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Abstract

Minkowski’s projection bodies have evolved into Lp projection bodies and their asymmetric analogs.
These all turn out to be part of a far larger class of Orlicz projection bodies. The analog of the classical
Petty projection inequality is established for the new Orlicz projection bodies.
© 2009 Elsevier Inc. All rights reserved.

MSC: 52A40

Keywords: Brunn–Minkowski theory; Projection bodies; Centroid bodies

As Schneider [58] observes, the classical Brunn–Minkowski theory emerged at the turn of
the 19th into the 20th century, when Minkowski began his study of the volume of (what would
become known as) the Minkowski sum of convex bodies. In addition to mixed volumes, one of
the core concepts that Minkowski introduced within the Brunn–Minkowski theory is that of a
projection body (precise definitions to follow). Four decades ago, in a highly influential paper,
Bolker [5] illustrated how Minkowski’s projection operator, its range, and its polar were in fact
objects of independent investigation in a number of disciplines.

Within the Brunn–Minkowski theory, the two classical inequalities which connect the volume
of a convex body with that of its polar projection body are the Petty and Zhang projection in-
equalities. In retrospect, it is interesting to observe that these inequalities were not discovered
by Minkowski. Nor did they emerge out of Blaschke’s school. In fact, it took seven decades
from Minkowski’s discovery of projection bodies for the Petty projection inequality to appear
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(see e.g., the books by Gardner [17], Leichtweiss [27], Schneider [58], and Thompson [61] for
reference). It took yet another two decades for the Zhang projection inequality to be discovered.
Establishing the analogs of the Petty and Zhang projection inequalities for the projection opera-
tor (as opposed to the polar projection operator) are today major open problems within the field
of convex geometric analysis.

Unlike the classical isoperimetric inequality, the Petty and Zhang projection inequalities are
affine isoperimetric inequalities in that they are inequalities between a pair of geometric func-
tionals whose ratio is invariant under affine transformations. The Petty projection inequality is
not only stronger than (i.e., directly implies) the classical isoperimetric inequality, but it can be
viewed as an optimal isoperimetric inequality. In the same manner that the classical isoperimetric
inequality leads to (in fact is equivalent to) the Sobolev inequality, the Petty projection inequality
has led to the affine Sobolev inequality [66] that is stronger than the classical Sobolev inequality
and yet is independent of any underlying Euclidean structure.

In the early 1960s, Firey (see e.g. Schneider [58, p. 383]) introduced an Lp extension of
Minkowski’s addition (now known as Firey–Minkowski Lp-addition) of convex bodies. In the
mid 1990s, it was shown in [36,37], that a study of the volume of these Firey–Minkowski Lp-
combinations leads to an embryonic Lp Brunn–Minkowski theory. This theory has expanded
rapidly. (See e.g. [2,3,6–12,16,19–25,28–34,36–47,50,51,57,59,60,62–65].)

An early achievement of the new Lp Brunn–Minkowski theory was the discovery of Lp

analogs of projection bodies and of the Petty projection inequality [40], with an alternate ap-
proach to establishing this inequality presented by Campi and Gronchi in [6]. These new in-
equalities have found applications in the field of analytic inequalities where they led to affine Lp

Sobolev inequalities [43] and ultimately to affine Moser–Trudinger and affine Morrey–Sobolev
inequalities [11].

Work of Ludwig [31] (see also [28]) showed that the known Lp extension of the projection
operator considered in [40] is only one of a family of natural Lp extensions of their classi-
cal counterpart. Using this insight, Haberl and Schuster [23] (see also [24]) considered so-called
“asymmetric” Lp analogs and obtained “asymmetric” Lp analogs of the Petty projection inequal-
ity. For bodies that are not symmetric about the origin, the inequalities of Haberl and Schuster are
stronger than the original Lp Petty projection inequality. The operators considered by Haberl and
Schuster appear to be ideally suited for non-symmetric bodies. This can be seen most clearly by
looking at the Lp analog of the classical Blaschke–Santaló inequality presented in [39]. For ori-
gin symmetric bodies, this Lp extension does recover the original Blaschke–Santaló inequality
as p → ∞. However, for arbitrary bodies only the Haberl–Schuster version does so.

