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Cell proliferation requires nutrients, energy, and biosynthetic activity to duplicate all macromolecular compo-
nents during each passage through the cell cycle. It is therefore not surprising that metabolic activities in pro-
liferating cells are fundamentally different from those in nonproliferating cells. This review examines the idea
that several core fluxes, including aerobic glycolysis, de novo lipid biosynthesis, and glutamine-dependent
anaplerosis, form a stereotyped platform supporting proliferation of diverse cell types. We also consider
regulation of these fluxes by cellular mediators of signal transduction and gene expression, including the
phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR system, hypoxia-inducible factor 1 (HIF-1), and Myc, during
physiologic cell proliferation and tumorigenesis.
Introduction
In mammals, cell proliferation is required for embryogenesis,

growth, proper function of several adult tissues, and tumorigen-

esis. A primary focus of research on cell proliferation has been

understanding the mechanisms that regulate the proliferative

state, work that has led to identification of growth-factor signal

transduction pathways and transcriptional networks enabling

cells to initiate and maintain cell cycling. But the onset of prolif-

eration introduces important problems in cellular metabolism as

well, because each passage through the cell cycle yields two

daughter cells and requires a doubling of total biomass (proteins,

lipids, and nucleic acids). This poses a profound metabolic chal-

lenge that must be met if cells are to respond to proliferative

stimuli.

Proliferating cells often take up nutrients in excess of bioener-

getic needs and shunt metabolites into pathways that support

a platform for biosynthesis (Bauer et al., 2004). Signals that stim-

ulate cell proliferation must also participate in the reorganization

of metabolic activity that allows quiescent cells to begin to pro-

liferate (Figure 1). Over the past several decades, a consistent

picture of intermediary metabolism has emerged from studies

on diverse types of proliferating cells. Metabolism in these cells

differs from quiescent cell metabolism by high rates of glycoly-

sis, lactate production, and biosynthesis of lipids and other mac-

romolecules (Figure 2). In this review, we focus on the roles of

these metabolic activities and the replenishment of intermedi-

ates for the tricarboxylic acid (TCA) cycle (anaplerosis) during

proliferation. We also discuss current concepts regarding how

signal transduction pathways influence cell metabolism.

Most of the work cited below involves proliferating lympho-

cytes or tumor cells. Lymphocytes and other hematopoietic cells

are excellent models for the study of metabolic regulation be-

cause quiescent cells can be stimulated to proliferate in vitro

and the signaling mechanisms behind cell proliferation are well

characterized. Tumor cells are also useful because a wide variety

of cell lines are available and the genetic mechanisms leading to

tumorigenesis are often known. It should be stressed that ‘‘tumor
metabolism’’ is not synonymous with the metabolism of cell pro-

liferation. While proliferation is required for tumors to grow, many

factors within the tumor microenvironment can influence cellular

metabolism, resulting in heterogeneous metabolic activity. Our

interest in tumor cells as discussed here involves the metabolic

activities that promote their growth and proliferation.

Proliferating Cells Use Aerobic Glycolysis
In the 1920s, Otto Warburg published the seminal observation

that rapidly proliferating ascites tumor cells consume glucose

at a surprisingly high rate compared to normal cells and secrete

most of the glucose-derived carbon as lactate rather than oxidiz-

ing it completely, a phenomenon known as the ‘‘Warburg effect’’

(Warburg, 1925, 1956b). This observation presented a paradox

that still has not been completely resolved: Why do proliferating

cells, which ostensibly have a great need for ATP, use such

a wasteful form of metabolism? Warburg proposed that tumor

cells harbor a permanent impairment of oxidative metabolism

resulting in a compensatory increase in glycolytic flux (Warburg,

1956a). But later studies on proliferating primary lymphocytes

revealed similar patterns, in which more than 90% of glucose

carbon was converted to lactate, ruling out the possibility that

aerobic glycolysis is unique to tumor cells or that the Warburg ef-

fect only develops when oxidative capacity is damaged (Brand,

1985; Hedeskov, 1968; Roos and Loos, 1973; Wang et al., 1976).

Indeed, many highly proliferative tumor cell lines that have been

carefully studied do not have defects in oxidative metabolism

(Moreno-Sanchez et al., 2007).

So why does the Warburg effect occur? Clearly, the high gly-

colytic rate provides several advantages for proliferating cells.

