMMA 2 (MacWilliams and Sloane, 1979). Every element e in GF(q”) 
(q = 2”) satisfies the identity 

eqm = e (4) 

3. THE WANG’S METHOD 

(Wang et af., 1985). A non-zero element x in GF(2m) has an unique mul- 
tiplicative inverse xP ‘. Since the non-zero element x also satisfies Lemma 2, 
i.e., x2m = x, x -’ is given by x-I= xZmP 2. Here 2” - 2 can be represented 
by 2”-2=2+22+ . . . +2”-‘, hence x-r can be computed by 

X --I = (x=)(x”). . . (x2”-‘). (5) 

The following algorithm shows the procedure of computing Eq. (5). 

ALC~RITHM 1. 

Sl. y:=x 
s2. fork:=1 tom-2do 
S3. begin 
s4. z := y* (one cyclic shift) 
S5. y := zx (multiplication in GF(2”)) 
S6. - end 
s7. y := y2 (one cyclic shift) 
S8. write y 
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By Lemma 1 and Algorithm 1, computing Eq. (5) requires (m - 2) 
multiplications in GF(2”‘) and (m - 1) cyclic shifts over GF(2). 

4. PROPOSED FAST ALGORITHM IN GF(2m) 

By Lemma 1, we have the following theorem. 

THEOREM 1. Let x be a non-zero element in GF(2”‘) (m = 2’+ 1). Then, 
there exists an algorithm for computing x- I, which requires 

number of multiplications in GF(2”): NM = log,(m - 1) = r, 

number of cyclic shifts over GF(2): NS = m - 1 = 2’. 

Proof Represent 2”‘- 2 in binary form: 

2rn-2=(&, 1 O), where m - 1 = 2’, 
m-1 

and define the following symbols to simplify the notation: 

>t=(l, l,...) l), - 

(6) 

(7) 

At=(M), (8) 
2’ 

A t=2’, (9) 

t t = 22r. (10) 
Let M, and S, be the number of multiplications in GF(2m) and cyclic shifts 
over GF(2) to compute x h ’ (1 < t < r), respectively. Since x A ’ = 
(x 37 (f- 1) CR- 1)) ) (x 

h (f-l) ), we have M, =M,-I + 1 and S, =S,-l +2’-‘, 
where MO = S,, = 0. Hence M, = r and S, = 2’ - 1, and thus 

NM=M, =r=log,(m- l), (11) 

NS=S,+1=2’=m-1, (12) 
because x - ’ =(xAy. 1 

Theorem 1 can be described by 

ALGORITHM 2. 
Sl. y:=x 
s2. for k:=O to r-l do 
s3. begin 
s4. z := y22k (2“ cyclic shifts) 
s5. y := yz (multiplication in GF(2”)) 
S6. end 
s7. y := y2 (multiplicaton in GF(2”)) 
S8. write y. 

The following theorem is the generalization of Theorem 1. 
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THEOREM 2. Let x be a non-zero element in GF(2m). Then, there exists 
an algorithm for computing x ~ I, which requires 

number of multiplications in GF(2”): 
NM = [log,(m - l)] + H,(m - 1) - 1 < 2[log,(m - l)], 

number of cyclic shifts over GF(2): NS = m - 1, 

where [ ] = Gauss’ symbol and HJ ) = Hamming weight. 

ProoJ: .x1 can be computed by 

X -I= 
(x 

>(??-I) 2 
1 ’ (13) 

Suppose that m - 1 is represented by 

m - 1 = i zk,, 
s=l 

where k, > kz > ... > k,, (14) 

and so we have 

where e, = Cf= s+, 2kz and e, = 0. 
Reordering the terms in Eq. (15), 

Let M(k,) and S(k,) be the number of multiplications in GF(2m) and 
cyclic shifts over GF(2) to compute x h kl, respectively. Here we have 
M(k,)=k,andS(k,)=2kl-1.SinceeverytermxAks(2~s~n)isalready 
computed in the procedure of computing x h kl (see proof of Theorem 1), 
we have NM=k, +n-1 and NS=2kl-1+C:=22kY+1. By the the fact 
that [log,(m - 1 )] = k, and H,,(m - 1) = n, thus 

NM = [log,(m - l)] + H,.(m - 1) - 1 < 2[log,(m - 1 )I, (17) 

NS= i 2kS=m-l. i (18) 

A result similar to that of Theorem 2 has been found independently by 
S. A. Vanstone (1987). 

5. EXAMPLE 

The following example confirms Theorem 2: 
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Let x be a non-zero element in GF(211). Here x-l is given by x-l = 
x2” - 2 = x2O46, hence x - 1 can be computed by the following procedure: 

Sl. 
s2. 
s3. 
s4. 
S5. 
S6. 
s7. 
S8. 
s9. 

