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SUMMARY

To test whether highly crossreactive ab T cell recep-
tors (TCRs) produced during limited negative selec-
tion best illustrate evolutionarily conserved interac-
tions between TCR and major histocompatibility
complex (MHC) molecules, we solved the structures
of three TCRs bound to the same MHC II peptide (IAb-
3K). The TCRs had similar affinities for IAb-3K but var-
ied from noncrossreactive to extremely crossreac-
tive with other peptides and MHCs. Crossreactivity
correlated with a shrinking, increasingly hydrophobic
TCR-ligand interface, involving fewer TCR amino
acids. A few CDR1 and CDR2 amino acids dominated
the most crossreactive TCR interface with MHC, in-
cluding Vb8 48Y and 54E and Va4 29Y, arranged to
impose the familiar diagonal orientation of TCR on
MHC. These interactions contribute to MHC binding
by other TCRs using related V regions, but not usu-
ally so dominantly. These data show that crossreac-
tive TCRs can spotlight the evolutionarily conserved
features of TCR-MHC interactions and that these
interactions impose the diagonal docking of TCRs
on MHC.

INTRODUCTION

ab T cell receptors (TCRs) are created by rearrangements of

germline V, D, and J genes and nongermline-encoded CDR3

segments during thymocyte development. The collection of

TCRs thus produced is culled by positive and negative selection

in the thymus to establish the mature TCR repertoire. Positive se-

lection picks out for survival thymocytes bearing TCRs that react

weakly with MHC peptides in the thymus (Hogquist et al., 1994;

Sebzda et al., 1994; Sprent et al., 1988). Negative selection de-

stroys thymocytes with TCRs that engage self-MHC-self-pep-
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tide ligands too strongly (Bluthmann et al., 1988; Kappler et al.,

1987). The surviving cells constitute the mature T cell population,

whose TCR affinities and/or avidities for self-MHC-self-peptides

are too low for T cell activation, thus avoiding autoimmunity.

However, replacement of the self-peptide with a foreign peptide

converts the complex into a high-affinity ligand for some of the

T cells, thereby leading to successful immune responses.

We still do not understand how TCRs react nearly exclusively

with MHC ligands. The evolutionary hypothesis suggests that

TCR genes have evolved to encode proteins that are inherently

MHC specific (Jerne, 1971). Alternatively, the initial TCR reper-

toire may be random, and positive selection may pick out the

rare TCRs with the appropriate MHC specificity and affinity.

We have studied T cells in mice expressing an MHC class II

(MHC II) with a single covalently bound peptide that excludes

the binding of other peptides, including self-peptides (Huseby

et al., 2005; Ignatowicz et al., 1996). These mice have a substan-

tial mature CD4+ T cell repertoire. However, many of these T cells

have unusual specificities. Most react with the wild-type form of

the same MHC II molecule with the normal contingent of self-

peptides. Many also react with many other MHC II alleles

(Fung-Leung et al., 1996; Huseby et al., 2003; Ignatowicz et al.,

1996; Martin et al., 1996; Miyazaki et al., 1996) and even cross-

react with MHC I ligands (Huseby et al., 2005). Immunization of

these mice with the same MHC II bound to a foreign peptide

produces MHC-peptide-reactive T cells that are also self- and

allo-MHC reactive and also tolerate many mutations of their

MHC-II-foreign-peptide ligand.

These results led us to propose a variant of the evolutionary

hypothesis. We suggested that in normal animals, the CDR1

and CDR2 loops of germline-encoded TCR V elements produce

MHC-crossreactive T cells with high frequency. These T cells

can be positively selected, but their likelihood of survival is de-

pendent on the somatically generated V region CDR3 loops,

which must attenuate the conserved MHC interactions in order

for the T cell bearing them to escape negative selection. The

many self-MHC-self-peptides combinations in the thymuses of

normal mice make escape difficult, because at least some
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combinations are likely to permit enough of the conserved MHC

interaction to drive negative selection. However, the single MHC

peptide present in our mice allows many of these normally de-

leted crossreactive T cells to avoid negative selection and ap-

pear in the mature T cell population (Huseby et al., 2005).

We reasoned that this highly crossreactive population of T

cells provides a unique opportunity to look for TCRs manifesting

relatively unadulterated examples of germline TCR-MHC inter-

actions. Therefore, we solved the structures of three TCRs

bound to the same MHC II molecule, IAb, occupied by the

same peptide, 3K. One TCR was from a highly MHC-peptide-

specific T cell, B3K506, isolated from normal C57BL-6 mice (Hu-

seby et al., 2005; Rees et al., 1999). The other two TCRs were

from T cells isolated from IAb single-peptide mice (Huseby

et al., 2005). One of these (2W20) was modestly crossreactive,

and the other (Yae62) was extremely crossreactive. All three

TCRs used members of the mouse Vb8 (BV8) family, and two

(B3K506 and YAe62) used members of the Va4 family (Arden

et al., 1995).

The footprints of the TCRs on IAb-3K were very different rang-

ing from a large, nonhydrophobic interaction for the highly spe-

cific TCR to a much smaller, hydrophobic interaction for the

highly crossreactive TCR. As predicted by our hypothesis, inter-

actions involving the TCR germline CDR1 and CDR2 regions be-

came highly focused on just a few TCR amino acids as the TCR

progressed from highly specific to highly crossreactive. These

included two amino acids, Vb8 46Y and 48Y, which others

have suggested might mediate conserved MHC interactions

(Feng et al., 2007), and Vb8 54E, as well as Va4 29Y, previously

unnoticed as a potentially conserved MHC-interacting amino

acid. These Va and Vb amino acids and their binding sites on

MHC impose a diagonal mode of docking for TCR on MHC.

These results explain how crossreactive TCRs might operate

and support our hypothesis that these TCRs may be good tools

for identification of the features of TCR V regions that predispose

them to MHC reactivity.

RESULTS

Structures of the Complexes of Three
TCRs Bound to the Same MHC Peptide
The complexes of soluble versions of the highly specific,

B3K506, moderately crossreactive, 2W20, and highly crossreac-

tive, YAe62, TCRs bound to the IAb-3K ligand were expressed,

crystallized, and solved to resolutions of 2.55 Å, 3.40 Å and

3.05 Å, respectively (Table S1 and Figure S1 available online).

