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Abstract

Itis the aim of this note, to show that several results from Beer (1993), Beer et al. (1992) and Beer
and Lucchetti (1993) about the description of some hypertopologies as weak or initial topologies can
be generalized to the quantitative setting of approach hyperspace structures as introduced by Lowen
and Sioen (1996, 1998)1 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the study of topologies on the hyperspace of all non-empty closed subsets of a
metric space, an important interest has been taken during the last decade in looking
for descriptions of many of those well-investigated hypertopologies as weak or initial
topologies, as can be seen, e.g., from Beer [2], Beer, Lechicki, Levi and Naimpally [3]
and Beer and Lucchetti [4]. Here one detects two main types of results: on the one hand
those describing a particular hyperspace topology as the supremum of a family of other
hyperspace topologies and on the other hand, those providing a description of a hyperspace
topology as being the initial topology for a source[6f co]-valued functionals on the
hyperspace.
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It is our aim in this paper to generalize some of these results from [2—4] to the broader,
quantified setting of approach hyperstructures as presented by Lowen and Sioen [6,7],
which were introduced to remedy the loss of quantitative information when passing
from a metric space to its hyperspace endowed with one of the hypertopologies and
which represent exactly the canonical numerical information, compatible with the studied
hypertopology, we can retain under this transition.

2. Some weak representations

In the sequel(X, d) will be an arbitrary metric space and we will wri@L(X) for the
hyperspace of all non-empty closed subsets. Throughout the rest of the paper, we will use
the notationgy, respectivelyZaw, , Tprox), Zo-proxd), Tv @andTiocfin for the Wijsman, re-
spectively the Attouch—Wets, thieproximal, the bounded-proximal, the Vietoris and the
locally finite topology onCL(X), as defined in [2—4] and we refer hereto for more infor-
mation. For anyx € X and A, B € 2%, we writed(x, A) = infyca d(x, y), respectively
Dy(A, B) = infycad(x, B), eq(A, B) = sup.c,d(x, B) and hg(A, B) = eq(A, B) v
eq(B, A) for the ‘distance fromx to A’, respectively the ‘gap betweeA and B’, the
‘excess ofA over B’ and the ‘Hausdorff distance betweenand B’. We will use £(d)
respectively€, (d) and£(d) to denote the set of all metrics on which are equivalent
to d, respectively which are uniformly equivalentdo respectively which are uniformly
equivalent to and determine the same bounded subsets\&ls will also denote the set
of all (respectively all non-empty, all finite and all non-empty finite) subsets ok 2%,
(respectively g, 2% and ) and if A € 2¥ ande > 0 we put

Se(A) ={yeX|d(y,A) <e}.

The Euclidean metric ofD, oo[ is denoted byl and when working iff0, co], we adopt
the conventionso — 00 =0,0-c0=00-0=0. If X is a set and4 is a subset of(, 64
(respectively }) stands for the function oX taking the value 0 om andoco on X \ A
(respectively 1 om and 0 onX \ A).

For any terminology, notations or information about approach spaces, we refer to
Lowen [5], so we will restrict ourselves to recalling some definitions about the approach
hyperstructures introduced by Lowen and Sioen [6,7]. A non-empty subsétisfcalled
a tiling of X if ¥ ¢ X', the members o' coverX and X is closed for the formation of
finite unions. If X is a tiling of X, we define for every € ¥

dp:CL(X) x CL(X) — [0, 00]: (A, B) — sup|d(x, A) —d(x, B) |.

xeF
Then{dp | F € X} is a collection ofoo p-metrics onCL(X) and hence defines a uniform
approach distance, which we will call the ‘distance’diiniform convergence’ and which
we will denote bys s 4, as follows:

85.4:CL(X) x 2°%) 5 [0, 00] 1 (A, A) — sup inf dr(A, B).
Fex Be A
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Now one can prove that the p-metric coreflection ofCL(X), §x 4) is (CL(X), hs) and
that the topological coreflection ¢CL(X), §x 4) is exactly(CL(X), 7x.q4), WhereTx 4
is the topology of uniform convergence on membergofinder the identificatioCL(X)
with the set of distance functionglg(-, A) | A € CL(X)}. Note that %X) is a tiling and that
7d2(()X)’d = Tw,. We will therefore caIISZ(()X)’d the ‘Wijsman distance’ and we will denote it
by 8w, . The collection of all non-empty bounded subsets is a tiling too, the hyperdistance
corresponding to which is denoted &y, and will be called the ‘Attouch—Wets’ distance.
If on the other hand, for each € ZéCL(X)) we define
d" :CL(X) x CL(X) — [0,00]: (A, B) — sup|D(A, D) — Dy(B, D)|,
Der’
the collection of p-metrics {d! | I" € ZE)C"(X))} generates a uniform approach distance
Sprox@) ONCL(X), given by