The above cited work of Haberl and Schuster and the recent work of Ludwig and Reitzner
[34], as well as Ludwig [33], makes it apparent that the time is ripe for the next step in the
evolution of the Brunn–Minkowski theory towards what we call an Orlicz–Brunn–Minkowski
theory. It is the aim of this paper to define Orlicz projection bodies and establish an Orlicz
analog of the classical Petty projection inequality — an inequality that we call the Orlicz Petty
projection inequality. The new inequality has all its predecessors (including the Haberl–Schuster
version) as special cases.

Another classical affine isoperimetric inequality is the Busemann–Petty centroid inequal-
ity [56]. This is an inequality between the volume of a convex body and that of its centroid
body. The centroid body is a concept that goes back at least to Dupin. Another early achieve-
ment within the Lp Brunn–Minkowski theory (and its dual) was the establishment of the Lp

analog of the Busemann–Petty centroid inequality [6,40] for the natural Lp extension of cen-
troid bodies. The Lp extensions of the centroid operator quickly became an object of interest
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in asymptotic geometric analysis (see e.g. [13,15,18,26,52–55]) and even the theory of stable
distributions (see [51]).

It was shown in [35] that once the Busemann–Petty centroid inequality has been established,
the Petty projection inequality can be obtained as an almost effortless consequence. In addition,
it was shown in [35] that also the reverse is the case: the Busemann–Petty centroid inequality
can be obtained easily from the Petty projection inequality. As shown in [40], a similar rela-
tionship holds between the Lp Petty projection inequality and the Lp Busemann–Petty centroid
inequalities: only one of these two inequalities needs to be established and then the other can be
quickly derived. It appears that this might not be the case for the Orlicz analogues of these classi-
cal inequalities. (See the discussion in Section 4.) Neither the Orlicz Petty projection inequality
nor the Orlicz Busemann–Petty centroid inequality appears to lead to the other in some manner
discernable to the authors. Therefore, the topic of Orlicz centroid bodies is treated in a separate
work [48].

We consider convex φ : R → [0,∞) such that φ(0) = 0. This means that φ must be decreasing
on (−∞,0] and increasing on [0,∞). We will assume throughout that one of these is happening
strictly so; i.e., φ is either strictly decreasing on (−∞,0] or strictly increasing on [0,∞).

Let K be a convex body in R
n that contains the origin in its interior, and that has volume

|K|. The Orlicz projection body ΠφK of K is defined as the body whose support function (see
Section 1 for definitions) is given by

hΠφK(x) = inf

{
λ > 0:

∫
∂K

φ

(
x · ν(y)

λy · ν(y)

)
y · ν(y) dHn−1(y) � n|K|

}
,

where ν(y) is the outer unit normal of ∂K at y ∈ ∂K , where x · ν(y) denotes the inner product
of x and ν(y), and Hn−1 is (n − 1)-dimensional Hausdorff measure. Recall that ν(y) exists for
Hn−1-almost all y ∈ ∂K . For the polar (see Section 1 for definitions) of ΠφK we will write
Π∗

φK .

With φ1(t) = |t |, it turns out that for u ∈ Sn−1,

hΠφ1K(u) = cn

|K| |Ku|,

where |Ku| denotes the (n − 1)-dimensional volume of Ku, the image of the orthogonal projec-
tion of K onto the subspace u⊥. Thus

Πφ1K = cn

|K|ΠK,

where ΠK is the classical projection body of K introduced by Minkowski. With φp(t) = |t |p ,
and p � 1,

ΠφpK = cn,p

1
p

ΠpK,
|K|
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where ΠpK is the Lp projection body of K , defined as the convex body whose support function
is given by

hΠpK(x) =
{ ∫

∂K

∣∣x · ν(y)
∣∣p∣∣y · ν(y)

∣∣1−p
dHn−1(y)

}1/p

.

