A Fast Algorithm for Computing Multiplicative Inverses in GF($\left.2^{m}\right)$ Using Normal Bases

Toshiya Itoh and Shigeo Tsuiil
Department of Electrical and Electronic Engineering, Faculty of Engineering, Tokyo Institute of Technology, Tokyo 152, Japan

Abstract

This paper proposes a fast algorithm for computing multiplicative inverses in $\mathrm{GF}\left(2^{m}\right)$ using normal bases. Normal bases have the following useful property: In the case that an element x in $G F\left(2^{m}\right)$ is represented by normal bases, 2^{k} power operation of an element x in $\operatorname{GF}\left(2^{m}\right)$ can be carried out by k times cyclic shift of its vector representation. C. C. Wang et al. proposed an algorithm for computing multiplicative inverses using normal bases, which requires ($m-2$) multiplications in GF $\left(2^{m}\right)$ and ($m-1$) cyclic shifts. The fast algorithm proposed in this paper also uses normal bases, and computes multiplicative inverses iterating multiplications in $\mathrm{GF}\left(2^{m}\right)$. It requires at most $2\left[\log _{2}(m-1)\right]$ multiplications in $\mathrm{GF}\left(2^{m}\right)$ and $(m-1)$ cyclic shifts, which are much less than those required in the Wang's method. The same idea of the proposed fast algorithm is applicable to the general power operation in $\mathrm{GF}\left(2^{m}\right)$ and the computation of multiplicative inverses in $\mathrm{GF}\left(q^{m}\right)$ ($q=2^{n}$). © 1998 Academic Press, Inc.

1. Introduction

Finite field arithmetic is widely used in various fields, such as coding theory and cryptography and so on. Most of public-key cryptosystems are constructed over finite fields of large order, hence their running-time of encryption and decryption is dominated by multiplication and division. Therefore, it is very important in a practical sense to develop a fast algorithm for carrying out such operations.

This paper proposes a fast algorithm for computing multiplicative inverses in $\mathrm{GF}\left(2^{m}\right)$ using normal bases. C. C. Wang et al. proposed an algorithm for computing multiplicative inverses in $\mathrm{GF}\left(2^{m}\right)$ using normal bases, which requires ($m-2$) multiplications in $\mathrm{GF}\left(2^{m}\right)$ and ($m-1$) cyclic shifts. The algorithm proposed in this paper also uses normal bases in $\operatorname{GF}\left(2^{m}\right)$, and requires at most $2\left[\log _{2}(m-1)\right]$ ($[x]$: Gauss' symbol) multiplications in $\mathrm{GF}\left(2^{m}\right)$ and ($m-1$) cyclic shifts to compute multiplicative inverses in $\mathrm{GF}\left(2^{m}\right)$. It is also shown that the same idea of the proposed algorithm is applicable to the computation of multiplicative inverses in $\operatorname{GF}\left(q^{m}\right)\left(q=2^{n}\right)$.

2. Preliminaries

Definition (MacWilliams and Sloane, 1979). A normal basis of $\mathrm{GF}\left(q^{m}\right)\left(q=2^{n}\right)$ over $\mathrm{GF}(q)$ is a basis of the form

$$
\begin{equation*}
a, a^{q}, a^{q^{2}}, \ldots, a^{q^{m-1}} \tag{1}
\end{equation*}
$$

where " a " is a non-zero element in $\operatorname{GF}\left(q^{m}\right)\left(q=2^{n}\right)$. (\#)
Lemma 1 (Itoh and Tsujii, 1986). Let an element x in $\operatorname{GF}\left(q^{m}\right)\left(q=2^{n}\right)$ be represented by a normal basis (Eq. (1)) in the form

$$
\begin{equation*}
x=x_{0} a+x_{1} a^{4}+\cdots+a_{m-1} a^{q^{m-1}}=\left[x_{0}, x_{1}, \ldots, x_{m-1}\right], \tag{2}
\end{equation*}
$$

where $\left\{a, a^{q}, \ldots, a^{4^{m-1}}\right\}$: normal bases over $\operatorname{GF}(q)$. Then, $x^{q^{k}}$ can be computed by k cyclic shifts of Eq. (2) such that

$$
\begin{equation*}
x^{4^{k}}=\left[x_{m-k}, x_{m-k+1}, \ldots, x_{m-1}, x_{0}, \ldots, x_{m-k-1}\right] . \tag{3}
\end{equation*}
$$

We call the cyclic shift in Eq. (3) "cyclic shift over GF(q)" in the rest of this paper.