Sproxa) : CL(X) x 2°M%) . 10,00]: (A, A) — sup inf d" (A, B).
regclon Bed

It can be shown that theo p-metric and the topological coreflection €EL(X), Sproxa))

are (CL(X), hy), respectively (CL(X), Tproxa)) and therefore,dproxq) is called the
‘d-proximal distance’. With

CLB(X) = |{B € CL(X) | B bounded,

the collection{d” | I" € ZBCLB(X))} generates the boundéeproximal distanceéy-proxa) in
the same way.

The following proposition generalizes some results of Beer, Levi, Lechicki, Lucchetti
and Naimpally (see [2-4]) concerning the representation of given hypertopologies as
suprema to our framework.

Proposition 2.1. For every metric space, the following equalities hold

S%VUX(J) = \/ SWP’ aﬂ—prox(zl) = \/ SWP’ 57'\/ = \/ SWP’
pe&u(d) peEL(d) pe€(d)
STV = \/ aprOX(P)’ aﬂncfin = \/ ahp
pe€(d) pe€(d)

where all the suprema are taken A.

Next we generalize a result from Beer and Lucchetti (see [4]) stating thdtpheximal
topology Zprox) is the initial topology for a source d¢0, oo]-valued excess functionals,
by showing that an analogous result holds for the overlaying “proximal” distéfi¢&) -

If we definesg : [0, oo] x 2191 — [0, o] by
00 A =1,
X = 00, SUPA = 00,
X =00, SUPA < 00,
8dp (X, ANRY)  x < o0,

Se(x, A) =
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thensg can be proved to be a distance [@oo] and one can verify that the topological
coreflection of ([0, o0], 8£) is ([0, o0], 7;), where 7;; denotes the topology of the
Alexandroff one-point compactification «f0, oo[, Z;,). It is also easy to see that the
oo p-metric coreflection of[0, oc], £) is ([0, oo], dy,) with
0 X =y=00,
dy; 2 [0, 00] x [0, 00] — [0, 00]: (x, y) = § o0 x#y, 00 €{x,y},
dp(x,y) x,y<oo.
Often continuity of a[0, co]-valued functional is shown by separately proving that it
is lower and upper semicontinuous and this technique is also used in the proof of the

topological result we want to generalize. We will therefore ‘sglit'into two halves which
will allow us to use a similar argument to show that a given function is a contraction. Let
A=0
+. 210,00] . A oo )
87 [0, c0] x — [0, o0] : (x, )_){(x—supA)\/O A%
and
A=10,

—. [0,00] . oo
8, :10,00] x 2 —>[0,oo].(x,A)—>{(ian_x)v0 AL,

It can be verified thaAijEr ands, are distances of0, oo], where a basis for the approach
system ofS g, respectively)‘g ands is given by:

. [ Hdg(x, )} x eRT,

Bs; (x) = E
{O1n.00] I €N} x =00,
respectively

ds.(x, )] RT,
By (x) = {dip(x, )1} x€

E {9],1,00] |lne N} x=o00,
and
{dE(X, ')1[x,oo]} X € RJF,

{0} X = 00.

Bsg (x) =

This shows thad g is the supremum oa‘g ands in AP, so if (X, 8) is an approach space
and f: X — [0, 00] is a functionf: (X, §) — ([0, o0], 8g) is a contraction if and only

if both f: (X, §) — ([0, oo], 82) and f: (X, ) — ([0, oo], §;) are contractions. We now
come to the actual theorem.

Theorem 2.2. Let (X,d) be a metric space. Then we have thgxq) is the initial
distance on CLX) for the source

(ea (-, F):CL(X) — ([0, 001, 8) 1 A — ea(A, F)) p ey ()

Proof. To simplify notations, we will denote the initial distance 6h(X) for the source

(ea(, F):CL(X) = (10,001, 8£) : A = ea(A, F)) oy )



R. Lowen, M. Sioen / Topology and its Applications 104 (2000) 169-179 173
by 8. As § is the coarsest distance @b(X) which makes all functions of this source into
contractions, it suffices to verify that

eq(-, F): (CL(X), 8prox(d)) - ([0, oo], 55) A —eq(AF)

is a contraction for every” e CL(X), in order to show thabprxye) > 6. To do so, fix
F € CL(X). We start by proving that

eq(-, F): (CL(X), Sproxa)) — ([0, 00].8%) 1 A — eq(A, F)

is a contraction. Také € CL(X) andy € By (ed(A F)). If eq(A, F) = 00, thengp =0,
yielding thatg o e;(-, F) = 0 € A,spmx(d) (A) so we are done. lg;(A, F) < 00, ¢ =
dy(eq(A, F), )1e A, F),00]- We now intend to verify thap o ey (-, F) € A(;pm(d) (A), so
fix o € R* ande € R{. We now have to construgt®- e Aspoxa (A) such that

poeq(, F) hAo <Y +e.