We will prove the following volume ratio inequality.

Orlicz Petty projection inequality. If K is a convex body in R
n that contains the origin in its

interior, then the volume ratio

∣∣Π∗
φK

∣∣/|K|

is maximized when K is an ellipsoid centered at the origin. If φ is strictly convex, then ellipsoids
centered at the origin are the only maximizers.

When φ(t) = |t |, the Orlicz Petty projection inequality is the classical Petty projection in-
equality. When φ(t) = |t |p , and p > 1, the Orlicz Petty projection inequality is the Lp Petty
projection inequality (established in [40], with an alternate proof given by Campi and Gronchi
in [6]). Haberl and Schuster’s recent extension [23] of the Lp Petty projection inequality is the
case φ(t) = (|t | + αt)p , for −1 � α � 1 of the Orlicz Petty projection inequality.

In Section 1, we establish notation and list some basic facts regarding convex functions and
convex bodies. In Section 2 some of the basic properties of Orlicz projection bodies are estab-
lished. Section 3 contains the proof of the Orlicz Petty projection inequality. In Section 4 some
questions are posed.

1. Basics regarding convex bodies

The setting will be Euclidean n-space R
n. We write e1, . . . , en for the standard orthonormal

basis of R
n and when we write R

n = R
n−1 × R we always assume that en is associated with the

last factor.
We will attempt to use x, y for vectors in R

n and x′, y′ for vectors in R
n−1, and u,v ∈ Sn−1

for unit vectors. We will use a, b, s, t, α for numbers in R and c,λ for strictly positive reals. If Q

is a Borel subset of R
n and Q is contained in an i-dimensional affine subspace of R

n but in no
affine subspace of lower dimension, then |Q| will denote the i-dimensional Lebesgue measure
of Q. If x ∈ R

n then by abuse of notation we will write |x| = √
x · x.

For A ∈ GL(n) write At for the transpose of A and A−t for the inverse of the transpose
(contragradient) of A. Write |A| for the absolute value of the determinant of A.

We shall write cn for a constant depending only on n and cn,p for a constant depending only
on n and p. For a ∈ R define

(a)+ = max{a,0} and (a)− = min{a,0}.

Let C be the class of convex functions φ : R → [0,∞) such that φ(0) = 0 and such that φ

is either strictly decreasing on (−∞,0] or φ is strictly increasing on [0,∞). We say that the
sequence {φi}, where the φi ∈ C , is such that φi → φo ∈ C provided
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|φi − φo|I := max
t∈I

∣∣φi(t) − φo(t)
∣∣ → 0,

for every compact interval I ⊂ R. The subclass of C consisting of those φ ∈ C that are strictly
convex will be denoted by Cs .

We shall make use of the fact that for φ ∈ C and a1, a2, a3, a4 ∈ R with a3, a4 > 0,

(a3 + a4)φ

(
a1 + a2

a3 + a4

)
� a3φ

(
a1

a3

)
+ a4φ

(
a2

a4

)
. (1.1)

This is a trivial consequence of the convexity of φ. If φ ∈ Cs , then observe that there is equality
in (1.1) if and only if a1/a3 = a2/a4.

Define cφ by

cφ = min
{
c > 0: max

{
φ(c),φ(−c)

}
� 1

}
. (1.2)

We write Kn for the set of convex bodies (compact convex subsets) of R
n. We write Kn

o for
the set of convex bodies that contain the origin in their interiors.

For K ∈ Kn, let h(K; ·) = hK : R
n → R denote the support function of K ; i.e., h(K;x) =

max{x · y: y ∈ K}. Thus, if y ∈ ∂K , then

hK

(
νK(y)

) = νK(y) · y,

where νK(y) denotes an outer unit normal to ∂K at y. Obviously, when c > 0, for the support
function of the convex body cK = {cx: x ∈ K} we have

hcK = chK. (1.3)

Observe that from the definition of the support function it follows immediately that for A ∈
GL(n) the support function of the image AK = {Ay: y ∈ K} is given by

hAK(x) = hK

(
Atx

)
. (1.4)

If Ki ∈ Kn, we say that Ki → Ko ∈ Kn provided

|hKi
− hKo |∞ := max

u∈Sn−1

∣∣hKi
(u) − hKo(u)

∣∣ → 0.