(x)’ = x2 : 1 cyclic shift over GF(2) 
x2x = x3 : 1 multiplication in GF(2”) 
(x3)” = x12 : 2 cyclic shifts over GF(2) 
x12x3 = x’5 : 1 multiplication in GF(211) 
(x15)24 = x24O : 4 cyclic shifts over GF(2) 
x24Oxl5 =x255 . 1 multiplication in GF( 2 ’ I ) 
(x255)2*= xlo2’ I 2 cyclic shifts over GF(2) 
X lo2’x3 = x1o23 : 1 multiplication in GF(2”) 
(x1O23)2 = x204’? 1 cyclic shift over GF(2) 

=x -1 

Observing the above procedure, the number of multiplications in 
GF(211) and cyclic shifts over GF(2) are as follows: 

4 multiplications (in GF(211)) in S2, S4, S6, and S8, 

10 cyclic shifts (over GF(2)) in Sl, S3, S5, S7, and S9. 

On the other hand, since [log,( 11 - l)] = 3 and H,( 11 - 1) = 2, we have 
NM(=[log,(ll-l)]+H,(ll-l)-1)=4 and NS(=ll-l)=lO, and 
this example confirms Theorem 2. 

6. PROPOSED FAST ALGORITHM IN GF(q”) (q=2”) 

This section shows a fast algorithm for computing multiplicative inverses 
in GF(q”) (q = 2”) using normal bases. 

THEOREM 3. Let x be a non-zero element in GF(q”) (q = 2”). Then, there 
exists an algorithm for computing x-l, which requires 

number of multiplications in GF(q”): 
NM,(m) = [log,(m - l)] + H,(m - l), 

number of cyclic shzyts over GF(q): NS,(m) = m - 1, 

number of multiplications in GF(q) (q = 2”): 
NM,(n) = [log,(n - l)] + H,(n - 1) - 1, 

number of cyclic shifts over GF(2): NS,(n) = n - 1, 

where [ ] = Gauss’ symbol and H,( ) = Hamming weight. 1 

Proof: For a non-zero element x in GF(q”) (q = 2”), x- ’ is given by 
X e-1 =xymp2. Here q” - 2 can be decomposed by 

m-1 m-l 

qm-2=(q-2) 1 qi+ 1 q’. (19) 
i=O j=l 
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For the simplicity of the notation, define a = Cy=;’ qi and b = cJ.Y1’ qj, and 
we have x - ’ = yCp- *)z, where y = xa and z = xb. Note that y = zx. Applying 
the similar procedure in Section 4 (proof of Theorem 2) NM,(m) (number 
of multiplications in GF(q”)) and NS,(m) (number of cyclic shifts over 
GF(q)) to compute z and y are 

NM,(m) = [log,(m - l)] + H,,.(m - I), (20) 

NS,(m)=m- 1. (211 

Since y is norm of x (Lid1 and Niederreiter, 1983), y is an element of 
GF(q). Hence, yyP2 = yP’, and by Theorem 2, NM,(n) (number of 
multiplications in GF(q) (q = 2”)) and N&(n) (number of cyclic shifts over 
GF(2)) to compute y-‘( = y4-’ =yznP2) are 

NM,(n) = [log,@ - l)] + H&r - 1) - 1, (22) 

NS,(n)=n- 1. 1 (23) 

7. CONCLUSIONS 

A fast algorithm for computing multiplicative inverses in GF(2”‘) using 
normal basis has been proposed. This algorithm requires at most 
2[log,(m - l)] multiplications in GF(2m) and (m - 1) cyclic shifts over 
GF(2) to compute multiplicative inverses, which are much less than those 
required in the Wang’s method. The algorithm proposed in this paper com- 
putes multiplicative inverses in GF(2m) by iterating multiplications in 
GF(2m) and cyclic shifts over GF(2) in turn. Hence, the number of cyclic 
shifts is reduced to [log,(m - l)] + H,(m - l), using special hardware 
which carries out k cyclic shifts over GF(2) in one machine cycle (Itoh and 
Tsujii, 1986). It has been also shown that the same idea of the proposed 
algorithm in GF(2m) is applicable to the computation of multiplicative 
inverses in GF(q”) (q= 2”). It is clear that the computation of mul- 
tiplicative inverses in GF(p”) (p: odd prime) can be carried out similarly 
in the case of GF(q”) (q = 2n) (Itoh and Tsujii, 1986). 

Furthermore, an idea similar to the proposed algorithm can be 
applied to general power operation in GF(2”), which was pointed out 
by S. A. Vanstone (1987). 
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