If < & we can takey®-¢ to be the constant zero-functional Gh(X), so we may assume
without loss of generality thad > ¢. Taken € N\ {0, 1} minimal such thate > w, define
foreveryke{l,...,n —1}

poe = [ (S (Ske(A)° #8,
T x (Ske (A))° =

andletr® = (D", ..., Dy Y andy ¢ =d""" (A, ). Thensurelyy®€ € As ., (A)
and as stated above, we are done in this case if we prove the following claim:

poeq(-, F)no<d " (A, +e.

Therefore, fixB € CL(X). If e4(B, F) < e4(A, F), we see thap(eq(B, F)) =0, so there
is nothing to prove. Assume tha§(B, F) > eqs(A, F). If di(eq(A, F),eq(B, F)) > o
we have thap (e (B, F)) A @ = w. On the other hand, it then follows that

ei(B,A) >dj(eq(A, F),eq(B, F)) > o> (n — 1,

which yields thatB N (S(,—1):(A))¢ # @. This implies tha’rD“”sl = (S(n 1:(A))¢ and that
Du(B, Dfl”fl) 0. On the other hand it is obvious tha (A, D ) >m—1eg, soit
follows that

d""" (A, B) + &> |Da(A, D) — Dy(B, D*)| +¢
>ns/w>(p(ed(B,F))/\a).

Next we treat the case whetk (e;(A, F), eq(B, F)) < w. If moreoverdy(e,(A, F),
eq(B, F)) < ¢ we have nothing to prove, so we only need to consider the case where
dy(eq(A, F),eq(B, F)) > ¢. Then we have that

ke > dg(ed(A, F),eq (B, F)) > (k—De
forsomek € {2, ..., n}, whence

eq(B, A) > ds;(ea(A, F),eq(B, F)) > (k — D,
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yielding thatB N (Sk—1)c(A)) # 0. ThenD| = (Sk—1):(A))¢, and Dy (B, D;”)) = 0.
SinceDy (A, D,‘("fl) > (k — D)e, it now follows in the same way as above that

d"¥'(A, B) +e>ke > ¢(ea(B, F)) Ao,
which completes this part of the proof. Our next step is to show that
ea (-, F) 1 (CL(X), 8proxia)) — ([0, 001, 87)

is a contraction. FixA € CL(X) andg € Ba;(ed(Av F)). Again we will have to prove
thaty o eq (-, F) € Asyoq (A), @and we will proceed in the same way as we did higher up.
If eq(A, F) = 00, theng = 0,0 for somem € N. Fix w € RT. Sincee (A, F) = oo
implies thates (A, F™)) = oo, there exists:” € A such thad(a®, F™) > w. It suffices
now to prove that

poeq(-, F) A <dN(A, ),

in order to complete this part of the proof. Therefore t&8ke CL(X) arbitrary. In case that
eqd(B, F) > m, ¢p(eq(B, F)) =0, so there is nothing to prove. df;(B, F) < m it follows
thatB ¢ F™ yielding that

d"N(A, B)=d(a®, B) > d(a®”, F"™) > w=g¢(es(B, F)) A w,

and we are done. We now consider the case whgtd, F) < oo, SO we have that
@ =dy(eq(A, F), )0 e,a,F)) Fixee Rg. First note that ife; (A, F) > ¢ we have that
AN (Seya,Fy—e(F))¢ # 0, which implies tha(S,, 4, r)—s (F))¢ # . Let

Df = SeqA, Fy—e(F))° eq(A, F) > ¢,
"1 x (A, F)<e.

We now only have to verify that
poea(-, F)<d”I(A) +e.

Take B € CL(X). Note that wherey (B, F) > e4(A, F), ¢(eq(B, F)) = 0, so there is
nothing to prove. We therefore may assume thaB, F) < ey (A, F). On the one hand, if
eq(A, F) <&, we see that

¢(ea(B, F)) =eq(A, F) —eq(B, F) <e =d'"(A, B) +¢.