If K ∈ Kn
o , then the polar body K∗ is defined by

K∗ = {
x ∈ R

n: x · y � 1 for all y ∈ K
}
.

It is easy to see that for c > 0,

(cK)∗ = 1
K∗, (1.5)
c
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and more generally that for A ∈ GL(n)

(AK)∗ = A−tK∗.

It is easy to verify that

K∗∗ = K.

We require the easily established continuity of the polar operator ∗ : Kn
o → Kn

o that maps
K 
→ K∗.

Let ρ(K; ·) = ρK : R
n \ {0} → [0,∞) denote radial function of K ∈ Kn

o ; i.e. ρK(x) =
max{λ > 0: λx ∈ K}. From the definition, it follows immediately that

x ∈ K \ ∂K if and only if ρK(x) > 1. (1.6)

It is easily verified that

hK∗ = 1/ρK and ρK∗ = 1/hK. (1.7)

Observe that from (1.6) and (1.7) it follows immediately that for x ∈ R
n

h(K;x) = 1 if and only if x ∈ ∂K∗. (1.8)

The classical Aleksandrov–Fenchel–Jessen surface area measure, SK , of the convex body K

can be defined as the unique Borel measure on Sn−1 such that

∫
Sn−1

f (u)dSK(u) =
∫

∂K

f
(
νK(y)

)
dHn−1(y), (1.9)

for each continuous f : Sn−1 → R. We shall require the trivial observation that for the surface
area measure of cK we have

ScK = cn−1SK, (1.10)

and the fact that for K ∈ Kn
o the measure SK cannot be concentrated on a hemisphere of Sn−1.

Less trivial, but much needed is the fact that SK is weakly continuous in K (see e.g. Schneider
[58, p. 201]); i.e., if Ki ∈ Kn

o , then

Ki → Ko ∈ Kn
o �⇒ SKi

→ SKo, weakly.

That

1

n

∫
n−1

hK(u)dSK(u) = 1

n

∫
hK

(
νK(y)

)
dHn−1(y) = 1

n

∫
y · νK(y)dHn−1(y)
S ∂K ∂K
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is equal to |K| can be easily seen by considering a polytope P ∈ Kn
o whose faces have areas (i.e.,

(n − 1)-dimensional volumes) a1, . . . , am, corresponding outer unit normals u1, . . . , um, with
facial cones (i.e., the cones whose bases are the faces of P and whose vertex is the origin) of
volume Vi = 1

n
aihP (ui). Here

1

n

∫
∂P

hP

(
νP (y)

)
dHn−1(y) = 1

n

m∑
i=1

aihP (ui) =
m∑

i=1

Vi = |P |.

For K ∈ Kn
o , it will be convenient to use the volume-normalized conical measure VK defined

by

|K|dVK = 1

n
hK dSK.

Observe that

VK is a probability measure on Sn−1. (1.11)

For K ∈ Kn
o , define RK, rK ∈ (0,∞) by

RK = max
u∈Sn−1

hK(u) and rK = min
u∈Sn−1

hK(u). (1.12)

From definition (1.9) we have Cauchy’s projection formula,

∫
Sn−1

(u · v)+ dSK(v) = |Ku| and
∫

Sn−1

(u · v)− dSK(v) = −|Ku|,

for u ∈ Sn−1. From definition (1.12) we see that the diameter,

DK = max
u∈Sn−1

[
hK(u) + hK(−u)

]
,

of a body K is at most 2RK , and since K is obviously contained in the right cylinder whose base
is Ku and whose height is DK we have the crude estimates