First, it allows cells to use the most abundant extracellular nutri-

ent, glucose, to produce abundant ATP. Although the yield of

ATP per glucose consumed is low, if the glycolytic flux is high

enough, the percentage of cellular ATP produced from glycolysis

can exceed that produced from oxidative phosphorylation

(Guppy et al., 1993; Warburg, 1956b). This may be due to the

high rate of ATP production during glycolysis compared to
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Figure 1. Growth-Factor Signaling Regulates the Uptake and Metabolism of Extracellular Nutrients
At rest, basal levels of lineage-specific growth-factor signaling (green) allow cells to take up sufficient nutrients like glucose (red) and amino acids (blue) in order to
provide the low levels of ATP production and macromolecular synthesis needed to maintain cellular homeostasis. In the absence of any extrinsic signals (no li-
gand), mammalian cells lose surface expression of nutrient transporters. To survive in the absence of the ability to take up extracellular nutrients, growth-factor-
deprived cells engage in autophagic degradation of macromolecules and organelles. This is a finite survival strategy, ultimately resulting in cell death. In contrast,
increases in ligand signaling instruct cells to begin taking up nutrients at a high rate and to allocate them into metabolic pathways that support production of ATP
and macromolecules like proteins, lipids, and nucleic acids. These activities culminate in a net increase in cellular biomass (growth) and, ultimately, the formation
of daughter cells.
oxidative phosphorylation (Pfeiffer et al., 2001). Second, glucose

degradation provides cells with intermediates needed for bio-

synthetic pathways, including ribose sugars for nucleotides;

glycerol and citrate for lipids; nonessential amino acids; and,

through the oxidative pentose phosphate pathway, NADPH. So

the Warburg effect benefits both bioenergetics and biosynthesis.

What remains controversial about the Warburg effect is why

the rate of lactate production is so high when more of the pyru-

vate could presumably be oxidized to enhance ATP production.

One explanation is simply that glycolysis outpaces the maximal

velocity of pyruvate oxidation, so that cells must instead elimi-

nate pyruvate using high-flux mechanisms. Oxidation of pyru-

vate requires import into the mitochondrial matrix, followed by

activity of highly regulated enzymes like the pyruvate dehydroge-

nase (PDH) complex, whose activity is influenced by phosphor-

ylation, free CoA levels, and the NAD+/NADH ratio, all of which

may limit its activity relative to glycolytic flux. Glycolytic flux

may exceed the Vmax of PDH by more than an order of magnitude
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during cell proliferation, implying the need for a high-capacity

system to avoid accumulation of pyruvate (Curi et al., 1988). In

proliferating cells, expression of lactate dehydrogenase A

(LDH-A) solves this problem by rapidly consuming pyruvate, re-

generating NAD+ in the face of a relentless glycolytic flux while

yielding a product (lactate) that can easily be secreted (Figure 2).

LDH-A is induced by oncogenes (c-myc, HER2/neu, and others)

and by mitogen stimulation in lymphocytes, and it participates

in xenograft tumorigenicity, implying a prominent role in cell pro-

liferation (Fantin et al., 2006; Marjanovic et al., 1990; Shim et al.,

1997).

A further advantage of the high glycolytic rate is that it allows

cells to fine tune the control of biosynthetic pathways that use

intermediates derived from glucose metabolism. When a high-

flux metabolic pathway branches into a lower-flux pathway,

the ability to maintain activity of the latter is maximized when

flux through the former is highest. In proliferating cells, this has

been proposed as a way to resolve the apparent paradox
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Figure 2. Carbon Flux Differs in Quiescent versus Proliferating Cells
Quiescent cells (left) have a basal rate of glycolysis, converting glucose (glc) to pyruvate (pyr), which is then oxidized in the TCA cycle. Cells can also oxidize other
substrates like amino acids and fatty acids obtained from either the environment or the degradation of cellular macromolecules. As a result, the majority of ATP
(yellow stars) is generated by oxidative phosphorylation. During proliferation (right), the large increase in glycolytic flux generates ATP rapidly in the cytoplasm,
reducing the cytoplasmic NAD+/NADH ratio. Most of the resulting pyruvate is converted to lactate (lac) by lactate dehydrogenase A (LDH-A), which regenerates
NAD+ from NADH. The NAD+ allows glycolysis to persist, and the lactate is secreted from the cell. Some of the pyruvate is converted to acetyl-CoA (Ac-CoA) by
pyruvate dehydrogenase (PDH) and enters the TCA cycle, where it is converted into intermediates like citrate (cit) that can be used for macromolecular biosyn-
thesis. Citrate is required for the synthesis of fatty acids and cholesterol used to generate lipid membranes for daughter cells. After export to the cytoplasm, citrate
is cleaved by the enzyme ATP citrate lyase (ACL). The resulting acetyl-CoA is used by fatty acid synthase (FAS) to synthesize lipids, while the oxaloacetate (OAA) is
converted to malate (mal) by malate dehydrogenase (MDH), utilizing the low cytosolic NAD+/NADH ratio. Malate can either be returned to the mitochondria during
citrate-malate antiport or be converted to pyruvate by malic enzyme (ME), generating NADPH to be used in fatty acid synthesis.
between the need for glucose-derived carbon for macromolecu-

