
Topology and its Applications 104 (2000) 169–179

Weak representations of quantified hyperspace
structures

R. Lowen1, M. Sioen∗,2

Universiteit Antwerpen, RUCA, Department of Mathematics and Computer Science, Groenenborgerlaan 171,
B2020 Antwerpen, Belgium

Received 18 December 1997; received in revised form 6 April 1998

Abstract

It is the aim of this note, to show that several results from Beer (1993), Beer et al. (1992) and Beer
and Lucchetti (1993) about the description of some hypertopologies as weak or initial topologies can
be generalized to the quantitative setting of approach hyperspace structures as introduced by Lowen
and Sioen (1996, 1998). 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the study of topologies on the hyperspace of all non-empty closed subsets of a
metric space, an important interest has been taken during the last decade in looking
for descriptions of many of those well-investigated hypertopologies as weak or initial
topologies, as can be seen, e.g., from Beer [2], Beer, Lechicki, Levi and Naimpally [3]
and Beer and Lucchetti [4]. Here one detects two main types of results: on the one hand
those describing a particular hyperspace topology as the supremum of a family of other
hyperspace topologies and on the other hand, those providing a description of a hyperspace
topology as being the initial topology for a source of[0,∞]-valued functionals on the
hyperspace.
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It is our aim in this paper to generalize some of these results from [2–4] to the broader,
quantified setting of approach hyperstructures as presented by Lowen and Sioen [6,7],
which were introduced to remedy the loss of quantitative information when passing
from a metric space to its hyperspace endowed with one of the hypertopologies and
which represent exactly the canonical numerical information, compatible with the studied
hypertopology, we can retain under this transition.

2. Some weak representations

In the sequel,(X,d) will be an arbitrary metric space and we will writeCL(X) for the
hyperspace of all non-empty closed subsets. Throughout the rest of the paper, we will use
the notationsTWd respectivelyTAWd , Tprox(d), Tb-prox(d), TV andTlocfin for the Wijsman, re-
spectively the Attouch–Wets, thed-proximal, the boundedd-proximal, the Vietoris and the
locally finite topology onCL(X), as defined in [2–4] and we refer hereto for more infor-
mation. For anyx ∈ X andA,B ∈ 2X , we write d(x,A) =̇. infy∈A d(x, y), respectively
Dd(A,B) =̇. infx∈A d(x,B), ed(A,B) =̇. supx∈A d(x,B) and hd(A,B) =̇. ed(A,B) ∨
ed(B,A) for the ‘distance fromx to A’, respectively the ‘gap betweenA andB ’, the
‘excess ofA overB ’ and the ‘Hausdorff distance betweenA andB ’. We will use E(d)
respectivelyEu(d) andEbu (d) to denote the set of all metrics onX which are equivalent
to d , respectively which are uniformly equivalent tod , respectively which are uniformly
equivalent to and determine the same bounded subsets asd . We will also denote the set
of all (respectively all non-empty, all finite and all non-empty finite) subsets ofX by 2X ,
(respectively 2X0 , 2(X) and 2(X)0 ) and ifA ∈ 2X andε > 0 we put

Sε(A) =̇.
{
y ∈X |d(y,A) < ε}.

The Euclidean metric on[0,∞[ is denoted bydE and when working in[0,∞], we adopt
the conventions∞−∞ =̇. 0, 0· ∞ =̇. ∞ · 0= 0. If X is a set andA is a subset ofX, θA
(respectively 1A) stands for the function onX taking the value 0 onA and∞ onX \ A
(respectively 1 onA and 0 onX \A).