∫
Sn−1

(u · v)+
dSK(v)

|K| � 1

2RK

and
∫

Sn−1

(u · v)−
dSK(v)

|K| � − 1

2RK

. (1.13)

For a convex body K ′ ∈ Kn−1
o and a function g : K ′ → R whose gradient exists a.e., define

〈g〉 : K ′ → R by

〈g〉(x′) = g(x′) − x′ · ∇g(x′).
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We shall often make use of the fact that 〈 · 〉 is a linear operator; i.e., for g1, g2 : K ′ → R whose
gradient exists a.e., and α1, α2 ∈ R,

〈α1g1 + α2g2〉 = α1〈g1〉 + α2〈g2〉. (1.14)

For a convex body K and a direction u ∈ Sn−1, let 	u(K; ·) : Ku → R and 	u(K; ·) : Ku → R

denote the undergraph and overgraph functions of K with respect to u; i.e.

K = {
y′ + tu: −	u(K;y′) � t � 	u(K;y′) for y′ ∈ Ku

}
.

Thus, for the Steiner symmetral, SuK , of K in direction u, we see that the image of the orthogonal
projections onto u⊥ of both K and SuK are identical, and that

	u(SuK;y′) = 1

2

(
	u(K;y′) + 	u(K;y′)

) = 	u(SuK;y′), (1.15)

for all y′ ∈ Ku. Both K and u will be suppressed when clear from the context, and thus we
will often denote the undergraph and overgraph functions of K with respect to u simply by
	 : Ku → R and 	 : Ku → R.

When considering the convex body K ∈ Kn
o as K ⊂ R

n−1 ×R, then for (x′, t) ∈ R
n−1 ×R we

will usually write h(K;x′, t) rather than h(K; (x′, t)). Note that the Steiner symmetral, SenK ,
of K in the direction en can be given by

SenK =
{(

x′, 1

2
t + 1

2
s

)
∈ R

n−1 × R: (x′, t), (x′,−s) ∈ K with t �= −s

}
, (1.16)

and its boundary can be given by

∂SenK =
{(

x′, 1

2
t + 1

2
s

)
∈ R

n−1 × R: (x′, t), (x′,−s) ∈ ∂K with t �= −s

}
. (1.17)

We shall make use of the fact that if ui ∈ Sn−1, then

ui → u �⇒ Sui
L → SuL, (1.18)

for each L ∈ Kn
o .

Finally, we shall make critical use of the following fact that is inspired by the work of Ball [1]
and Meyer and Pajor [49] and that follows directly from (1.16), (1.17), and (1.8).

Lemma 1.1. Suppose K,L ∈ Kn
o and consider K,L ⊂ R

n−1 × R. Then

SenK
∗ ⊂ L∗,

if and only if

h(K;x′, t) = 1 = h(K;x′,−s), with t �= −s �⇒ h

(
L;x′, 1

t + 1
s

)
� 1.
2 2
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In addition, if SenK
∗ = L∗, then h(K;x′, t) = 1 = h(K;x′,−s), with t �= −s, implies that

h(L;x′, 1
2 t + 1

2 s) = 1.

We say that ∂K is line free in direction u ∈ Sn−1 if ∂K ∩ (x + Ru) consists of no more than
two points, for each x ∈ ∂K . Note that if ∂K is line free in direction u then ∂SuK is line free in
direction u. It follows from the Ewald–Larman–Rogers theorem [14] (or see [58, p. 80]) that for
each convex body K

Hn−1({u ∈ Sn−1: ∂K is not line free in direction u
}) = 0. (1.19)

We will make use of the well-known and easily established fact that if ∂K is line free in
direction en then for a continuous g : ∂K → R,

∫
∂K

g(x) dHn−1(x)

=
∫
K ′

g
(
x′, 	(x′)

)√
1 + ∣∣∇	(x′)

∣∣2
dx′ +

∫
K ′

g
(
x′,−	(x′)

)√
1 + ∣∣∇	(x′)

∣∣2
dx′, (1.20)

where K ′ = Ken .