Lemma 2 (MacWilliams and Sloane, 1979). Every element e in GF $\left(q^{m}\right)$ $\left(q=2^{n}\right)$ satisfies the identity

$$
\begin{equation*}
e^{q^{m}}=e \tag{4}
\end{equation*}
$$

3. The Wang's Method

(Wang et al., 1985). A non-zero element x in $\mathrm{GF}\left(2^{m}\right)$ has an unique multiplicative inverse x^{-1}. Since the non-zero element x also satisfies Lemma 2, i.e., $x^{2^{m}}=x, x^{-1}$ is given by $x^{-1}=x^{2^{m}-2}$. Here $2^{m}-2$ can be represented by $2^{m}-2=2+2^{2}+\cdots+2^{m-1}$, hence x^{-1} can be computed by

$$
\begin{equation*}
x^{-1}=\left(x^{2}\right)\left(x^{2^{2}}\right) \cdots\left(x^{2^{m-1}}\right) . \tag{5}
\end{equation*}
$$

The following algorithm shows the procedure of computing Eq. (5).
Algorithm 1.
S1. $y:=x$
S2. for $k:=1$ to $m-2$ do
S3. begin
S4. $z:=y^{2}$ (one cyclic shift)
S5. $-y:=z x$ (multiplication in $\operatorname{GF}\left(2^{m}\right)$)
S6. end
S7. $y:=y^{2}$ (one cyclic shift)
S8. write y

By Lemma 1 and Algorithm 1, computing Eq. (5) requires ($m-2$) multiplications in $\mathrm{GF}\left(2^{m}\right)$ and ($m-1$) cyclic shifts over $\mathrm{GF}(2)$.

4. Proposed Fast Algorithm in GF(2^{m})

By Lemma 1, we have the following theorem.
Theorem 1. Let x be a non-zero element in $\operatorname{GF}\left(2^{m}\right)\left(m=2^{r}+1\right)$. Then, there exists an algorithm for computing x^{-1}, which requires
number of multiplications in $\mathrm{GF}\left(2^{m}\right): \mathrm{NM}=\log _{2}(m-1)=r$, number of cyclic shifts over $\mathrm{GF}(2)$: $\mathrm{NS}=m-1=2^{r}$.

Proof. Represent $2^{m}-2$ in binary form:

$$
\begin{equation*}
2^{m}-2=(\underbrace{1,1, \ldots, 1}_{m-1}, 0), \quad \text { where } \quad m-1=2^{r}, \tag{6}
\end{equation*}
$$

and define the following symbols to simplify the notation:

$$
\begin{align*}
& >t=(\underbrace{1,1, \ldots, 1}), \tag{7}\\
& { }^{\wedge} t=\left(\frac{1,1, \ldots, 1}{2^{\prime}}\right), \tag{8}\\
& { }^{\wedge} t=2^{t}, \tag{9}\\
& \uparrow t=2^{2^{t}} . \tag{10}
\end{align*}
$$

Let M_{t} and S, be the number of multiplications in $\operatorname{GF}\left(2^{m}\right)$ and cyclic shifts over $\operatorname{GF}(2)$ to compute $x^{\wedge t}(1 \leqslant t \leqslant r)$, respectively. Since $x^{\wedge t}=$ $\left(x^{\wedge(t-1)}\right)^{(t(t-1))}\left(x^{\wedge(t-1)}\right)$, we have $M_{t}=M_{t-1}+1$ and $S_{t}=S_{t-1}+2^{t-1}$, where $M_{0}=S_{0}=0$. Hence $M_{r}=r$ and $S_{r}=2^{r}-1$, and thus

$$
\begin{gather*}
N M=M_{r}=r=\log _{2}(m-1), \\
N S=S_{r}+1=2^{r}=m-1, \tag{12}
\end{gather*}
$$