Viewed from the T cell (Figures 1A–1C), the six CDR regions of

all three TCRs lie in the now familiar diagonal configuration

over the MHC-II-peptide complex with the Vb domains of the

TCRs over the IAb a1 helix and the Va domains over the b1 helix

(Garboczi et al., 1996; Garcia et al., 1996). The angle of this ori-

entation (�45� to the peptide backbone) is very similar for all

three TCRs. However, a view from the N-terminal end of the

3K peptide (Figures 1D–1F) shows that the B3K506 TCR en-

gages the MHC peptide tilted somewhat to the MHC b chain

helix, whereas the 2W20 TCR is tilted more and the YAe62

TCR even more toward the MHC a chain helix.

These differences in tilt and in the compositions of the CDR3s

of the TCRs lead to very different footprints of the TCRs on
IAb-3K (Figures 2A–2C, Table 1, and Spreadsheet S1). The

B3K506 TCR interacts extensively with both the MHC and pep-

tide. The result is a large, distributed footprint with a buried

surface of 1893 Å2, typical of that seen in most other

TCR:MHC-peptide structures (Rudolph et al., 2006). The 2W20

TCR interacts with fewer MHC and peptide atoms for a footprint

of 1695 Å2, and the YAe62 TCR contacts even fewer MHC and

peptide atoms for a footprint of only 1178 Å2, the smallest yet

reported for a TCR in complex with classical MHC.

Interpreting IAb-3K Mutational Studies
on the Basis of the Structures
The observed footprints of these TCRs correlate well with the re-

sults of extensive mutagenesis studies of their interaction with

their MHC-peptide ligand (Huseby et al., 2006; Huseby et al.,

2005). In these studies, the five most exposed amino acids of

the a1 helix (55D, 57Q, 61Q, 64A, and 68H), b1 helix (66E, 70R,

73A, 77T, and 81H), and the peptide (�1E, 2Q, 3K, 5K, and 8K)

of IAb-3K were mutated to many other amino acids. We as-

sessed the effects of the mutations on their interaction with the

three TCRs, as judged by T cell hybridoma activation and by

TCR binding to IAb-3K and its mutants, measured by flow cytom-

etry and surface-plasmon resonance.

For the most part, those amino acids whose mutation had the

greatest effect in these assays were also those that contributed

the most to the footprint of the IAb-3K on the TCRs in the X-ray

crystal structures, as illustrated in Figures 2D–2F, which show

the number of atom-to-atom contacts each of the engaged

amino acids of IAb-3K makes with the TCRs in the three struc-

tures. Clearly, some MHC amino acids, for example IAb a57Q

and a61Q, are heavily engaged by all three TCRs, whereas

others, for example IAb a68H, are less involved. In these figures,

the 13 amino acids that were involved in our mutagenesis studies

and that were not alanine are boxed to reflect the effect on TCR-

binding energy of their mutation to alanine, i.e., removal of their

side chain. A green box indicates a DDG increase of %0.8

kcal-mole (%�75% loss of affinity), and a red box indicates

a DDG increase of >0.8 kcal-mole. As a first approximation, we

can view these measurements as reflecting the contribution of

the amino acid side-chain atoms after the Cb carbon to the bind-

ing affinity, but secondary effects, such as repositioning of adja-

cent amino acids or changes in structured water within the inter-

face, cannot be ruled out.

Our findings show that, for all three TCRs, all 26 amino acids

whose mutation to A resulted in a DDG increase of >0.8 kcal-

mole made at least three contacts with the relevant TCR in the

solved structures (Figure 3). Moreover, for each of the IAb a chain,

IAb b chain, and peptide portions of the ligand, mutation of the

amino acid with the most TCR contacts invariably increased

DDG >0.8 kcal-mole. For the remaining 13 amino acids, mutation

to A did not dramatically reduce the affinity of TCR binding. In the

structures, these were either not in contact with the TCR or were

at the edges of the footprint where the binding of their side-chain

binding might be predicted to be less important.

Our mutational experiments also identified ‘‘interface disrupt-

ing amino acids,’’ amino acids that were either A to begin with or

whose mutation to A did not dramatically reduce TCR binding,

but whose mutation to a number of other amino acids inhibited

binding (Huseby et al., 2006; Huseby et al., 2005). For example,
Immunity 28, 324–334, March 2008 ª2008 Elsevier Inc. 325
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IAb a64A in all three structures and IAb b73A in the B3K506 and

2W20 structures lie within the TCR footprint but are not major

sites of contact. In each case, we identified other amino acids

that, when substituted for the A, strongly inhibited TCR binding

(DDG increases of >0.8 kcal-mole) and/or T cell activation. The

most straight-forward structural interpretation of these results

is that steric interference by the side chains of these mutated

amino acids disrupted TCR binding. Other examples were amino

acids at the periphery of the TCR footprints, e.g., IAb a55D and

a68H, where mutation to A had a minimal effect, but mutation

to numerous other amino acids disrupted TCR binding. Again,

steric interference is the most straight-forward interpretation of

these results.

The Nature of the TCR-MHC Interface
in Relation to TCR Crossreactivity
The three TCRs in this study bind to their IAb-3K ligand with very

similar affinities (�10 mM) and binding kinetics (Huseby et al.,

2006). Our mutational analyses showed that changing the side

chains of many of the exposed surface MHC and peptide amino

acids had much less effect on the crossreactive T cells than on

highly specific ones. To explain this result in light of the similar

TCR affinities, we suggested that perhaps the crossreactive

T cells maintained affinity by making fewer contacts with the

IAb-3K amino acid side chains and more contacts with the

MHC and peptide backbone, thus preserving a similar area of

contact while becoming less susceptible to mutations. However,

the structures of the three complexes show that this suggestion

was not correct. In fact, as described above, the mutational

data quite accurately predicted the decreasing size of the three

TCR footprints as the TCR became more crossreactive (Figure 2).