2. Definition and basic properties of Orlicz projection bodies

The Orlicz projection body ΠφK of K ∈ Kn
o is defined as the body whose support function is

given by

hΠφK(x) = inf

{
λ > 0:

∫
∂K

φ

(
x · ν(y)

λy · ν(y)

)
y · ν(y) dHn−1(y) � n|K|

}
, (2.1)

where ν(y) = νK(y) is the outer unit normal of ∂K at y ∈ ∂K , or equivalently, using (1.9),

hΠφK(x) = inf

{
λ > 0:

∫
Sn−1

φ

(
x · u

λhK(u)

)
hK(u)dSK(u) � n|K|

}
. (2.2)

It will be easier to see the affine nature (Lemma 2.6) of the Orlicz projection body if we use (1.7)
to rewrite (2.2) as

hΠφK(x) = inf

{
λ > 0:

∫
Sn−1

φ

(
1

λ
(x · u)ρK∗(u)

)
dVK(u) � 1

}
. (2.3)

The polar body of ΠφK will be denoted by Π∗
φK , rather than (ΠφK)∗.

Since the area measure SK cannot be concentrated on a closed hemisphere of Sn−1, and since
we assume that φ is strictly increasing on [0,∞) or strictly decreasing on (−∞,0] it follows
that the function
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λ 
−→
∫

Sn−1

φ

(
1

λ
(x · u)ρK∗(u)

)
dVK(u)

is strictly decreasing in (0,∞). Thus, we have,

Lemma 2.1. Suppose φ ∈ C and K ∈ Kn
o . If xo ∈ R

n \ {0}, then

∫
Sn−1

φ

(
xo · u

λohK(u)

)
dVK(u) = 1

if and only if

hΠφK(xo) = λo.

We first show that hΠφK is a support function.

Lemma 2.2. Suppose φ ∈ C and K ∈ Kn
o . Then the function hΠφK is the support function of a

convex body, ΠφK , that contains the origin in its interior.

Proof. It follows immediately from definition (2.1) that for all x ∈ R
n, and for c > 0

hΠφK(cx) = chΠφK(x).

We now show that for x1, x2 ∈ R
n,

hΠφK(x1 + x2) � hΠφK(x1) + hΠφK(x2).

To that end let

hΠφK(xi) = λi.

By Lemma 2.1 this means that

∫
Sn−1

φ

(
x1 · u
λ1

ρK∗(u)

)
dVK(u) = 1 and

∫
Sn−1

φ

(
x2 · u
λ2

ρK∗(u)

)
dVK(u) = 1.

The convexity of the function s 
→ φ(sρK∗(u)) shows that

φ

(
x1 · u + x2 · u

λ1 + λ2
ρK∗(u)

)
� λ1

λ1 + λ2
φ

(
x1 · u
λ1

ρK∗(u)

)
+ λ2

λ1 + λ2
φ

(
x2 · u
λ2

ρK∗(u)

)
.

Integrating both sides of this inequality with respect to the measure VK gives us

∫
n−1

φ

(
(x1 + x2) · u

λ1 + λ2
ρK∗(u)

)
dVK(u) � 1, (2.4)
S
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from hΠφK(xi) = λi . But using definition (2.3), inequality (2.4) gives the desired result that

hΠφK(x1 + x2) � λ1 + λ2.

Thus hΠφK is indeed the support function of a compact convex set. That this set has the origin
in its interior (i.e., that hΠφK(x) > 0 whenever x �= 0) follows easily from the fact that we always
have either lims→∞ φ(s) = ∞ or lims→−∞ φ(s) = ∞. �

We shall require more than the fact that ΠφK contains the origin in its interior.

Lemma 2.3. If φ ∈ C and K ∈ Kn
o , then

1

2cφRK

� hΠφK(u) � 1

cφrK
,

for all u ∈ Sn−1.

Proof. Suppose uo ∈ Sn−1 and hΠφK(uo) = λo; i.e.