because $x^{-1}=\left(x^{\wedge \prime}\right)^{2}$.
Theorem 1 can be described by
Algorithm 2.
S1. $y:=x$
S2. for $k:=0$ to $r-1$ do
S3. begin
S4. $\quad z:=y^{2^{2^{k}}}\left(2^{k}\right.$ cyclic shifts)
S5. $\quad y:=y z$ (multiplication in $\mathrm{GF}\left(2^{m}\right)$)
S6. end
S7. $y:=y^{2}$ (multiplicaton in $\operatorname{GF}\left(2^{m}\right)$)
S8. write y.
The following theorem is the generalization of Theorem 1 .

Theorem 2. Let x be a non-zero element in $\operatorname{GF}\left(2^{m}\right)$. Then, there exists an algorithm for computing x^{-1}, which requires
number of multiplications in $\mathrm{GF}\left(2^{m}\right)$:
$\mathrm{NM}=\left[\log _{2}(m-1)\right]+H_{w}(m-1)-1 \leqslant 2\left[\log _{2}(m-1)\right]$,
number of cyclic shifts over $\mathrm{GF}(2): \mathrm{NS}=m-1$,
where []$=$ Gauss' symbol and $H_{w}()=$ Hamming weight.
Proof. x^{-1} can be computed by

$$
\begin{equation*}
x^{-1}=\left(x^{>(m-1)}\right)^{2} . \tag{13}
\end{equation*}
$$

Suppose that $m-1$ is represented by

$$
\begin{equation*}
m-1=\sum_{s=1}^{t} 2^{k_{s}}, \quad \text { where } \quad k_{1}>k_{2}>\cdots>k_{t} \tag{14}
\end{equation*}
$$

and so we have

$$
\begin{equation*}
x^{-1}=\left\{\left(x^{\wedge k_{1}}\right)^{\hat{\wedge} e_{1}}\left(x^{\wedge k_{2}}\right)^{\hat{\wedge} e_{2}} \cdots\left(x^{\wedge k_{1}}\right)^{\hat{\wedge} e_{r}}\right\}^{2} \tag{15}
\end{equation*}
$$

where $e_{s}=\sum_{i=s+1}^{t} 2^{k_{i}}$ and $e_{t}=0$.
Reordering the terms in Eq. (15),

$$
\begin{equation*}
x^{-1}=\left\{\left(x^{\wedge k_{1}}\right)\left\{\left(x^{\wedge k_{r}-1}\right) \cdots\left(\left(x^{\wedge k_{2}}\right)\left(x^{\wedge k_{1}}\right)^{\dagger k_{2}}\right)^{\dagger k_{3}} \cdots\right\}^{\dagger k_{1}}\right\}^{2} . \tag{16}
\end{equation*}
$$

Let $M\left(k_{1}\right)$ and $S\left(k_{1}\right)$ be the number of multiplications in $G F\left(2^{m}\right)$ and cyclic shifts over $G F(2)$ to compute $x^{\wedge k_{1}}$, respectively. Here we have $M\left(k_{1}\right)=k_{1}$ and $S\left(k_{1}\right)=2^{k_{1}}-1$. Since every term $x^{\wedge k_{s}}(2 \leqslant s \leqslant n)$ is already computed in the procedure of computing $x^{\wedge k_{1}}$ (see proof of Theorem 1), we have $\mathrm{NM}=k_{1}+n-1$ and $\mathrm{NS}=2^{k_{1}}-1+\sum_{s=2}^{n} 2^{k_{s}}+1$. By the the fact that $\left[\log _{2}(m-1)\right]=k_{1}$ and $H_{w}(m-1)=n$, thus

$$
\begin{align*}
\mathrm{NM} & =\left[\log _{2}(m-1)\right]+H_{w}(m-1)-1 \leqslant 2\left[\log _{2}(m-1)\right] \tag{17}\\
\mathrm{NS} & =\sum_{s=1}^{n} 2^{k_{s}}=m-1 . \tag{18}
\end{align*}
$$

A result similar to that of Theorem 2 has been found independently by S. A. Vanstone (1987).