Affinity can be preserved, even though the surface area of

interaction is reduced, if the chemical nature of the interfaces

Figure 1. Orientation of the TCRs on Their

IAb-3K Ligand

For the (A) B3K506, (B) 2W20, and (C) YAe62 TCRs

bound to IAb-3K, a top view of the IAb a1 and b1

domains are shown as ribbons colored light cyan

and light magenta, respectively, with the bound

3K peptide shown as a wireframe with CPK color-

ing. For each complex the six TCR CDR loops are

shown as tubes colored as follows: aCDR1, green;

aCDR2, dark cyan; aCDR3, blue; bCDR1, yellow;

bCDR2, orange; bCDR3, red. For the (D)

B3K506, (E) 2W20, and (F) YAe62 TCRs bound to

IAb-3K, views are shown looking down the IAb

peptide-binding groove from the peptide N termi-

nus. Ribbon representations of the IAb a1 and b1

domains (cyan and magenta, respectively) and

TCR Va and Vb domains (red and green) are

shown. The 3K peptide is represented with a yel-

low tube.

between the TCRs and IAb-3K ligands is

different between the noncrossreactive

and crossreactive TCRs. To check this,

we analyzed the details of the TCR-

MHC interfaces in the three complexes

(Table 1 and Spreadsheet S1). Not unexpectedly, there is a direct

relationship between the decreasing size of the TCR footprint

and the total number of MHC-peptide atoms contacted as one

proceeds from the most specific (B3K506) to the most cross-

reactive (YAe62) TCR. Also, as the TCR tips further toward the

MHC a chain, there are more MHC a chain atoms and fewer

MHC b chain atoms contacted. Finally, the ratio of MHC to pep-

tide atoms involved in the interface changes dramatically be-

tween the most specific and most crossreactive TCR. Thus,

the TCR footprint shrinks and focuses more on the MHC than

on the peptide as crossreactivity increases. However, despite

the smaller footprint involving few ligand atoms, the total number

of atom-to-atom contacts does not decrease dramatically with

increasing crossreactivity. Thus, there are more TCR contacts

per ligand atom.

Perhaps the most striking difference among the TCR inter-

faces is the relative ratio of the various types of atom-to-atom

contacts. For B3K506, �1/4 of the interactions are C to C van

der Waals (VDW) in nature, for 2W20, �1/3, and for YAe62,

�1/2 (Table 1). Aromatic amino acids (Y, F, and W) play a large

role in the hydrophobic nature of the crossreactive TCR foot-

prints (Spreadsheet S1). Particularly noteworthy are the Vb

CDR3s of the 2W20 and YAe62 TCRs, in which a W and an F

make major contributions to the interface.

Although individual VDW interactions are weak, a concen-

trated area of C-to-C hydrophobic interaction, such as is often

found in the cores of globular proteins or in protein subunit inter-

faces, can be very stabilizing because of the ‘‘hydrophobic ef-

fect.’’ These observations lead us to propose that T cells become

highly crossreactive via a concentrated hydrophobic interface

that focuses on the MHC portion of the ligand but with a minimal

area of contact. This allows the receptor to maintain high-affinity

binding and to be tolerant to changes in many of the amino acids

of the peptide and the rest of the MHC surface.
326 Immunity 28, 324–334, March 2008 ª2008 Elsevier Inc.
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Figure 2. The Footprint of the TCRs on

IAb-3K

In the first three panels, the areas of contact on the

IAb-3K ligand are shown for the (A) B3K506, (B)

2W20, and (C) YAe62 TCRs. In each case, the wa-

ter-accessible surface of the a1-b1-peptide por-

tions of IAb-3K is shown, viewed looking directly

at the areas of TCR contact. The portion of the

IAb-3K surface in contact with the TCRs is colored

as follows: that from atoms in a1, dark cyan; from

b1, dark magenta; and from the peptide, dark yel-

low. The rest of the surface is colored as follows:

a1 helix, light cyan; b1 helix, light magenta; pep-

tide light yellow; and the rest of a1 and b1, white.

In the second three panels, the number of atom-

to-atom contacts between the (D) B3K506, (E)

2W20, or (F) YAe62 TCR and individual IAb-3K

amino acids within the a chain (cyan), b chain (ma-

genta) and peptide (yellow) portion of the ligand is

shown. Data are shown for all IAb-3K amino acids

that contact the TCR in any of the structures. The

IAb-3K nonalanine amino acids that were previ-

ously (Huseby et al., 2006) subjected to mutational

analysis are highlighted with a rectangle. A green

rectangle indicates that when this position was

mutated to alanine and tested for TCR bind-

ing, there was an increase in DDG of %0.8 kcal-

mole. A red rectangle indicates an increase of

>0.8 kcal-mole.
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Conserved TCR Interactions with MHC
Are Used by the Crossreactive TCR
We have hypothesized that the evolutionarily conserved interac-

tions between TCRs and MHC, were they to exist, might best be

demonstrated best by very crossreactive TCRs that have been

through limited negative selection (Huseby et al., 2005). With

this in mind, we determined the number of atom-to-atom con-

tacts individual amino acids of the TCR made with the IAb portion

of the ligand (Figure 3 and Spreadsheet S1). In all three struc-

tures, the CDR3 regions of Va and-or Vb contribute to the inter-

face. However, we confined the analysis to Va and Vb CDR1 and

CDR2 because, although partially constructed from germline-

encoded amino acids, the extreme somatic variability in the

composition and length in the CDR3 loops would seem to ex-

clude the germline maintenance of any specific conserved inter-

actions.

Because the highly specific B3K506 and highly crossreactive

YAe62 TCRs both use related members of the Va4 and Vb8 fam-

ilies, their comparison was particularly informative. The CDR1-

CDR2 interface of the YAe62 TCR with IAb was dominated by

just three amino acids, Va 29Y, Vb 48Y, and Vb 54E, which ac-

count for 85% of the total CDR1-CDR2 contacts (Figure 3C).