If, on the other hand; (A, F) > ¢ it follows that D® = (S, 4, r)—(F))¢ and thatD, (A,
D?) =0. Suppose

Dy(B,D°)+¢<ey(A,F)—ey(B, F)

would hold true. Then there would existe D? andy € B such that
d(x,y)+e<ei(A, F)—eq(B, F),

which would imply that
dix, F)<d(x,y)+d(y, F) <d(x,y)+ea(B, F) <eq(A, F) —¢,
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yielding a contradiction. We therefore may conclude that
d'PV(A, B) + & = Dy(B, D) +¢ > ¢(ea(B, F)),

which also in this case completes the verification. The second part of the proof consists in
showing thaBproxq) < 8. To do this, it suffices to show that

YA, D e CL(X): d'P1(A, ) € As(A).

TakeA, D e CL(X) arbitrary. Fixw € RT ande Rar. The proof will be completed if we
constructy®-¢ € As(A) such that

dPVNA, YA 0 <Y Fe.

If w < e, we can take the constant zero-functional@un(X) for *¢ so we may assume
thatw > ¢ for the rest of the proof. Then we can takes N \ {0, 1} minimal such that
ne > w. Let

Fyf = A,
and for everyk € {1, ...,n — 1} define

FOE - { (Spy(A.D)+ke(D)) (SDy(A.D)+ke (D)) # 0,

Tl x (Spy(A.D)+ke (D)) = 0.

For everyk € {0, ...,n — 1} we put

we - {df;(ed(A,F,ﬁ’)’g)w) ea(A, F%) < o0,

P =
k 010,00} ea(A, F%) = oo,

and we define
Yoo = BUppl S o el FY).
k=0
Then clearlyy®-¢ € As(A). Now takeB € CL(X) arbitrary. If Dy(B, D) < D4(A, D), we
have that
d'PV(A, B) <eq(B, A) =df(eq(A, A), ea(B, A)) < Y (B),

so we are done. Now assume tliat(B, D) > D (A, D). If Dy(B, D) — D;(A, D) < ¢
there is nothing to prove, so we can assume ihatB, D) — D4(A, D) > ¢ without loss
of generality. We first consider the case tiiat(B, D) — Dy(A, D) > w. Then we have
that

D4y(B, D) > D4(A, D) + (n — De,
which implies thatB C (Sp, (. p)+n-1(D))¢ and therefore
F>5 = (Spgca, py+n—1e (D))

Suppose there would exigte Rar with eq (A, Fr‘l";j) < (m—21Le—y.Thenforevery € A
there would exisk, € F;"j such thatd(a, x,) < (n — 1)e — y, but this would imply that
foreverya € A
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Dy(A,D)+ (n— e <d(xq, D) <d(x4,a) +d(a, D)
<(n—Ve—y+da,D),

yielding a contradiction. So we have tha{(A, F,"") > (n — De. If e4(A, F,”) = co we
have that

o1 (ea(B, ")) = 00

so there is nothing to prove in this case. If on the other hand, F,") < oo, it follows
that

dPY A, By Aw=w<ne < d;(ea(A, F,%) ., ea(B, F")) + &
<Y”(B) +e.
Now assume thab, (B, D) — D;(A, D) < w. Then we have that
ke > Dg(B, D) — Dy(A, D) > (k — 1)e
for somek € {2,...,n}. Then following the same way as above, we find th“gﬂ =
(Spa(A, D)+(k-1e(D)), B C F”Y and thateq(A, F”%) = (k — De. If eq(A, F™) = oo,
we see that
o (ea (B, ™)) =00
and we are done, where in the case that, F,f)_’sl) < oo we find that
d'PY (A, By Aw=d'PY(A, B) <ke
<dg (ed(A, F), ea(B, F,ﬁ",’sl)) +e <Yt (B) te,

which completes the proof.O
The topological result from Beer and Lucchetti now can be obtained as a corollary

Corollary 2.3. Let (X,d) be a metric space. Then we have tiglyxq) is the initial
topology on CILX) for the source

(ed(', F):CL(X) — ([0, o], Tg) A= eq(A, F))FeCL(X)'

Proposition 2.4. For every metric spaceX, d) and every tilingX of X, we have thatx 4
is the initial approach structure on GIX) for the source

(dr(G,):CL(X) — ([0,00],8£) : A = dr(G. A) 1 e s xcLix):

Proof. Fix A € CL(X) and A c CL(X). If we denote the initial approach distance on
CL(X) by 8, we have thaé(A, A) equals

sup sup inf  sup ¢((F,G))(dr(G, B)).
re2Zx<CLX) oel| 1 gyer Bsy (dr(G.A) BEA (F.G)er

On the one hand, it follows by a simple consideration of cases that

v(dr (G, B)) <dr(A, B)
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for everyB € CL(X), each(F, G) € ¥ x CL(X) and everyw € Bs,(dr (G, A)), whence