lar synthesis and the high rate of lactate production (Newsholme

et al., 1985). Low-flux pathways in this model include those that

use glycolytic intermediates as biosynthetic precursors. The very

high rate of glycolysis allows cells to maintain biosynthetic fluxes

during rapid proliferation but results in a high rate of lactate pro-

duction.

The TCA Cycle Provides Proliferating Cells
with Biosynthetic Precursors
To synthesize lipids, proteins, and nucleic acids, cells use pre-

cursors derived from TCA cycle intermediates. Therefore,

a key role of the TCA cycle in proliferating cells is to act as a

hub for biosynthesis. This is an important difference from the me-

tabolism of nonproliferating, oxidative tissues like the heart,
where the traditional view of the TCA cycle is that it serves to

derive maximal ATP production from oxidizable substrates, gen-

erating two CO2 molecules per turn. During cell proliferation,

however, much of the carbon that enters the TCA cycle is used

in biosynthetic pathways that consume rather than produce

ATP. This results in a continuous efflux of intermediates (cataple-

rosis).

Synthesis of lipids (fatty acids, cholesterol, and isoprenoids) is

a prime example of cataplerosis in proliferating cells. Glucose is

a major lipogenic substrate using the pathway highlighted in

green in the right panel of Figure 2. This pathway transfers mito-

chondrial citrate out to the cytosol to be converted to oxaloace-

tate (OAA) and the lipogenic precursor acetyl-CoA. The lipogenic

enzymes ATP citrate lyase and fatty acid synthase are induced in

tumor cells and proliferating hematopoietic cells, and their
Cell Metabolism 7, January 2008 ª2008 Elsevier Inc. 13
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activity is required for proliferation (Bauer et al., 2005; Hatzivas-

siliou et al., 2005; Kuhajda et al., 1994; Pizer et al., 1996). This

may be because a large percentage of fatty acids in the mem-

branes of proliferating cells are synthesized de novo rather

than scavenged from the extracellular environment (Kannan

et al., 1980; Ookhtens et al., 1984) or because some crucial cel-

lular lipid pool requires de novo synthesis. The export of citrate

for lipid synthesis impacts overall function of the cycle, resulting

in what some have called a ‘‘truncated’’ cycle because of the rel-

ative decrease in the fraction of mitochondrial citrate that is ox-

idized (Hatzivassiliou et al., 2005; Parlo and Coleman, 1984). The

high flux of mitochondrial citrate to cholesterol synthesis has

been studied in hepatoma cells, where proliferation is propor-

tional to the rate of citrate efflux and inversely proportional to cit-

rate-stimulated respiration (Parlo and Coleman, 1984, 1986).

Therefore, in these cholesterol-rich cells, TCA truncation ap-

pears to support cell proliferation. Other TCA cycle intermedi-

ates are used for biosynthesis of different macromolecules.

OAA and a-ketoglutarate (a-KG) supply intracellular pools of

nonessential amino acids to be used in the synthesis of proteins

and nucleotides. These activities also contribute to cataplerosis

in proliferating cells engaged in macromolecular biosynthesis.

In rare cases, the TCA cycle enzymes succinate dehydroge-

nase (SDH) and fumarate hydratase (FH) behave genetically as

tumor suppressors. Familial paraganglioma can be caused by

mutations in SDHB, SDHC, or SDHD, three of the four SDH sub-

units (Astuti et al., 2001; Baysal et al., 2000; Niemann and Muller,

2000). In affected families, a mutation in any of these genes

imposes a dominantly inherited tumor risk, with loss of the

wild-type allele in tumors. Similarly, SDHB and SDHD mutations

can cause pheochromocytoma (Astuti et al., 2001; Gimm et al.,

2000), and mutations in FH cause a dominant syndrome of uter-

ine fibroids, leiomyomata, and papillary renal cell cancer (Tomlin-

son et al., 2002). Interestingly, cells from some paragangliomas

have no residual SDH activity, implying severe impairment of

TCA cycling in those tumors (Gimenez-Roqueplo et al., 2001).