These amino acids were present in the B3K506 TCR interface

as well, but they were less predominant there because of contri-

butions from many other amino acids (Figure 3A). The intermedi-

ately crossreactive 2W20 TCR also uses a member of the Vb8

family, whose 48Y and 54E also contributed substantially more

to the interface than seen in the B3K506 structure (Figure 3B).

Moreover, as discussed further below, consistent interactions

with MHC by Vb 48Y and Vb 54E have been noted before by

others (Feng et al., 2007; Maynard et al., 2005). The 2W20 TCR

contained a member of the Va2 rather than Va4 family. However,
the Va CDR1 loop of the 2W20 also makes contact with the IAb

portion of the ligand via two amino acids, 27S and 30D.

Our hypothesis leads us to propose that these amino acids are

conserved features of these V elements used for MHC recogni-

tion. If this idea is correct, these amino acids should be interact-

ing with conserved sites on the MHC II molecule. Figure 4 shows

that in the three structures, the Va CDR1s do indeed interact sim-

ilarly with a highly conserved site on the IAb b chain. For example,

in both the B3K506 and YAe62 structures, 29Y extends from the

tip of Va CDR1 and inserts between the side chains of 77T and

81H on the IAb b chain a helix (Figures 4A and 4C). In the case

of the B3K506 TCR, the tilt of the receptor toward the b chain

side of IAb has pushed 29Y over the edge of the helix to interact

with b76D as well. b76D and b81H are nearly invariant in mouse

and human MHC II molecules, whereas bT77 is the most com-

monly found amino acid at this position (Lefranc et al., 2003).

27S and 30D of the 2W20 Va CDR1 loop and interact with the

same region of the b chain, thus contacting IAb b81H and b77T

(Figure 4B). Although the extent of contact with these two amino

acids is not as great as seen with Va Y29 in the YAe62 structure,

mutation of either b81H or b77T to alanine in our mutational stud-

ies severely reduced 2W20 interaction with IAb-3K (Figure 3B).

Similarly, Vb 48Y and 54E also interact with a conserved target

site on the MHC a chain (Figures 4D–4F). In all three structures,

Vb 48Y is nestled among the side chains of three amino acids on

the IAb a chain a helix: 57Q, 60L, and 61Q. The ability of this re-

gion of the CDR2 loop of Vb to approach the helix is facilitated by

the lack of a sterically hindering side chain at IAb a 64A. 57Q, 60L,

and 64A are nearly invariant in MHC II molecules, and 61Q is the

most frequent amino acid at this position. In the 2W20 and

YAe62 structures, Va 54E also contacts this area of the a chain

a helix, and thus interacts with 57Q and 60L, but it also makes
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a number of contacts with 39K, including a salt bridge. 39K sits

on the a chain loop connecting the third and fourth beta strands

and is highly conserved in mouse IA and human DR molecules

(Lefranc et al., 2003). The tilt of the B3K506 TCR toward the

IAb b chain pulls Vb 54E away from the a chain a helix and elim-

inates some of its contacts, including the salt bridge to a 39K.

Va 29Y is present in the CDR1 regions of�10% of mouse Vas

and two human Vas (Va22 and Va31). Va 27S and 30D (or N) are

found in CDR1 of the large mouse Va2 family, as well as the hu-

man Va8, Va14, and Va21 families. VbCDR2 Y48 and E54 are

present in CDR2 in 35% and 10% of mouse and human Vbs, re-

spectively. Therefore, these amino acids are fairly well repre-

sented in the overall mouse and human V repertoire. If our hy-

pothesis is correct, the types of interactions that we see for

these amino acids in our structures should also be present to

varying degrees in other mouse and human structures with one

of these V regions. Therefore, we examined five published

TCR-MHC II structures that contained these amino acids for

the number of contacts of CDR1-CDR2 with the MHC II molecule

(Figure 5).

In all of these structures, Va 29Y or Va 27S and 30D and Vb

48Y and 54E, when present, contribute to the TCR CDR1-

CDR2 interface with MHC II, interacting with the same target

sites on MHC II shown in Figure 4. However, in most of these

other cases, more other amino acids contributed to the interface

than in the YAe62 and-or 2W20 TCR complexes. This was espe-

cially true for Va 29Y and Vb 48Y and 54E. For example, Figures

5A and 5B show the data for two TCR-MHC II structures that

contain Va 29Y, one from a human TCR using Va22 (Li et al.,

2005) and one from a mouse TCR using Va4.9 (Feng et al.,

2007). In both cases, Va Y29 interacts with the MHC b chain in

the same area as seen with the YAe62 and B3K506 TCRs. In

the human structure, Va 29Y is very dominant for Va interaction,

but many Vb amino acids also contribute to the total interface. In

the mouse Va4.9 structure, Va 29Y is even less predominant in

the overall contacts. As far as the Va 27S- and 30D-containing

TCRs are concerned, in the other structures with TCRs contain-

ing members of the mouse Va2 family, CDR1 27S and 30D are

Table 1. Characterization of the TCR Interfaces with IAb-3K

B3K506 2W20 YAe

Footprint (Å2) 1893 1695 1178

No. of Ligand Atoms Contacted

MHC a 29 46 46

MHC b 44 23 12

Peptide 34 27 16

Total 107 96 74

Ratio (MHC/Peptide) 2.2 2.5 3.6

Atom-to-Atom Contacts

C to C VDW 67 102 136

Other VDW 192 186 130

H bonds or Salt Bridges 21 20 7

Total Contacts 280 308 273

Contacts per Ligand Atom 2.6 3.2 3.6

Proportion C to C (%) 24 33 50
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part of the contact interface, again interacting with target sites

on the MHCI b chain that are similar to those seen by the

2W20 TCR (Figures 4B, 5C, and 5D).

Perhaps because mouse and human Vb elements related to

mouse Vb8 make TCRs particularly amenable to expression in

a soluble form, the published structures of TCRs bound to

MHC I and MHC II ligands are heavily skewed toward TCR

with these Vbs. Garcia and colleagues have concentrated on

the analysis of these structures from their own and other labora-

tories (Feng et al., 2007; Maynard et al., 2005). They pointed out

that Vb 46Y, 48Y, and 54E (48Y, 50Y, and 56E by their number

scheme) are repeatedly found in the interface between TCR

and MHC II and may represent germline-encoded conserved

sites of MHC interaction. Figures 5B–5E show an analysis of

four TCR-MHC II published structures that contain Vb 48Y and

54E, three from mouse (Vb 8.2) and one from human (Vb 3.1).