5. Example

The following example confirms Theorem 2:

Let x be a non-zero element in $\operatorname{GF}\left(2^{11}\right)$. Here x^{-1} is given by $x^{-1}=$ $x^{2^{21}-2}=x^{2046}$, hence x^{-1} can be computed by the following procedure:

S1. $(x)^{2}=x^{2} \quad: 1$ cyclic shift over GF (2)
S2. $x^{2} x=x^{3} \quad: 1$ multiplication in $\mathrm{GF}\left(2^{11}\right)$
S3. $\quad\left(x^{3}\right)^{2^{2}}=x^{12} \quad: 2$ cyclic shifts over GF(2)
S4. $x^{12} x^{3}=x^{15} \quad: 1$ multiplication in $\mathrm{GF}\left(2^{11}\right)$
S5. $\quad\left(x^{15}\right)^{2^{4}}=x^{240}: 4$ cyclic shifts over GF(2)
S6. $x^{240} x^{15}=x^{255}: 1$ multiplication in $\mathrm{GF}\left(2^{11}\right)$
S7. $\left(x^{255}\right)^{2^{2}}=x^{1020}: 2$ cyclic shifts over GF(2)
S8. $x^{1020} x^{3}=x^{1023}: 1$ multiplication in $\mathrm{GF}\left(2^{11}\right)$
S9. $\left(x^{1023}\right)^{2}=x^{2046}: 1$ cyclic shift over $\mathrm{GF}(2)$

$$
=x^{-1}
$$

Observing the above procedure, the number of multiplications in GF $\left(2^{11}\right)$ and cyclic shifts over GF (2) are as follows:

4 multiplications (in $\mathrm{GF}\left(2^{11}\right)$) in $\mathrm{S} 2, \mathrm{~S} 4, \mathrm{~S} 6$, and S 8 ,
10 cyclic shifts (over GF(2)) in $\mathrm{S} 1, \mathrm{~S} 3, \mathrm{~S} 5, \mathrm{~S} 7$, and S 9.
On the other hand, since $\left[\log _{2}(11-1)\right]=3$ and $H_{w}(11-1)=2$, we have $\mathrm{NM}\left(=\left[\log _{2}(11-1)\right]+H_{w}(11-1)-1\right)=4$ and $\mathrm{NS}(=11-1)=10$, and this example confirms Theorem 2.

6. Proposed Fast Algorithm in $\mathrm{GF}\left(q^{m}\right)\left(q=2^{n}\right)$

This section shows a fast algorithm for computing multiplicative inverses in $\operatorname{GF}\left(q^{m}\right)\left(q=2^{n}\right)$ using normal bases.

Theorem 3. Let x be a non-zero element in $\operatorname{GF}\left(q^{m}\right)\left(q=2^{n}\right)$. Then, there exists an algorithm for computing x^{-1}, which requires
number of multiplications in $\mathrm{GF}\left(q^{m}\right)$:

$$
\mathrm{NM}_{1}(m)=\left[\log _{2}(m-1)\right]+H_{w}(m-1),
$$

number of cyclic shifts over $\mathrm{GF}(q): \mathrm{NS}_{1}(m)=m-1$,
number of multiplications in $\operatorname{GF}(q)\left(q=2^{n}\right)$:

$$
\mathrm{NM}_{2}(n)=\left[\log _{2}(n-1)\right]+H_{w}(n-1)-1,
$$

number of cyclic shifts over $\mathrm{GF}(2): \mathrm{NS}_{2}(n)=n-1$, where []$=$ Gauss' symbol and $H_{w}()=$ Hamming weight.
Proof. For a non-zero element x in $\operatorname{GF}\left(q^{m}\right)\left(q=2^{n}\right), x^{-1}$ is given by $x^{-1}=x^{q^{m}-2}$. Here $q^{m}-2$ can be decomposed by

$$
\begin{equation*}
q^{m}-2=(q-2) \sum_{i=0}^{m-1} q^{i}+\sum_{j=1}^{m-1} q^{j} . \tag{19}
\end{equation*}
$$