Despite this, the cells not only survive but accumulate at a path-

ologic rate. These examples are interesting exceptions to the

general finding that tumor cells contain functional TCA cycles.

Further investigations may reveal compensatory metabolic path-

ways that support this form of tumor cell growth.

Anaplerosis Allows Proliferating Cells to Use the TCA
Cycle for Biosynthesis
In order to sustain TCA cycle function in the face of cataplerosis,

cells must have a matching influx of intermediates to resupply

‘‘lost’’ OAA (anaplerosis). Citrate export for fatty acid synthesis

demonstrates this necessity: formation of another citrate mole-

cule requires an OAA produced from pyruvate or amino acids.

Anaplerosis is a critical feature of growth metabolism because

it gives cells the ability to use the TCA cycle as a supply of

biosynthetic precursors. A high anaplerotic flux is a more spe-

cific indicator of cell growth than a high glycolytic flux, because

the latter can be initiated by hypoxia and other stresses indepen-

dently of macromolecular synthesis.

There are several mechanisms that cells can use to produce

anaplerotic activity. The simplest uses pyruvate carboxylase

(PC), which generates OAA directly from pyruvate. Mitogens

enhance PC activity in lymphocytes, suggesting that PC might
14 Cell Metabolism 7, January 2008 ª2008 Elsevier Inc.
be part of the proliferative metabolic program in those cells

(Curi et al., 1988). But in MCF-7 breast carcinoma cells, estrogen

stimulation suppresses PC activity while enhancing proliferation

(Forbes et al., 2006). Furthermore, most hepatomas have de-

creased PC expression and activity compared to normal liver

(Chang and Morris, 1973; Hammond and Balinsky, 1978), and

the ratio of PC/PDH activity is decreased in glioma and neuro-

blastoma cells compared to normal glia and neuronal tissue

(Brand et al., 1992). Therefore, PC does not appear to be a uni-

versal component of anaplerotic flux during cell proliferation.

An alternative source of anaplerosis is through metabolism of

amino acids, particularly glutamine, the most abundant amino

acid in mammals. Proliferating cells metabolize glutamine in

multiple pathways for bioenergetics and biosynthesis (Eagle

et al., 1956; Kovacevic and McGivan, 1983). Cells can partially

oxidize glutamine in a manner analogous to the partial oxidation

of glucose during aerobic glycolysis (Reitzer et al., 1979). This

pathway (‘‘glutaminolysis’’) adds to cellular production of

NADPH and lactate (Figure 3). Unlike aerobic glycolysis, how-

ever, glutaminolysis uses several steps of the TCA cycle, leading

to general recognition of the fact that glutamine is a source of

energy for proliferating cells. It is equally important that mito-

chondrial glutamine metabolism can produce OAA, providing

a source of anaplerosis in growing cells (Figure 3). Evidence

from a variety of cell types supports this conclusion. Estrogen

stimulation induces glutaminolysis in breast cancer cells (Forbes

et al., 2006), while mitogen stimulation has similar effects in

lymphocytes (Brand, 1985). Nuclear magnetic resonance

(NMR) spectroscopy using 13C-labeled substrates has revealed

the use of glutamine as the major anaplerotic precursor in pro-

liferating glioma cells in both rats (Portais et al., 1996) and hu-

mans (DeBerardinis et al., 2007). Impressively, glutamine depri-

vation from fibroblast cultures essentially eliminates pools of the

TCA cycle intermediates fumarate and malate (Yuneva et al.,

2007). Together, these observations suggest that glutamine

metabolism allows cells to maintain a sufficient anaplerotic

flux to use a sizable fraction of TCA cycle intermediates as pre-

cursors for biosynthetic pathways. Importantly, glutamine’s

central role in multiple pathways of intermediary metabolism

that produce glutamate and a-KG (Figure 3) makes it a conve-

nient molecule for cells to use as a source of carbon for the

TCA cycle.