As pointed out by Feng et al. (2007), in each structure Vb 48Y

Figure 3. Crossreactive TCRs Use Only a Few Amino Acids in CDR1-

CDR2 to Bind IAb-3K

For the (A) B3K506, (B) 2W20, and (C) YAe62 TCRs, the atom-to-atom con-

tacts between the CDR1 and CDR2 regions of the TCR Va and Vb chains

and IAb were calculated as described in the Experimental Procedures. The

data are shown as the percentage of the total CDR1-CDR2 contacts contrib-

uted by each TCR amino acid. The sequences of the CDRs are shown with the

contact data for each amino acid presented as the percentage of the total

Va-Vb CDR1-CDR2 contacts. Bars are colored green (Va CDR1), cyan (Va

CDR2), yellow (Vb CDR1), and orange (Vb CDR2), except that the bar for Va

29Y (A and C) or 27S-30D (B) are colored dark green and the bars for Vb

48Y and 54E (A, B, and C) are colored red. In each panel, the Va and Vb ele-

ment used by the TCR is indicated.
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Figure 4. Va 29Y and Vb 48Y and 54E Inter-

act with Conserved Sites on MHC II

The sites of interaction of the Va CDR1 loop with

the IAb b chain helix is shown for the (A) B3K506,

(B) 2W20, and (C) YAe62 TCRs. A stick represen-

tation of the side chain of Va CDR1 29Y (A and

C) and 27S-30D (B) is shown (carbon is colored

green, and oxygen is colored red) with a ribbon

representation of a portion of the IAb b chain helix

(magenta) and stick representations of the side

chains of the relevant IAb amino acids (CPK color-

ing). Similarly, the sites of interaction of Vb 48Y

and 54E with the IAb a chain is shown for the (D)

B3K506, (E) 2W20, and (F) YAe62 TCRs. Stick rep-

resentations of the side chains of Va 48Y and 54E

are shown (carbon is colored orange, and oxygen

is colored red) with a ribbon representation of

a portion of the IAb a chain helix, a tube represen-

tation of a portion of the loop connecting the third

and fourth b strands of the a chain (cyan), and

a stick representation of the side chains of the rel-

evant IAb amino acids (CPK coloring).
contributes to the TCR-MHC II interface, binding to the same po-

sitions on the MHC a chain helix as in Figure 4. However, again,

in each of these structures many other amino acids contribute to

the total interface. Another amino acid noted by Feng et al., Vb

46Y, also makes contact with the MHC b chain helix in all of

the TCR structures in which it is present, but in these structures,

the overall contribution in every case is less than seen for Y48. Vb

54E also makes many contacts in all the structures analyzed in

Figure 5; however, this amino acid received less attention in pre-

vious analyses, perhaps because it is less consistently used in

interactions between TCRs and MHC I versus with MHC II.

A picture emerges from the sum of our and these previously

reported structures of a gradient of contributions from these

amino acids to the CDR1-CDR2 interface with MHC II ranging

from a minimum contribution in the B3K506 and HA1.7 struc-

tures to a maximum in the YAe62 structure. This gradient is con-

sistent with our hypothesis that negative selection in the normal

thymus operates to lessen the contribution from these con-

served amino acids to avoid autoimmunity.

The Predicted Conserved Interactions between TCRs
and MHC Impose the Diagonal Docking of TCRs on MHC
One of the strongest arguments in favor of the evolutionary hy-

pothesis for the TCR predilection for MHC ligands has been

the consistent diagonal engagement of the MHC by the TCR.

However, this orientation may be imposed by CD4 or CD8 bind-

ing to TCRs and MHC rather than by conserved structural fea-

tures of the TCR (Mazza and Malissen, 2007; van Laethem

et al., 2007). Analysis of our and other structures supports the

idea that of a structural imposition of this geometry of engage-

ment. In the TCR-MHC structures that contain Va CDR1 29Y

or Va CDR1 27S and 30D and Vb CDR2 48Y and 54E, the sites

of interaction on the MHC a and b chains are similar and con-

served in mouse and human MHC II molecules. They lie to one

side of the central TCR docking axis (Figure S2). Given that Va

CDR2 and Vb CDR1 residues will lie on the other side of this
axis, and that some residues in these regions may also have

been evolutionarily selected to react with MHC, the diagonal

docking mode of TCR on MHC is likely to be determined, at least

in part, by the binding of evolutionarily conserved residues in V

region CDRs with their target sites on MHC.

Are the Evolutionarily Conserved Residues
in the YAe TCR Important for T Cell Activation?
Mutational studies of IAb-3K suggested that the TCR amino

acids identified as binding MHC in the structural studies reported

here were functionally important for IAb-3K binding to TCR (Fig-

ure 2 and Huseby et al. [2003]). However, the evolutionary hy-

pothesis proposed here suggests that mutations in these TCR

residues would often affect interaction between the TCR and

MHC, regardless of the MHC target. The YAe62 TCR reacts

with IAb-3K, as well as a number of allogeneic MHCs, and there-

fore allowed a test of the evolutionary prediction.

Retroviruses coding for the YAe62 TCR a and b chains, ex-

pressing the wild-type sequence or with a29Y, b48Y, or b54E

mutated to A, were created and cotransduced into a TCR-defi-

cient hybridoma with the appropriate wild-type partner chain.

Staining experiments showed that all combinations were ex-

pressed at comparable levels on the surface of the transduced

cells (data not shown). The transductants were tested for their

ability to react with various targets. Transductants expressing

only the YAe62 TCRa did not respond to any target. Transduc-

tants expressing the wild-type YAe62 TCR ab pair had alloge-

neic-MHC specificities characteristic of the original YAe62 hy-

bridoma, for cells bearing only IAb-3K and for spleen cells

bearing H-2b, H-2k, H-2q, H-2r, and H-2s plus endogenous

mouse peptides (Huseby et al., 2005). The results are presented

in Figure 6.