8(A, A) < sup inf supdr(A, B) =68x4(A, A
Fe2(s) BEA FcR

becauser is closed with respect to taking finite unions. Because on the other hand

S(A,A)=sup sup inf ¢(dr(A, B))=385.4(A, A
FeX ¢eBs, (0) BEA

we are done. O
Corollary 2.5. For every metric spacéX, d) and every tilingX of X, we have thals 4
is the initial topology on CLX) for the source

(dr(G.):CL(X) > (10,001, T7) : A — dr (G, A) 1 gre s xcLix)-

We conclude by proving some generalizations of weak representati@ings and7aw,
to be foundin [2,4].

Proposition 2.6. If (X, d) is a metric spacejy, is the initial distance on C{X) for the
source formed by following set of functionals

{ea(-, F):CL(X) — ([0, 0¢], 8£) | F € CL(X)}
Ufeq(F, ) :CL(X) — ([0, 0], 8£) | F € CL(X)}.

Proof. If we use the notatioa for the initial distance ol€L(X) with respect to the source
above, we have that for eache CL(X) and.A c CL(X), that§(A, A) equals

sup sup inf sup ¢((F,¢))(e;(F, B)),
e =11 e[ o ey Bsy (¢5(F.A)) BEA (Fe)er

where for all F, B € CL(X), ei(F, B) = ¢4(F, B) and eJl(F, B) = e4(B, F). The
inequalitys < &y, is proved by verifying tha(ef;(F, B)) < hq(A, B) for everyB, F €
CL(X), e € {—1,1} and i € Bs, (e(F, A)), whereas the converse inequality is obvious

since
5(A, A > inf (dz(0, eX(A, B)) vds(0,e51(A, B)))
€

= inf hy(A, B)=68n,(A, A). O
i, d(A, B) =dp,( )
Again the topological result now can be obtained as a corollary.

Corollary 2.7. If (X, d) is a metric space7y,, is the initial topology on CIX) for the
source formed by following set of functionals
{ea(-, F):CL(X) — ([0, 0], 77) | F € CL(X)}
Ufeq(F,-):CL(X) — ([0, 00], 77) | F € CL(X)}.



178 R. Lowen, M. Sioen / Topology and its Applications 104 (2000) 169-179

Proposition 2.8. For every metric spacéX, d), we have thaBThd is the initial approach
structure on CI(X) for the source

(ep(F,):CL(X) — ([0, 00],8£): A — e, (F, A))(p,F)e&,(d)xCL(X)'
Proof. Because concrete coreflectors preserve initiality, it follows from [4], where it was
shown that7;,, is the initial topology for the source

(ep(F,-):CL(X) = ([0, 00], 77) : A — e, (F, A))(p,F)eé'u(d)xCL(X)’

that it suffices to prove that the initial distanéefor the AP source mentioned in the
formulation of the proposition is topological, or equivalently, thaan only take the values
0 andoo. Therefore assume thdte CL(X) and A c CL(X) with §(A, A) > 0. Because
3(A, A) equals

sup sup inf sup ¢((p, F))(ep(F, B)),
[ e2Eu@*CLO) e[, e Bsy (ep(F,A)) BEA(p. Fyer

there existip € 26« @>*CLXD) andgg € [, p)er, Bor (€p(F. A)) with

a= inf sup ¢o((p, F))(e,(F, B)) > 0.
BeA (p,Fyery
Note that for each(p, F) € I'o, go((p, F)) = dj(e,(F, A),-) if e,(F,A) < oo and
0o((p, F)) = Oun((p, F)),00] TOr somem((p, F)) € Ng if e,(F, A) = oo. For everyk € Ng
and(p, F) € Iy we define

1p_k(( F)) . d%(ek,o(F» A)’ ) e,O(Fa A) < 00,
P T Oem((o. )00 ep(F, A) = o0.

Then we obviously have that

VkeNo: v = (W (0. D), pren € 1 Borlewn(F. A).
(p,F)elp

Because - p € £,(d) forall k e Ng andp € &,(d), we now obtain that

8(A, A) = sup inf  sup ¥*((p, F))(exp(F, B))
keNg BeA (o, Fyery

=sup inf  sup (k-go((p, F))(eo(F. B)))
keNg BEA (p,Fyery

= sup(k - a) = oo. O
kENo

Proposition 2.9. For every metric spaceX, d), we have tha&TAWd is the initial approach
structure on CI(X) for the source

(ep(F.) :CL(X) — (10, 00[,84;) : A = €5 (F, A)) ) pycenay wcLbin:
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