Regulation of Metabolic Activity in Proliferating Cells
Normal mammalian cells do not proliferate autonomously but

instead enter the cell cycle only when instructed to do so by

growth factors and downstream signaling pathways, which influ-

ence gene expression and cell physiology. Given that prolifera-

tion relies on the metabolic activities discussed above, it is not

surprising that growth-factor-stimulated signal transduction reg-

ulates these activities as well. Traditional views of intermediary

metabolism hold that metabolic activities are largely regulated

through allosteric effects of metabolites on rate-limiting en-

zymes, giving pathways self-regulatory capacity and introducing

control at branch points between intersecting pathways. While

many of these mechanisms are at work in proliferating cells,

efforts to understand the impact of signal transduction on cell

proliferation have revealed a variety of effects directed at meta-

bolic fluxes. For example, during proliferation of tumor cells and
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Figure 3. Glutamine-Dependent
Anaplerosis Allows Proliferating Cells
to Use TCA Cycle Intermediates as
Precursors for Biosynthesis
The proliferating cell shown here is using citrate for
lipid synthesis (green arrows), resulting in loss of
oxaloacetate from the TCA cycle. OAA replenish-
ment (anaplerosis) is derived from the complex
metabolism of glutamine (Gln, red arrows). In the
cytosol, glutamine donates nitrogen to purines
and pyrimidines, resulting in the formation of glu-
tamate (Glu). Glutamate donates its amino group
to a-keto acids to form nonessential amino acids
and a-ketoglutarate (a-KG), which can enter the
mitochondria. Glutamine can also be converted
to glutamate in the mitochondrial matrix by phos-
phate-dependent glutaminase (PDG), which
releases glutamine’s amido group as free ammo-
nia (red square). Mitochondrial glutamate can be
converted to a-KG by glutamate dehydrogenase
(GDH, forming another ammonia molecule) or
intramitochondrial aminotransferases. During ana-
plerosis, a-KG enters the TCA cycle and produces
OAA. In addition to its use as a source of OAA, glu-
tamine carbon can be converted to lactate (gluta-
minolysis). This process generates both NADPH
and NAD+ in the cytoplasm. Ammonia generated
during glutamine metabolism is mostly secreted
from the cell. Other abbreviations: Asp, aspartate;
Succ, succinate; AA, amino acid.
lymphocytes, growth-factor signaling suppresses b-oxidation of

fatty acids, minimizing futile cycling and maximizing lipid synthe-

sis (Buzzai et al., 2005; DeBerardinis et al., 2006). In hematopoi-

etic cells, this requires a specific inhibitory effect of the PI3K/Akt

signaling pathway on the expression of carnitine palmitoyltrans-

ferase IA, the rate-limiting enzyme in b-oxidation (DeBerardinis

et al., 2006). Therefore, growth-factor signaling can reorganize

metabolic fluxes independently of traditional allosteric mecha-

nisms of pathway regulation.

Generating high fluxes of glycolysis and glutaminolysis largely

depends on increasing cellular uptake of glucose and glutamine.

Proliferating cells rely on growth-factor signaling to generate

these fluxes because a primary effect of signaling is to enhance

nutrient capture from the extracellular environment (Figure 1). In

fact, in the absence of growth-factor signaling, mammalian cells

rapidly lose nutrient transporter expression and cannot maintain

sufficient cell-autonomous nutrient uptake for basal bioenerget-

ics and replacement macromolecular synthesis. Instead, they

turn to a form of ‘‘self-cannibalism’’ termed autophagy, which

provides a limited supply of substrates generated from macro-

molecular degradation to maintain ATP production for cell

survival (Figure 1) (Lum et al., 2005).

The mechanisms that integrate signal transduction and cell

metabolism are largely conserved between normal cells and

cancer cells. The major difference is that in normal cells, initiation

of signaling requires extracellular stimulation, while cancer cells

often have mutations that chronically enhance these pathways,

allowing them to maintain a metabolic phenotype of biosynthe-

sis independently of normal physiologic constraints. In other

words, cancer cells have increased metabolic autonomy. Below,

we discuss a few mechanisms that integrate cell signaling and

key aspects of metabolism during physiologic cell proliferation

and tumorigenesis. Together, activities of the PI3K/Akt/mTOR

pathway and effects of the transcription factors HIF-1a and
Myc appear to regulate complementary aspects of cellular

metabolism (Figure 4).