All three of the mutations studied severely reduced response

to IAb-3K, as predicted by the structure of YAe62 bound to this

ligand. The effect of the individual mutations on the response

to allo-MHC depended upon the particular MHC allele. Change
Immunity 28, 324–334, March 2008 ª2008 Elsevier Inc. 329
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of the b48Y to A obliterated the ability of the TCR to react with

any allo-MHC target tested. Alteration of b54E to A affected all

reactivities except those against H-2b and H-2s. Mutation of

a29Y to A reduced the reactivity to H-2s by approximately two

orders of magnitude but had no effect on the other allo-MHC re-

activities. The effects of this Va29Y mutation may have been less

dramatic because the YAe62 TCR is strongly tilted toward the IAb

a1 helix in the IAb-3K structure, and this may apply also to its

Figure 5. Variable but Frequent Use of Va 29Y and Vb 48Y and 54E in

Other TCR-MHC II Complexes

The CDR1-CDR2 contact data for five published TCR-MHC II complex struc-

tures involving Va 29Y or 27S-30D and/or Vb 48Y and 54E were calculated, la-

beled, presented, and colored as in Figure 3. Items in panels are represented

as follows: (A) TCR: 3A6, ligand: HLA-DR51 + peptide from myelin basic pro-

tein (MBP), and PDB: 1ZGL (Li et al., 2005); (B) TCR- 1934, ligand -mouse IAu +

peptide from MBP; and PDB: 2PXY (Feng et al., 2007); (C) TCR: 172, ligand,

mouse IAu + peptide from MBP; and PDB: 1U3H (Maynard et al., 2005); (D)

TCR: D10, ligand: IAk + peptide from hen conalbumin (ConAlb), and PBD:

1D9K (Reinherz et al., 1999); and (E) TCR: HA-1.7, ligand: HLA-DR1 + peptide

from influenza hemagglutinin (Flu-HA), and PDB: 1FYT (Hennecke et al., 2000).
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reactions with allo-MHC-mouse peptides. Because, when re-

sponding to allogeneic MHC, TCRs are reacting with both for-

eign MHC and different arrays of peptides bound to these

MHC proteins, it is possible that in responses to some allo-

MHC, the loss of binding contribution by mutation of Va29Y or

Vb54E can be compensated for by a particular peptide, engaged

in the right configuration, by that allo-MHC protein.

Overall, these mutational results show that the amino acids we

have identified as frequent contributors to MHC reaction, partic-

ularly those in Vb, operate also in reactions between the same

TCR and other MHC ligands.

Figure 6. The Evolutionarily Conserved, MHC-Binding Amino Acids

Affect TCR Reaction with Self- and Allo-MHC

T cell hybridomas were constructed to express the wild-type YAe62 TCR, the

YAe62 TCR with CDR1a 29Y mutated to A, or CDR2b 48Y or 54E mutated to A.

All hybridomas expressed equivalent levels of TCR. The hybridomas were

tested for their response to fibroblasts expressing B7, ICAM-1, and IAb-3K

or to spleen cells expressing the indicated H-2 alleles bound to mouse pep-

tides. Responses were measured with an HT-2 assay, as units/ml of IL-2 pro-

duced. Results shown are the averages and standard errors of three indepen-

dent experiments. The limit of detection in the assays (dotted line) was 2 units/ml

of IL-2.
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DISCUSSION

Some reports support the idea that TCRs have been selected

evolutionarily to react with MHC. For example, TCRs that have

not been positively selected are still quite likely to react with

MHC, at frequencies of �20%, and random combinations of

TCR a and b chains are also unexpectedly likely to bind

MHCs (Blackman et al., 1986; Merkenschlager et al., 1997; Zer-

rahn et al., 1997). If evolutionary selection has occurred, it prob-

ably applies to the TCR V regions, rather than their D or J se-

quences, because the CDR1-CDR2 loops of the V regions are

not subject to the extensive somatic variation that is introduced

into the V(D)J junctional regions of CDR3. Indeed, some ver-

sions of CDR3 sequences may allow TCRs to bind ligands

that do not include MHC at all (Siliciano et al., 1985; van Lae-

them et al., 2007).

When the first TCR and MHC-peptide complexes were solved,

it was gratifying to see that the V region CDR1 and CDR2s often

interacted with the MHC helices, but it was puzzling to find so

much flexibility in the orientation and pitch of the TCR on the

MHC (Garboczi et al., 1996; Garcia et al., 1996) (reviewed in Ru-

dolph et al. [2006]). Clearly, universally conserved pairwise TCR-

MHC contacts did not exist. However, as the number of TCR-

MHC structures has increased, some consistent interactions,

for particular sets of related V regions, are becoming apparent,

suggesting that over evolutionary time, individual sets of V re-

gions may have accumulated different amino acids in their

CDR1-CDR2 regions to guide them toward MHC recognition.

The most complete set of data now exists for the mouse Vb8

family and related Vbs in humans. Garcia and his colleagues

have concentrated on these Vbs and have pointed out the re-

peated similar use of Vb CDR2 46Y, 48Y, and 54E to contact

MHC I and MHC II (Feng et al., 2007; Maynard et al., 2005).

They have suggested that these amino acids fit very well the cri-

teria for amino acids that have been selected evolutionarily to re-

act with MHC.

Approaching the question from a very different direction, we

predicted the existence of conserved V CDR1 and CDR2 interac-

tions with MHC on the basis of the high frequency of broadly

MHC reactive T cells in mice with limited thymic negative selec-

tion (Huseby et al., 2005; Ignatowicz et al., 1996). We reasoned

that, because TCRs that reacted very well with MHC had not

been eliminated in these mice, these TCRs would manifest the

evolutionarily conserved reactions of TCRs with MHC better

than conventional T cells.

The structures of TCRs bound to IAb-3K reported here support

this notion. We studied three TCRs, one from normal mice and

highly specific for MHC and peptide and two from MHC-sin-

gle-peptide mice: one peptide specific, but broadly allo-MHC re-

active, and another extremely peptide and MHC crossreactive.