For any terminology, notations or information about approach spaces, we refer to
Lowen [5], so we will restrict ourselves to recalling some definitions about the approach
hyperstructures introduced by Lowen and Sioen [6,7]. A non-empty subset of 2X is called
a tiling of X if ∅ /∈ Σ , the members ofΣ coverX andΣ is closed for the formation of
finite unions. IfΣ is a tiling ofX, we define for everyF ∈Σ

dF : CL(X)×CL(X)→[0,∞] : (A,B)→ sup
x∈F

∣∣d(x,A)− d(x,B) ∣∣.
Then{dF |F ∈Σ} is a collection of∞ p-metrics onCL(X) and hence defines a uniform
approach distance, which we will call the ‘distance ofΣ uniform convergence’ and which
we will denote byδΣ,d , as follows:

δΣ,d : CL(X)× 2CL(X)→[0,∞] : (A,A)→ sup
F∈Σ

inf
B∈A

dF (A,B).
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Now one can prove that the∞ p-metric coreflection of(CL(X), δΣ,d ) is (CL(X),hd) and
that the topological coreflection of(CL(X), δΣ,d ) is exactly(CL(X),TΣ,d ), whereTΣ,d
is the topology of uniform convergence on members ofΣ under the identificationCL(X)
with the set of distance functionals{d(·,A) |A∈CL(X)}. Note that 2(X)0 is a tiling and that
T

2(X)0 ,d
= TWd . We will therefore callδ

2(X)0 ,d
the ‘Wijsman distance’ and we will denote it

by δWd . The collection of all non-empty bounded subsets is a tiling too, the hyperdistance
corresponding to which is denoted byδAWd

and will be called the ‘Attouch–Wets’ distance.

If on the other hand, for eachΓ ∈ 2(CL(X))
0 we define

dΓ : CL(X)×CL(X)→[0,∞] : (A,B)→ sup
D∈Γ

∣∣Dd(A,D)−Dd(B,D)∣∣,
the collection ofp-metrics {dΓ |Γ ∈ 2(CL(X))

0 } generates a uniform approach distance
δprox(d) on CL(X), given by

δprox(d) : CL(X)× 2CL(X)→[0,∞] : (A,A)→ sup
Γ ∈2(CL(X))

0

inf
B∈A

dΓ (A,B).

It can be shown that the∞p-metric and the topological coreflection of(CL(X), δprox(d))

are (CL(X),hd ), respectively(CL(X),Tprox(d)) and therefore,δprox(d) is called the
‘d-proximal distance’. With

CLB(X) =̇.
{
B ∈CL(X) |B bounded

}
,

the collection{dΓ |Γ ∈ 2(CLB(X))
0 } generates the boundedd-proximal distanceδb-prox(d) in

the same way.
The following proposition generalizes some results of Beer, Levi, Lechicki, Lucchetti

and Naimpally (see [2–4]) concerning the representation of given hypertopologies as
suprema to our framework.

Proposition 2.1. For every metric space, the following equalities hold

δTprox(d) =
∨

ρ∈Eu(d)
δWρ , δTb−prox(d) =

∨
ρ∈Ebu(d)

δWρ , δTV =
∨

ρ∈E(d)
δWρ ,

δTV =
∨

ρ∈E(d)
δprox(ρ), δTlocf in =

∨
ρ∈E(d)

δhρ

where all the suprema are taken inAP.

Next we generalize a result from Beer and Lucchetti (see [4]) stating that thed-proximal
topologyTprox(d) is the initial topology for a source of[0,∞]-valued excess functionals,
by showing that an analogous result holds for the overlaying “proximal” distanceδprox(d).
If we defineδE : [0,∞]× 2[0,∞] → [0,∞] by

δE(x,A) =̇.


∞ A= ∅,
0 x =∞, supA=∞,
∞ x =∞, supA<∞,
δdE (x,A∩R+) x <∞,
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thenδE can be proved to be a distance on[0,∞] and one can verify that the topological
coreflection of ([0,∞], δE) is ([0,∞],T ∗E ), where T ∗E denotes the topology of the
Alexandroff one-point compactification of([0,∞[,TdE). It is also easy to see that the
∞p-metric coreflection of([0,∞], δE) is ([0,∞], deE) with

deE : [0,∞]× [0,∞]→ [0,∞] : (x, y)→


0 x = y =∞,
∞ x 6= y, ∞∈ {x, y},
dE(x, y) x, y <∞.