The PI3K/Akt/mTOR Pathway Is a Master Regulator of

Aerobic Glycolysis and Cellular Biosynthesis

The PI3K/Akt/mTOR pathway is a highly conserved, widely

expressed system used by cells to respond to growth factors

(Franke et al., 2003). Binding of a growth factor to its surface re-

ceptor activates PI3K, resulting in phosphorylation of phospha-

tidylinositol lipids at the plasma membrane. These are involved

in recruitment and/or activation of downstream effectors, partic-

ularly the serine/threonine kinases Akt and mTOR. Activation of

the PI3K/Akt/mTOR pathway in growth-factor-dependent cells

and tumor cells enhances many of the metabolic activities that

support cellular biosynthesis (Figure 4). First, it permits cells to

increase the surface expression of nutrient transporters,

enabling increased uptake of glucose, amino acids, and other

nutrients (Barata et al., 2004; Edinger and Thompson, 2002;

Roos et al., 2007; Wieman et al., 2007; Xu et al., 2005). Second,

through effects on gene expression and enzyme activity, Akt

increases glycolysis and lactate production and is sufficient to

induce a Warburg effect in either nontransformed cells or cancer

cells (Elstrom et al., 2004; Plas et al., 2001; Rathmell et al., 2003).

Third, activation of this pathway enhances the biosynthesis of

macromolecules. PI3K and Akt stimulate expression of lipogenic

genes and lipid synthesis in numerous cell types (Bauer et al.,

2005; Chang et al., 2005), while mTOR is a key regulator of

protein translation (Gingras et al., 2001).

In normal cells, activation of the PI3K system is tightly con-

trolled by dephosphorylation of phosphatidylinositol species

by the phosphatase PTEN. But in malignancies, activity of the

pathway can be augmented through a variety of mechanisms,

which together constitute one of the most prevalent classes

of mutations in human tumors (Table 1). These mutations acti-

vate PI3K, eliminate activity of negative regulators (e.g., PTEN),

Cell Metabolism 7, January 2008 ª2008 Elsevier Inc. 15
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Figure 4. A Signaling Network to Regulate Metabolism in Proliferating Cells
The model shows some of the prominent aspects of metabolism in proliferating cells, including glycolysis; lactate production; the use of TCA cycle intermediates
as macromolecular precursors; and the biosynthesis of proteins, nucleotides, and lipids. The PI3K/Akt/mTOR pathway, HIF-1a, and Myc participate in various
facets of this metabolic phenotype. The binding of a growth factor (GF) to its surface receptor brings about activation of PI3K and the serine/threonine kinases Akt
and mTOR (top left). Constitutive activation of the pathway can occur in tumors due to mutation of the tumor suppressors PTEN, TSC1, and TSC2, or by other
mechanisms (see text). Metabolic effects of the PI3K/Akt/mTOR pathway include enhanced uptake of glucose and essential amino acids and protein translation.
The transcription factor HIF-1a (bottom) is involved in determining the manner in which cells utilize glucose carbon. Translation of HIF-1a is enhanced during
growth-factor stimulation of the PI3K/Akt/mTOR pathway. In the presence of oxygen, HIF-1a is modified by prolyl hydroxylases, which target it to a ubiquitin
ligase complex that includes the tumor suppressor VHL. This association results in constitutive normoxic degradation of the HIF-1a protein. Hypoxia, mutation
of VHL, or accumulation of reactive oxygen species (ROS) or the TCA cycle intermediates succinate and fumarate impair HIF-1a degradation, allowing it to enter
the nucleus and engage in transcriptional activity. Transcriptional targets include genes encoding glucose transporter 1 (GLUT1), LDH-A, and PDK1. The com-
bined effect on glucose metabolism is to increase both glucose utilization and lactate production, as PDK1 inhibits conversion of pyruvate to acetyl-CoA by py-
ruvate dehydrogenase (PDH). The transcription factor Myc (top right) increases expression of many metabolic enzymes, including glycolytic enzymes, LDH-A,
and several enzymes required for nucleotide biosynthesis. Abbreviations: PI3K, phosphatidylinositol 3-kinase; PTEN, phosphatase and tensin homolog; TSC,
tuberous sclerosis complex; mTOR, mammalian target of rapamycin; glc-6-P, glucose-6-phosphate; 3-PG, 3-phosphoglycerate; PDK1, pyruvate dehydroge-
nase kinase 1; SDH, succinate dehydrogenase; FH, fumarate hydratase; HIF-1a, hypoxia-inducible factor 1a; VHL, von Hippel-Lindau.
or introduce enhanced activities to stimulate the system (BCR-

ABL, HER2/neu amplification, etc). Regardless of the mutation,

activation of Akt is likely the most important signaling event in

terms of cell metabolism, because Akt is sufficient to drive gly-

colysis and lactate production and to suppress macromolecular

degradation in cancer cells (Buzzai et al., 2005; Elstrom et al.,

2004).