For the simplicity of the notation, define $a=\sum_{i=0}^{m-1} q^{i}$ and $b=\sum_{j=1}^{m-1} q^{j}$, and we have $x^{-1}=y^{(p-2)} z$, where $y=x^{a}$ and $z=x^{b}$. Note that $y=z x$. Applying the similar procedure in Section 4 (proof of Theorem 2), $\mathbf{N M}_{1}(m)$ (number of multiplications in $\mathrm{GF}\left(q^{m}\right)$) and $\mathrm{NS}_{1}(m)$ (number of cyclic shifts over $\mathrm{GF}(q)$) to compute z and y are

$$
\begin{align*}
\mathrm{NM}_{1}(m) & =\left[\log _{2}(m-1)\right]+H_{w}(m-1) \tag{20}\\
\mathrm{NS}_{1}(m) & =m-1 \tag{21}
\end{align*}
$$

Since y is norm of x (Lidl and Niederreiter, 1983), y is an element of $\mathrm{GF}(q)$. Hence, $y^{q-2}=y^{-1}$, and by Theorem 2, $\mathrm{NM}_{2}(n)$ (number of multiplications in $\left.\operatorname{GF}(q)\left(q=2^{n}\right)\right)$ and $\mathrm{NS}_{2}(n)$ (number of cyclic shifts over $\mathrm{GF}(2))$ to compute $y^{-1}\left(=y^{q-2}=y^{2^{n}-2}\right)$ are

$$
\begin{align*}
\mathrm{NM}_{2}(n) & =\left[\log _{2}(n-1)\right]+H_{w}(n-1)-1 \tag{22}\\
\mathrm{NS}_{2}(n) & =n-1 \tag{23}
\end{align*}
$$

7. Conclusions

A fast algorithm for computing multiplicative inverses in GF (2^{m}) using normal basis has been proposed. This algorithm requires at most $2\left[\log _{2}(m-1)\right]$ multiplications in $\operatorname{GF}\left(2^{m}\right)$ and $(m-1)$ cyclic shifts over GF(2) to compute multiplicative inverses, which are much less than those required in the Wang's method. The algorithm proposed in this paper computes multiplicative inverses in $\mathrm{GF}\left(2^{m}\right)$ by iterating multiplications in GF $\left(2^{m}\right)$ and cyclic shifts over GF (2) in turn. Hence, the number of cyclic shifts is reduced to $\left[\log _{2}(m-1)\right]+H_{w}(m-1)$, using special hardware which carries out k cyclic shifts over GF(2) in one machine cycle (Itoh and Tsujii, 1986). It has been also shown that the same idea of the proposed algorithm in $\operatorname{GF}\left(2^{m}\right)$ is applicable to the computation of multiplicative inverses in $\operatorname{GF}\left(q^{m}\right)\left(q=2^{n}\right)$. It is clear that the computation of multiplicative inverses in $\operatorname{GF}\left(p^{\prime \prime \prime}\right)$ (p : odd prime) can be carried out similarly in the case of $\operatorname{GF}\left(q^{m}\right)\left(q=2^{n}\right)$ (Itoh and Tsujii, 1986).

Furthermore, an idea similar to the proposed algorithm can be applied to general power operation in $G F\left(2^{m}\right)$, which was pointed out by S. A. Vanstone (1987).

Acknowledgments

[^0]
References

Itoh, T., and Tsum, S. (1986), "A Fast Algorithm for Computing Multiplicative Inverses in GF(2^{\prime}) Using Normal Bases," Paper of Technical Group, TGIT86-44, pp. 31-36, IECE, Japan.
Lidl, R., and Niederreiter, H. (1983), "Finite Fields," Addison-Wesley, Reading, MA.
MacWilliams, F. J., and Sloane, N. J. A. (1979), "The Theory of Error-Correcting Codes," North-Holland, Amsterdam.
Vanstone, S. A. (1987), Unpublished manuscript, lecture at NTT.
Wang, C. C., Truong, I. K., Shao, H. M., Deutsch, L. J., Omura, J. K., and Reed, I. R. (1985), VLSI architectures for computing multiplications and inverses in GF(2^{m}), IEEE Trans. Comput. C-34, No. 8, 709-716.

[^0]: The authors wish to thank Professor S. A. Vanstone of the University of Waterloo for his valuable discussions.