Often continuity of a[0,∞]-valued functional is shown by separately proving that it
is lower and upper semicontinuous and this technique is also used in the proof of the
topological result we want to generalize. We will therefore ‘split’δE into two halves which
will allow us to use a similar argument to show that a given function is a contraction. Let

δ+E : [0,∞]× 2[0,∞] → [0,∞] : (x,A)→
{∞ A= ∅,
(x − supA)∨ 0 A 6= ∅

and

δ−E : [0,∞]× 2[0,∞] → [0,∞] : (x,A)→
{∞ A= ∅,
(infA− x)∨ 0 A 6= ∅.

It can be verified thatδ+E andδ−E are distances on[0,∞], where a basis for the approach
system ofδE , respectivelyδ+E andδ−E is given by:

BδE (x) =̇.
{ {deE(x, ·)} x ∈R+,

{θ]n,∞] |n ∈N} x =∞,

respectively

Bδ+E (x) =̇.
{ {deE(x, ·)1[0,x]} x ∈R+,

{θ]n,∞] |n ∈N} x =∞,

and

Bδ−E (x) =̇.
{ {deE(x, ·)1[x,∞]} x ∈R+,

{0} x =∞.

This shows thatδE is the supremum ofδ+E andδ−E in AP, so if (X, δ) is an approach space
andf :X→ [0,∞] is a functionf : (X, δ)→ ([0,∞], δE) is a contraction if and only
if both f : (X, δ)→ ([0,∞], δ+E) andf : (X, δ)→ ([0,∞], δ−E) are contractions. We now
come to the actual theorem.

Theorem 2.2. Let (X,d) be a metric space. Then we have thatδprox(d) is the initial
distance on CL(X) for the source(

ed(·,F ) : CL(X)→ ([0,∞], δE) :A→ ed(A,F )
)
F∈CL(X).

Proof. To simplify notations, we will denote the initial distance onCL(X) for the source(
ed(·,F ) : CL(X)→ ([0,∞], δE) :A→ ed(A,F )

)
F∈CL(X)



R. Lowen, M. Sioen / Topology and its Applications 104 (2000) 169–179 173

by δ. As δ is the coarsest distance onCL(X) which makes all functions of this source into
contractions, it suffices to verify that

ed(·,F ) :
(
CL(X), δprox(d)

)→ ([0,∞], δE) :A→ ed(A,F )

is a contraction for everyF ∈ CL(X), in order to show thatδprox(d) > δ. To do so, fix
F ∈CL(X). We start by proving that

ed(·,F ) :
(
CL(X), δprox(d)

)→ ([0,∞], δ−E) :A→ ed(A,F )

is a contraction. TakeA ∈ CL(X) andϕ ∈ Bδ−E (ed(A,F )). If ed(A,F )=∞, thenϕ = 0,
yielding that ϕ ◦ ed(·,F ) = 0 ∈ Aδprox(d)(A), so we are done. Ifed(A,F ) < ∞, ϕ =
deE(ed(A,F ), ·)1[ed(A,F ),∞]. We now intend to verify thatϕ ◦ ed(·,F ) ∈ Aδprox(d) (A), so
fix ω ∈R+ andε ∈R+0 . We now have to constructψω,ε ∈Aδprox(d)(A) such that

ϕ ◦ ed(·,F )∧ω 6ψω,ε + ε.
If ω 6 ε we can takeψω,ε to be the constant zero-functional onCL(X), so we may assume
without loss of generality thatω > ε. Taken ∈N \ {0,1}minimal such thatnε > ω, define
for everyk ∈ {1, . . . , n− 1}

D
ω,ε
k =̇.

{
(Skε(A))

c (Skε(A))
c 6= ∅,

X (Skε(A))
c = ∅,

and letΓ ω,ε =̇. {Dω,ε1 , . . . ,D
ω,ε
n−1} andψω,ε =̇. dΓ ω,ε (A, ·). Then surelyψω,ε ∈Aδprox(d) (A)

and as stated above, we are done in this case if we prove the following claim:

ϕ ◦ ed(·,F )∧ω 6 dΓ ω,ε (A, ·)+ ε.
Therefore, fixB ∈CL(X). If ed(B,F )6 ed(A,F ), we see thatϕ(ed(B,F )) = 0, so there
is nothing to prove. Assume thated(B,F ) > ed(A,F ). If deE(ed(A,F ), ed(B,F )) > ω,
we have thatϕ(ed(B,F ))∧ ω= ω. On the other hand, it then follows that

ed(B,A)> deE
(
ed(A,F ), ed(B,F )

)
> ω > (n− 1)ε,

which yields thatB ∩ (S(n−1)ε(A))
c 6= ∅. This implies thatDω,εn−1= (S(n−1)ε(A))

c and that
Dd(B,D

ω,ε
n−1) = 0. On the other hand it is obvious thatDd(A,D

ω,ε
n−1) > (n − 1)ε, so it

follows that

dΓ
ω,ε

(A,B)+ ε> ∣∣Dd(A,Dω,εn−1)−Dd(B,Dω,εn−1)
∣∣+ ε

> nε > ω> ϕ
(
ed(B,F )

)∧ ω.
Next we treat the case wheredeE(ed(A,F ), ed(B,F )) < ω. If moreoverdeE(ed(A,F ),
ed(B,F )) 6 ε we have nothing to prove, so we only need to consider the case where
deE(ed(A,F ), ed(B,F )) > ε. Then we have that

kε > deE
(
ed(A,F ), ed(B,F )

)
> (k − 1)ε

for somek ∈ {2, . . . , n}, whence

ed(B,A)> deE
(
ed(A,F ), ed(B,F )

)
> (k − 1)ε,
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yielding thatB ∩ (S(k−1)ε(A))
c 6= ∅. ThenDω,εk−1= (S(k−1)ε(A))

c, andDd(B,D
ω,ε
k−1)= 0.

SinceDd(A,D
ω,ε
k−1)> (k − 1)ε, it now follows in the same way as above that

dΓ
ω
ε (A,B)+ ε > kε > ϕ(ed(B,F ))∧ω,

which completes this part of the proof. Our next step is to show that

ed(·,F ) :
(
CL(X), δprox(d)

)→ ([0,∞], δ+E)
is a contraction. FixA ∈ CL(X) andϕ ∈ Bδ+E (ed(A,F )). Again we will have to prove
thatϕ ◦ ed(·,F ) ∈Aδprox(d)(A), and we will proceed in the same way as we did higher up.
If ed(A,F ) =∞, thenϕ = θ]m,∞] for somem ∈ N. Fix ω ∈ R+. Sinceed(A,F ) =∞
implies thated(A,F (m))=∞, there existsaω ∈ A such thatd(aω,F (m))> ω. It suffices
now to prove that

ϕ ◦ ed(·,F )∧ω 6 d{{aω}}(A, ·),
in order to complete this part of the proof. Therefore takeB ∈CL(X) arbitrary. In case that
ed(B,F ) > m, ϕ(ed(B,F )) = 0, so there is nothing to prove. Ifed(B,F ) 6m it follows
thatB ⊂ F (m) yielding that

d{{aω}}(A,B)= d(aω,B)> d(aω,F (m))> ω = ϕ(ed(B,F ))∧ω,
and we are done. We now consider the case whereed(A,F ) < ∞, so we have that
ϕ = deE(ed(A,F ), ·)1[0,ed(A,F )]. Fix ε ∈ R+0 . First note that ifed(A,F ) > ε we have that
A∩ (Sed (A,F )−ε(F ))c 6= ∅, which implies that(Sed (A,F )−ε(F ))c 6= ∅. Let

Dε =̇.
{
Sed(A,F )−ε(F ))c ed(A,F ) > ε,

X ed(A,F )6 ε.
We now only have to verify that

ϕ ◦ ed(·,F )6 d{Dε}(A)+ ε.
TakeB ∈ CL(X). Note that whened(B,F ) > ed(A,F ), ϕ(ed(B,F )) = 0, so there is
nothing to prove. We therefore may assume thated(B,F )6 ed(A,F ). On the one hand, if
ed(A,F )6 ε, we see that

ϕ
(
ed(B,F )