HIF-1 Signaling Regulates Glucose Metabolism

in Response to Hypoxia and Growth Factors

Decreased oxygen availability (hypoxia) stimulates cells to con-

sume glucose and produce lactate. In mammalian cells, this

response is coordinated by the hypoxia-inducible factor 1

(HIF-1) transcription factor complex (Gordan and Simon, 2007;

Semenza, 2003). HIF-1’s targets include genes encoding glucose

transporters, glycolytic enzymes, and LDH-A (O’Rourke et al.,

1996; Semenza et al., 1994). HIF-1 activity requires the subunit

16 Cell Metabolism 7, January 2008 ª2008 Elsevier Inc.
HIF-1a, which is expressed under the control of growth-factor sig-

naling, in particular the PI3K/Akt/mTOR pathway (Cramer et al.,

2003; Jiang et al., 2001; Majumder et al., 2004). During normoxia,

HIF-1a undergoes a posttranslational modification by prolyl

hydroxylation, which promotes association with the von Hippel-

Lindau (VHL) tumor suppressor, targeting HIF-1a for ubiquitina-

tion and degradation (Figure 4). During hypoxia, prolyl hydroxyl-

ation is inhibited by a process involving reactive oxygen species

(ROS) generated in the mitochondria, resulting in stabilization of

the HIF-1a protein and transcriptional activity of the HIF-1 com-

plex (Brunelle et al., 2005; Guzyet al., 2005; Mansfield et al., 2005).

Constitutive cellular stabilization of HIF-1a during normoxia

can occur in tumors as a result of mutations in the tumor sup-

pressor VHL. Other mutations in SDH and FH stabilize HIF-1a

by interfering with prolyl hydroxylation, which is inhibited by ac-

cumulation of succinate or fumarate (Isaacs et al., 2005; Pollard
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Table 1. Selected Tumorigenic Mutations that Activate PI3K or Its Effectors

Gene Mutation Cancer Frequency Reference

PIK3CA Activating point

mutations

Breast 25% Bachman et al. (2004)

Colon >30% Samuels et al. (2004)

Amplification Head and neck >35% Pedrero et al. (2005)

Akt2 Amplification Ovary 12% Bellacosa et al. (1995)

Head and neck 30% Pedrero et al. (2005)

PTEN Mutation, loss of

heterozygosity

Glioma %40% Knobbe et al. (2002);

Ohgaki (2005)

BCR-ABL Fusion kinase arising

from chromosomal

translocation

Chronic myelogenous

leukemia

>90% Kurzrock et al. (2003)

Acute lymphocytic

leukemia

20% Kurzrock et al. (2003)

HER2/neu Gene amplification Breast 25% Slamon et al. (1989)

EGFR Gene amplification,

increased expression

Lung (non-small cell) >50% Cappuzzo et al. (2005)
et al., 2007; Selak et al., 2005). In tumors with mutations in VHL,

FH, or SDH subunits, constitutive (normoxic) expression of HIF-1

target genes likely contributes to aerobic glycolysis.

Although HIF-1’s role in promoting glycolysis is clear, recent

data suggest that it does not promote biosynthesis at the cellular

level. HIF-1 induces expression of pyruvate dehydrogenase

kinase 1 (PDK1), which phosphorylates and inhibits the PDH

complex (Kim et al., 2006; Papandreou et al., 2006). This limits

entry of glycolytic carbon into the TCA cycle and increases con-

version of pyruvate to lactate. This adaptation may be important

for cell survival during hypoxia, but it would impose a barrier to

proliferating cells, which rely on the availability of TCA cycle in-

termediates for biosynthesis. Recent studies in hematopoietic

cells support this hypothesis (Lum et al., 2007). In these cells,

growth-factor stimulation is required for cells to express

HIF-1a, which in turn is required to regulate the intracellular

fate of glucose-derived carbon. During normoxia, reducing

HIF-1a expression with RNA interference increases lipid synthe-

sis, cell size, and rate of proliferation. Together, these observa-

tions argue for more general metabolic functions of HIF-1 than

its conventional role as a reactionary mediator during tissue hyp-

oxia, extending its influence into the arena of growth-factor-reg-

ulated orchestration of intermediary metabolic fluxes. In this

context, it appears to act as a rheostat on mitochondrial metab-

olism, fine tuning entry of carbon into the TCA cycle. Perhaps

during the large increase in glycolytic flux that occurs during

growth-factor stimulation, this allows cells to match TCA cycle

flux with maximal electron transport chain capacity so as to

diminish oxidative stress.