All three TCRs contained members of the Vb8 family. Two

used related members of the Va4 family. In all three, the previ-

ously noted Vb8 interactions with the IA a chain were present, es-

pecially those involving Vb 48Y and 54E. For the two TCRs con-

taining Va4 family members, Va CDR1 29Y made very similar

interactions with the IAb b chain helix. Furthermore, these inter-

actions are present in two other published structures using re-

lated Va elements, one from mouse and one from human. Finally,

the data suggest that TCR Va regions that do not contain a 29Y
use other amino acids in a consistent way to bind MHC. In the

cases described here, this is exemplified by Va 27S and 30D in

Vas related to mouse Va2. By extension, presumably other sub-

stitutions, involving other amino acids, will apply to other Vas and

Vbs not related to the mouse Vb8s.

Most importantly, when comparing the combination of our and

the published structures, we found that the relative contribution

of Vb 48Y and 54E as well as Va 29Y was greatest for the most

crossreactive T cell and least for the most conventional T cells.

This observation supports our view that broad crossreactivity as-

sociated with the escape from negative selection is the hallmark

of the enhanced use of conserved MHC-interacting features of

TCR CDR1 and CDR2 loops. Also relative to our hypothesis, it

may be noteworthy that the list of published TCRs available for

this analysis does not contain many conventional MHC-II-pep-

tide-reactive T cells, in that they are mostly from either broadly

allo-MHC reactive (D10) or autoimmune T cell (3A6, 1934, and

172 [Feng et al., 2007; Li et al., 2005; Maynard et al., 2005]).

We suggest that this may be why the conserved amino acid in-

teractions were somewhat more predominant with these TCRs

than with the more conventional T cells, such as B3K506 and

HA1.7.

One of the questions left unanswered in our previous studies of

highly crossreactive T cells was how can these T cells maintain

affinity for their ligand, yet remain insensitive to many mutations

in the MHC and peptide? The structural answer to this question

for the YAe62 TCR is that it uses a considerably smaller, much

more hydrophobic interface with the ligand than seen with con-

ventional TCRs. This allows the TCR to ignore many mutations

but maintain affinity through energy gained from the hydrophobic

effect. Because our IAb-3K mutational data for many other cross-

reactive TCRs are very similar to that obtained for YAe62, it

seems likely that this may be a common explanation for high-

affinity, broadly crossreactive T cells.

Relevant to this point, it is interesting that tyrosines are emerg-

ing as perhaps one of the commonly used amino acids for con-

served interaction. Because of their extended hydrophobic sur-

face, tyrosines are particularly well suited to convert an area of

weak VDW contacts into a stronger hydrophobic interaction.

Furthermore, because this type of interaction is distance, but

not particularly geometry, dependent, its strength may be easier

to fine tune, and it may allow some flexibility for accomodating

the variability in pitch and orientation seen with different TCRs.

This ability to shift without losing contact may be particularly im-

portant for MHC I interaction, during which in the published

structures thus far Vb 48Y interacts extensively with the a1 helix,

but not nearly in such a fixed position as in the MHC II complexes

(Buslepp et al., 2003; Colf et al., 2007).

There are not enough structures to make as strong a case for

conserved amino acids in other sets of Va and Vb elements.

However, it is worth noting that MHC II b chain amino acids 76,

77, and 81, the site of Va 29Y interaction, are invariably at the

site of Va CDR1 interaction with MHC II for TCRs using other

Va elements. Also, MHC II a chain amino acid 57, 60, and 61,

the site of Vb 48Y and 54E interaction, are nearly always involved

in CDR2 interaction with MHC II for TCRs using other Vb ele-

ments. Similarly positioned conserved sites on MHC I molecules

are often involved in other Va CDR1 and Vb CDR2 engagements

(Marrack et al., 2008). It seems likely that conserved amino acids
Immunity 28, 324–334, March 2008 ª2008 Elsevier Inc. 331
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within the CDR1 and CDR2 loops of these other V elements will

emerge eventually from the structural data. Our hypothesis pre-

dicts that, for normal T cells, in any given complex some of these

conserved features may be weakened because of the require-

ments imposed for negative-selection survival. Therefore, a pop-

ulation of T cells that have not undergone complete negative se-

lection may again be the best place to look for these features for

these other V elements.

EXPERIMENTAL PROCEDURES

Protein Expression and Purification

Soluble IAb-3K was produced as previously described in baculovirus-infected

insect cells (Liu et al., 2002). DNA fragments encoding the Va and Vb portions

of the mouse YAe62 and B3K506 TCRs (Huseby et al., 2005) were cloned into

variants of a previously reported expression vector ([Tynan et al., 2007] kindly

provided by Dr. J. McCluskey and Dr. J. Rossjohn) fused to human Ca and Cb,

respectively. We used the completed and sequenced constructs to transform

the Rosetta 2 strain of E. coli (Novagen). Functional, soluble TCR was pro-

duced as previously described (Clements et al., 2002) by refolding mixtures

of denatured a and b chains isolated from inclusion bodies made in the trans-

formed bacteria. The refolded TCRs were further purified by the combination

of FPLC size exclusion and ion-exchange chromatography. A soluble form

of the 2W20 TCR, with mouse Ca and Cb, was produced in baculovirus-in-

fected insect cells as previously described (Huseby et al., 2005). We tested

all three TCRs by surface-plasmon resonance for binding to IAb-3K to assure

functionality (Huseby et al., 2006). The sequences of the V region portions of all

of the constructs are shown in Figure S1.

Crystal Production and Data Collection

Prior to the crystallization trials, we obtained noncovalent complexes of TCR-

MHC-peptide complexes by mixing the proteins at equimolar concentrations.