)= ed(A,F )− ed(B,F )6 ε = d{Dε}(A,B)+ ε.
If, on the other handed(A,F ) > ε it follows thatDε =̇. (Sed (A,F )−ε(F ))c and thatDd(A,
Dε)= 0. Suppose

Dd(B,D
ε)+ ε < ed(A,F )− ed(B,F )

would hold true. Then there would existx ∈Dε andy ∈ B such that

d(x, y)+ ε < ed(A,F )− ed(B,F ),
which would imply that

d(x,F )6 d(x, y)+ d(y,F )6 d(x, y)+ ed(B,F ) < ed(A,F )− ε,
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yielding a contradiction. We therefore may conclude that

d{Dε}(A,B)+ ε =Dd(B,Dε)+ ε > ϕ
(
ed(B,F )

)
,

which also in this case completes the verification. The second part of the proof consists in
showing thatδprox(d) 6 δ. To do this, it suffices to show that

∀A,D ∈CL(X): d{D}(A, ·) ∈Aδ(A).
TakeA,D ∈CL(X) arbitrary. Fixω ∈R+ andε ∈R+0 . The proof will be completed if we
constructψω,ε ∈Aδ(A) such that

d{D}(A, ·)∧ ω6ψω,ε + ε.
If ω 6 ε, we can take the constant zero-functional onCL(X) for ψω,ε so we may assume
thatω > ε for the rest of the proof. Then we can taken ∈ N \ {0,1} minimal such that
nε > ω. Let

F
ω,ε
0 =̇. A,

and for everyk ∈ {1, . . . , n− 1} define

F
ω,ε
k =̇.

{
(SDd (A,D)+kε(D))c (SDd(A,D)+kε(D))c 6= ∅,
X (SDd(A,D)+kε(D))c = ∅.

For everyk ∈ {0, . . . , n− 1} we put

ρ
ω,ε
k =̇.

{
deE(ed(A,F

ω,ε
k ), ·) ed(A,F

ω,ε
k ) <∞,

θ]0,∞] ed(A,F
ω,ε
k )=∞,

and we define

ψω,ε =̇. n−1
sup
k=0

ρ
ω,ε
k ◦ ed(·,Fω,εk ).

Then clearlyψω,ε ∈Aδ(A). Now takeB ∈CL(X) arbitrary. IfDd(B,D)6Dd(A,D), we
have that

d{D}(A,B)6 ed(B,A)= deE
(
ed(A,A), ed(B,A)

)
6ψω,ε(B),

so we are done. Now assume thatDd(B,D) > Dd(A,D). If Dd(B,D) −Dd(A,D) 6 ε
there is nothing to prove, so we can assume thatDd(B,D)−Dd(A,D) > ε without loss
of generality. We first consider the case thatDd(B,D) − Dd(A,D) > ω. Then we have
that

Dd(B,D) >Dd(A,D)+ (n− 1)ε,

which implies thatB ⊂ (SDd (A,D)+(n−1)ε(D))
c and therefore

F
ω,ε
n−1=

(
SDd (A,D)+(n−1)ε(D)

)c
.

Suppose there would existγ ∈R+0 with ed(A,F
ω,ε
n−1) < (n−1)ε−γ . Then for everya ∈A

there would existxa ∈ Fω,εn−1 such thatd(a, xa) < (n− 1)ε − γ , but this would imply that
for everya ∈A



176 R. Lowen, M. Sioen / Topology and its Applications 104 (2000) 169–179

Dd(A,D)+ (n− 1)ε6 d(xa,D)6 d(xa, a)+ d(a,D)
< (n− 1)ε− γ + d(a,D),

yielding a contradiction. So we have thated(A,F
ω,ε
n−1)> (n−1)ε. If ed(A,F

ω,ε
n−1)=∞ we

have that

ρ
ω,ε
n−1

(
ed(B,F

ω,ε
n−1)

)=∞
so there is nothing to prove in this case. If on the other handed(A,F

ω,ε
n−1) <∞, it follows

that

d{D}(A,B)∧ω=ω6 nε 6 deE
(
ed(A,F

ω,ε
n−1), ed(B,F

ω,ε
n−1)

)+ ε
6ψω,ε(B)+ ε.