1

n

∫
Sn−1

φ

(
uo · u

λohK(u)

)
hK(u)dSK(u)

|K| = 1 =
∫

Sn−1

φ

(
uo · u

λohK(u)

)
dVK(u).

To obtain the lower estimate we proceed as follows. From the definition (1.2), either φ(cφ) = 1
or φ(−cφ) = 1. Suppose φ(−cφ) = 1. Hence from the fact that φ is non-negative and φ(0) = 0,
Jensen’s inequality, and (1.13) together with the fact that φ is monotone decreasing on (−∞,0],

φ(−cφ) = 1

= 1

n

∫
Sn−1

φ

(
uo · u

λohK(u)

)
hK(u)dSK(u)

|K|

� 1

n

∫
Sn−1

φ

(
(uo · u)−
λohK(u)

)
hK(u)dSK(u)

|K|

� φ

(
1

n

∫
Sn−1

(uo · u)−
λohK(u)

hK(u)dSK(u)

|K|
)

� φ

(
− 1

2λoRK

)
.

Since φ is monotone decreasing on (−∞,0], from this we obtain the lower bound for hΠφK ,

1

2cφRK

� λo.

The case where φ(cφ) = 1 is handled the same way and gives the same result.
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To obtain the upper estimate, observe that from the definition (1.2), together with the fact that
the function t 
→ max{φ(t),φ(−t)} is monotone increasing on [0,∞) and definition (1.12), and
(1.11) it follows that

max
{
φ(cφ),φ(−cφ)

} = 1

=
∫

Sn−1

φ

(
uo · u

λohK(u)

)
dVK(u)

�
∫

Sn−1

max

{
φ

( |uo · u|
λohK(u)

)
, φ

(−|uo · u|
λohK(u)

)}
dVK(u)

�
∫

Sn−1

max

{
φ

(
1

λohK(u)

)
, φ

( −1

λohK(u)

)}
dVK(u)

�
∫

Sn−1

max

{
φ

(
1

λorK

)
, φ

( −1

λorK

)}
dVK(u)

= max

{
φ

(
1

λorK

)
, φ

( −1

λorK

)}
.

But the even function t 
→ max{φ(t),φ(−t)} is monotone increasing on [0,∞) so we conclude

λo � 1

cφrK
. �

For c > 0, from (1.3), (1.10) and definition (2.2) we have

ΠφcK = 1

c
ΠφK, (2.5)

and taking the polars, and using (1.5),

Π∗
φcK = cΠ∗

φK. (2.6)

The Orlicz projection operator Πφ : Kn
o → Kn

o is continuous.

Lemma 2.4. If Ki ∈ Kn
o , then

Ki → K ∈ Kn
o �⇒ ΠφKi → ΠφK,

for each φ ∈ C .

Proof. Suppose uo ∈ Sn−1. We will show that

hΠφK (uo) → hΠφK(uo).
i



232 E. Lutwak et al. / Advances in Mathematics 223 (2010) 220–242
Let

hΠφKi
(uo) = λi,

and note that Lemma 2.3 gives

1

2cφRKi

� λi � 1

cφrKi

.

Since Ki → K ∈ Kn
o , we have rKi

→ rK > 0 and RKi
→ RK < ∞, and thus there exist a, b

such that 0 < a � λi � b < ∞, for all i. To show that the bounded sequence {λi} converges to
hΠφK(uo), we show that every convergent subsequence of {λi} converges to hΠφK(uo). Denote
an arbitrary convergent subsequence of {λi} by {λi} as well, and suppose that for this subse-
quence we have

λi → λ∗.

Obviously, 0 < a � λ∗ � b. Let K̄i = λiKi . Since λi → λ∗ and Ki → K , we have

K̄i → λ∗K.

The fact that hΠφKi
(uo) = λi , together with (2.5) and (1.3), shows that hΠφK̄i

(uo) = 1; i.e.