Does c-Myc Regulate Metabolic Activities

Needed for the G1/S Transition?

The metabolic activity that distinguishes cell growth (i.e., in-

crease in cell biomass per se) from proliferation is duplication

of the genome, which requires a massive commitment to nucle-

otide biosynthesis by the cell. Compared to glycolytic flux, the

regulation of de novo nucleotide biosynthetic pathways by cell

signaling is poorly understood. These complex pathways rely

on coordination of multiple fluxes involving glucose, glutamine,
several nonessential amino acids, and the cellular one-carbon

pool.

The myc family of genes (c-myc, L-myc, s-myc, and N-myc),

commonly amplified in human tumors, encode transcription

factors that regulate growth and cell-cycle entry by inducing ex-

pression of genes required for these processes. In normal cells,

mitogen stimulation leads to a burst of c-Myc expression in G1

phase, facilitating entry into S phase in part by activating expres-

sion of cyclins and CDK4 (Adhikary and Eilers, 2005). Like other

oncogenic transcription factors, targets of c-Myc include glyco-

lytic enzymes and LDH-A (Osthus et al., 2000; Shim et al., 1997).

However, c-Myc also induces expression of enzymes involved in

nucleotide and one-carbon metabolism, without which cells could

not successfully complete S phase (Figure 4). These include ino-

sine 50-monophosphate dehydrogenase (Guo et al., 2000), ser-

ine hydroxymethyltransferase (Nikiforov et al., 2002), adenosine

kinase, adenylate kinase 2, and phosphoribosyl pyrophosphate

amidotransferase (O’Connell et al., 2003). These data suggest

that c-Myc reinforces the effects of growth-factor signaling on

glucose metabolism and also exerts control over specialized

metabolic activities needed to duplicate the genome.

In addition, recent work has demonstrated that some c-Myc-

transformed cells have an absolute requirement for glutamine

in order to maintain viability (Yuneva et al., 2007). Depriving these

cells of glutamine results in depletion of TCA cycle intermedi-

ates, suggesting an increased need for glutamine-based anaple-

rosis during c-Myc activity. Perhaps this is a consequence of the

metabolic shift toward de novo nucleotide biosynthesis, which

requires glutamine as a nitrogen source and glucose as a carbon

source. The resulting increased availability of glutamine carbon

skeletons coupled with the reduced availability of glucose

carbon might limit the utility of PC as an anaplerotic mechanism

during peak nucleotide biosynthesis.

Future Directions: Cell Proliferation, Signal
Transduction, Metabolism, and Systems Biology
As summarized above, the emerging view of metabolic regula-

tion in proliferating cells is that signal transduction pathways
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and transcriptional networks participate in a major reorganiza-

tion of metabolic activities into a platform that supports bioener-

getics, macromolecular synthesis, and ultimately cell division.

Efforts to integrate modern concepts of signal transduction

with cellular metabolism are still in their infancy. The current chal-

lenge is to develop broad, systems-based approaches devoted

to integrating information from previously disparate areas of in-

quiry so that a more complete understanding of the metabolic

phenotype of cell proliferation will emerge. This will require

a new set of tools combining, at a minimum, molecular biology

and metabolic flux analysis so as to determine the impact of ma-

nipulating signaling mediators on specific and global metabolic

activities.

One area that needs to be addressed is the regulation of ana-

plerosis and of mitochondrial metabolism in general. This impor-

tant matter has so far escaped the scrutiny directed at aerobic

glycolysis in the 80-plus years since Warburg’s observations.

The models of cell metabolism proposed here predict that

biosynthetic fluxes using TCA cycle intermediates are matched

on a mole-per-mole basis by anaplerotic fluxes. Determining

whether this hypothesis is correct and how such fluxes are reg-

ulated will be an important piece in the biological puzzle of cell

proliferation.
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