Now assume thatDd(B,D)−Dd(A,D) < ω. Then we have that

kε >Dd(B,D)−Dd(A,D) > (k − 1)ε

for somek ∈ {2, . . . , n}. Then following the same way as above, we find thatF
ω,ε
k−1 =

(SDd(A,D)+(k−1)ε(D))
c , B ⊂ Fω,εk−1 and thated(A,F

ω,ε
k−1)> (k − 1)ε. If ed(A,F

ω,ε
k−1)=∞,

we see that

ρ
ω,ε
k−1

(
ed(B,F

ω,ε
k−1)

)=∞
and we are done, where in the case thated(A,F

ω,ε
k−1) <∞ we find that

d{D}(A,B)∧ω= d{D}(A,B)6 kε
6 deE

(
ed(A,F

ω,ε
k−1), ed(B,F

ω,ε
k−1)

)+ ε 6ψω,ε(B)+ ε,
which completes the proof.2

The topological result from Beer and Lucchetti now can be obtained as a corollary

Corollary 2.3. Let (X,d) be a metric space. Then we have thatTprox(d) is the initial
topology on CL(X) for the source(

ed(·,F ) : CL(X)→ ([0,∞],T ∗E ) :A→ ed(A,F )
)
F∈CL(X).

Proposition 2.4. For every metric space(X,d) and every tilingΣ ofX, we have thatδΣ,d
is the initial approach structure on CL(X) for the source(

dF (G, ·) : CL(X)→ ([0,∞], δE) :A→ dF (G,A)
)
(F,G)∈Σ×CL(X).

Proof. Fix A ∈ CL(X) andA ⊂ CL(X). If we denote the initial approach distance on
CL(X) by δ, we have thatδ(A,A) equals

sup
Γ ∈2(Σ×CL(X))

sup
ϕ∈∏(F,G)∈Γ BδE (dF (G,A))

inf
B∈A

sup
(F,G)∈Γ

ϕ
(
(F,G)

)(
dF (G,B)

)
.

On the one hand, it follows by a simple consideration of cases that

ν
(
dF (G,B)

)
6 dF (A,B)
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for everyB ∈CL(X), each(F,G) ∈Σ ×CL(X) and everyν ∈ BδE (dF (G,A)), whence

δ(A,A)6 sup
F∈2(Σ)

inf
B∈A

sup
F∈F

dF (A,B)= δΣ,d(A,A)

becauseΣ is closed with respect to taking finite unions. Because on the other hand

δ(A,A)> sup
F∈Σ

sup
ϕ∈ 7BδE (0)

inf
B∈A

ϕ
(
dF (A,B)

)= δΣ,d (A,A)
we are done. 2
Corollary 2.5. For every metric space(X,d) and every tilingΣ ofX, we have thatTΣ,d
is the initial topology on CL(X) for the source(

dF (G, ·) : CL(X)→ ([0,∞],T ∗E ) :A→ dF (G,A)
)
(F,G)∈Σ×CL(X).

We conclude by proving some generalizations of weak representations ofThd andTAWd

to be found in [2,4].

Proposition 2.6. If (X,d) is a metric space,δhd is the initial distance on CL(X) for the
source formed by following set of functionals{

ed(·,F ) : CL(X)→ ([0,∞], δE) |F ∈CL(X)
}

∪{ed(F, ·) : CL(X)→ ([0,∞], δE) |F ∈CL(X)
}
.

Proof. If we use the notationδ for the initial distance onCL(X) with respect to the source
above, we have that for eachA ∈CL(X) andA⊂CL(X), thatδ(A,A) equals

sup
Γ ∈2(CL(X)×{−1,1})

sup
ϕ∈∏(F,ε)∈Γ BδE (e

ε
d(F,A))

inf
B∈A

sup
(F,ε)∈Γ

ϕ
(
(F, ε)

)(
eεd(F,B)

)
,

where for all F,B ∈ CL(X), e1
d(F,B) =̇. ed (F,B) and e−1

d (F,B) =̇. ed (B,F ). The
inequalityδ 6 δhd is proved by verifying thatµ(eεd(F,B)) 6 hd(A,B) for everyB,F ∈
CL(X), ε ∈ {−1,1} andµ ∈ BδE (eεd(F,A)), whereas the converse inequality is obvious
since

δ(A,A)> inf
B∈A

(
deE
(
0, e1

d(A,B)
)∨ deE(0, e−1

d (A,B)
))

= inf
B∈A

hd(A,B)= δhd (A,A). 2
Again the topological result now can be obtained as a corollary.