Crystallization was performed by the hanging-drop vapor-diffusion method at

room temperature. The complex of the B3K506 TCR with IAb-3K was crystal-

lized by mixing 0.5 ml of complex solution at a concentration of 10 mg/ml with

an equal volume of reservoir solution containing 17% PEG4000, 100 mM so-

dium citrate, and 100 mM sodium cacodylate (pH 5.1). The 2W20 TCR com-

plex with IAb-3K was crystallized in 16% PEG4000, 100 mM calcium acetate,

and 100 mM sodium cacodylate (pH 6.0). The crystals were harvested after

2 months. Crystals of the YAe62 TCR complexed with IAb-3K were obtained

in 15% PEG4000, 10% glycerol, 100 mM ammonium citrate, and 100 mM so-

dium cacodylate (pH 5.7). Crystals normally formed within 2 weeks.

X-ray diffraction data were collected under liquid-nitrogen cryo-conditions

at 100�K. Several data sets of B3K506 bound to IAb-3K, YAe62-IAb-3K, and

2W20-IAb-3K complexes were collected at ID22, SBC ID19, APS, and

BL8.2.2, BL4.2.2, ALS. B3K506-IAb-3K and 2W20-IAb-3K crystals were

flash-cooled in liquid nitrogen after a flash-soak in a cryoprotection solution

consisting of the reservoir solution with a higher concentration of PEG4000

(35% [w/v]), and we froze YAe62-IAb-3K crystals by directly dipping the crys-

tals into liquid nitrogen. The data were indexed, integrated, scaled, and

merged with HKL2000 (Otwinowski and Minor, 1997). The B3K506-IAb-3K

crystal belonged to the monoclinic space group P21 with two complexes in

the asymmetric unit. The crystals of YAe62-IAb-3K and 2W20-IAb-3K belonged

to the orthorhombic space group P212121 with two complexes in the asymmet-

ric unit. The statistics of for crystallographic data are summarized in Table S1.

Structure Determination

The structures of B3K506 TCR-IAb-3K and YAe62 TCR-IAb-3K complexes

were determined by molecular replacement with AmoRe (Navaraza, 1994)

and Phaser (McCoy et al., 2005) with the SB27 TCR (PDB 2AK4) and IAb-3K

(PDB 1LNU) as search models, respectively. 2W20 TCR-IAb-3K structure

was solved by molecular replacement method that used YAe62 TCR-IAb-3K

as the search model. For all three structures, there were two TCR-IAb-3K com-

plexes per asymmetric unit. After an initial round of rigid-body refinement, the

models were inspected and manually fitted with program O (Jones and Kjeldg-

aard, 1997; Kleywegt et al., 2001). The models were then subjected to several
332 Immunity 28, 324–334, March 2008 ª2008 Elsevier Inc.
rounds of alternating simulated annealing-positional refinement in CNS

(Brunger et al., 1998) and then B factor refinement in CNS. Model building

was performed with program O. We routinely used simulated annealing omit

maps to remove the model bias. All models have good stereochemistry, as de-

termined by the program Procheck (Laskowski et al., 1993). The statistics for

the structures are summarized in Table S1, and representative electron density

data for the structures are shown in Figure S3.

Structure Analysis

For analysis, one complex of the two in the asymmetric unit was chosen on

the basis of the fewest V region crystal contacts. This was most important

for the B3K506 structure in which extensive V region crystal contacts in one

of the complexes had clearly distorted the TCR-MHC interface. Buried molec-

ular surface areas were calculated with GRASP (probe radius 1.4 Å) (Nicholls

et al., 1991). We used NCONT in CCP4 (CCP4, 1994) to analyze the contacts

between the TCRs and their ligands. Atoms within 4.5 Å of each other were

considered part of the interface. Contacts involving potential electron donors

and acceptors (O or N) within 3.5 Å were considered potential hydrogen

bonds or salt bridges. Other contacts were considered van der Waals con-

tacts. The total list of atomic interactions is shown in Spreadsheet S1. Molec-

ular superimpositions were performed with Swiss PDBViewer (Guex and

Peitsch, 1997). Figures were created with WebLab Veiwer Pro 4.0. (Molecular

Simulations).

Nomenclature and Amino Acid Numbering

Vbs and Vas are named, and their amino acids are numbered according to the

IUIS-Arden compilation (Arden et al., 1995; Clark et al., 1995). Mouse IA

a chains have a single amino acid insertion at position 10 compared to the

HLA-DR and mouse IE a chain. However, DRa-Ea numbering is used here

for consistency with previous papers.

Analysis of the Function of TCRs Mutated in V Region Amino Acids

TCR mutants were constructed with PCR with overlapping primers and cloned

into engineered restriction sites. TCRa constructs were cloned in MSCV-

based retroviral plasmids with an IRES plus GFP as a reporter (Persons

et al., 1997). TCRb constructs were cloned in MSCV-based retroviral plasmids

with an IRES plus human nerve growth-factor receptor (Pearce et al., 2003) or

GFP as a reporter.

TCR constructs in retroviral plasmids were cotransfected into Phoenix cells

with pCLEco accessory plasmid with Lipofectamine 2000 (Invitrogen) accord-

ing to the manufacturer’s instructions. We harvested retrovirus-containing su-

pernatants 48 hr after transfection and centrifuged them to remove cell debris.

All TCR constructs were expressed by retroviral transduction in 5KC-73.8.20,

a T cell hybridoma that lacks endogenous TCRa and b chains (White et al.,

1993). A total of 105 hybridoma T cells were spin-infected with retroviral super-

natants containing 8 mg/ml polybrene for 90 min at 37�C. Mutant TCRa or

TCRb chains were coexpressed with the appropriate wild-type partner. Cells

were sorted (MoFlo, Dakocytomation) for equivalent expression of TCR and

CD4. Responses were assessed by IL-2 production in response to fibroblasts

bearing IAb-3K and B7 and ICAM-1 or spleen cells bearing allo-MHC (Huseby

et al., 2006; Huseby et al., 2005).

ACCESSION NUMBERS

The coordinates for the B3K506, 2W20, and YAe62 TCR bound to IAb-3K have

been deposited in the PDB with accession numbers 3C5Z, 3C6O, and 3C6L,

respectively.

SUPPLEMENTAL DATA

Three figures, one table, and one spreadsheet are available at http://www.

immunity.com/cgi/content/full/28/3/324/DC1/.
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