Corollary 2.7. If (X,d) is a metric space,Thd is the initial topology on CL(X) for the
source formed by following set of functionals{

ed(·,F ) : CL(X)→ ([0,∞],T ∗E ) |F ∈CL(X)
}

∪{ed(F, ·) : CL(X)→ ([0,∞],T ∗E ) |F ∈CL(X)
}
.
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Proposition 2.8. For every metric space(X,d), we have thatδThd is the initial approach
structure on CL(X) for the source(

eρ(F, ·) : CL(X)→ ([0,∞], δE) :A→ eρ(F,A)
)
(ρ,F )∈Eu(d)×CL(X).

Proof. Because concrete coreflectors preserve initiality, it follows from [4], where it was
shown thatThd is the initial topology for the source(

eρ(F, ·) : CL(X)→ ([0,∞],T ∗E ) :A→ eρ(F,A)
)
(ρ,F )∈Eu(d)×CL(X),

that it suffices to prove that the initial distanceδ for the AP source mentioned in the
formulation of the proposition is topological, or equivalently, thatδ can only take the values
0 and∞. Therefore assume thatA ∈ CL(X) andA⊂ CL(X) with δ(A,A) > 0. Because
δ(A,A) equals

sup
Γ ∈2(Eu(d)×CL(X))

sup
ϕ∈∏(ρ,F)∈Γ BδE (eρ(F,A))

inf
B∈A

sup
(ρ,F )∈Γ

ϕ
(
(ρ,F )

)(
eρ(F,B)

)
,

there existΓ0 ∈ 2(Eu(d)×CL(X)) andϕ0 ∈∏(ρ,F )∈Γ0
BδE (eρ(F,A)) with

α =̇. inf
B∈A

sup
(ρ,F )∈Γ0

ϕ0
(
(ρ,F )

)(
eρ(F,B)

)
> 0.

Note that for each(ρ,F ) ∈ Γ0, ϕ0((ρ,F )) = deE(eρ(F,A), ·) if eρ(F,A) < ∞ and
ϕ0((ρ,F )) = θ]m((ρ,F )),∞] for somem((ρ,F )) ∈ N0 if eρ(F,A) =∞. For everyk ∈ N0

and(ρ,F ) ∈ Γ0 we define

ψk
(
(ρ,F )

) =̇. {deE(ek·ρ(F,A), ·) eρ(F,A) <∞,

θ]k·m((ρ,F )),∞] eρ(F,A)=∞.

Then we obviously have that

∀k ∈N0: ψk =̇.
(
ψk((ρ,F ))

)
(ρ,F )∈Γ0

∈
∏

(ρ,F )∈Γ0

BδE
(
ek·ρ(F,A)

)
.

Becausek · ρ ∈ Eu(d) for all k ∈N0 andρ ∈ Eu(d), we now obtain that

δ(A,A)> sup
k∈N0

inf
B∈A

sup
(ρ,F )∈Γ0

ψk
(
(ρ,F )

)(
ek·ρ(F,B)

)
= sup
k∈N0

inf
B∈A

sup
(ρ,F )∈Γ0

(
k · ϕ0

(
(ρ,F )

)(
eρ(F,B)

))
= sup
k∈N0

(k · α)=∞. 2

Proposition 2.9. For every metric space(X,d), we have thatδTAWd
is the initial approach

structure on CL(X) for the source(
eρ(F, ·) : CL(X)→ ([0,∞[, δdE) :A→ eρ(F,A)

)
(ρ,F )∈Ebu(d)×CLB(X).
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