∫
Sn−1

φ

(
uo · u
hK̄i

(u)

)
dVK̄i

(u) = 1,

for all i. But K̄i → λ∗K implies that the functions hK̄i
→ hλ∗K , uniformly, and the measures

SK̄i
→ Sλ∗K , weakly. This in turn implies that the measures VK̄i

→ Vλ∗K , weakly, and hence
using the continuity of φ we have

∫
Sn−1

φ

(
uo · u

hλ∗K(u)

)
dVλ∗K(u) = 1,

which by Lemma 2.1 gives

hΠφλ∗K(uo) = 1.

This, together with (2.5) and (1.3), yields the desired

hΠφK(uo) = λ∗,

and shows that hΠφKi
(uo) → hΠφK(uo).

Since the support functions hΠφKi
→ hΠφK pointwise (on Sn−1) they converge uniformly

(see e.g., Schneider [58, p. 54]) completing the proof. �
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The continuity of the Orlicz projection operator Πφ : Kn
o → Kn

o , together with the continu-
ity of the projection operator, now yields the continuity of the polar Orlicz projection operator
Π∗

φ :Kn
o → Kn

o .
It turns out that the Orlicz projection body ΠφK is continuous in φ as well as in K .

Lemma 2.5. If φi ∈ C , then

φi → φ ∈ C �⇒ Πφi
K → ΠφK,

for each K ∈ Kn
o .

Proof. Suppose K ∈ Kn
o and uo ∈ Sn−1. We will first show that

hΠφi
K(uo) → hΠφK(uo).

Let

hΠφi
K(uo) = λi,

and note that Lemma 2.3 gives

1

2cφi
RK

� λi � 1

cφi
rK

.

Since φi → φ ∈ C , we have cφi
→ cφ ∈ (0,∞) and thus there exist a, b such that 0 < a � λi �

b < ∞, for all i. To show that the bounded sequence {λi} converges to hΠφK(uo), we show that
every convergent subsequence of {λi} converges to hΠφK(uo). Denote an arbitrary convergent
subsequence of {λi} by {λi} as well, and suppose that for this subsequence we have

λi → λ∗.

Obviously, 0 < a � λ∗ � b. Since hΠφi
K(uo) = λi , Lemma 2.1 gives

1 =
∫

Sn−1

φi

(
uo · u

λihK(u)

)
dVK(u).

This, together with the facts that φi → φ ∈ C and λi → λ∗ ∈ (0,∞), gives

1 =
∫

Sn−1

φ

(
uo · u

λ∗hK(u)

)
dVK(u).

When combined with Lemma 2.1, this gives the desired

hΠφK(uo) = λ∗,

and completes the argument showing that hΠφ K(uo) → hΠφK(uo).

i
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Since the support functions hΠφi
K → hΠφK pointwise (on Sn−1) they converge uniformly and

hence

Πφi
K → ΠφK. �

We now demonstrate the affine nature of the Orlicz projection operator.

Lemma 2.6. If K ∈ Kn
o and A ∈ SL(n), then

ΠφAK = A−tΠφK.

Proof. Suppose P is a polytope whose (n−1)-dimensional faces are F1, . . . ,Fm. Let u1, . . . , um

be the outer unit normals to the faces, and let h1, . . . , hm denote the support numbers of the
faces of P ; i.e., h(P ;ui) = hi . Let V1, . . . , Vm denote the volumes of the facial cones, so that,
Vi = 1

n
hi |Fi |. Finally, let V denote the volume of the polytope P .

For A ∈ SL(n), let P � = AP = {Ax: x ∈ P }. Let F �
1 , . . . ,F �

m denote the faces of P �, let
u�

1, . . . , u�
m be the outer unit normals of the faces of P � and let h�

1, . . . , h�
m denote the corre-

sponding support numbers of P �. Since A ∈ SL(n), obviously the volumes V �
1 , . . . , V �

m of the
facial cones of P � are such that V �

i = Vi .
The face Fi parallel to the subspace u⊥

i is transformed by A into the face F �
i = AFi parallel

to (A−t ui)
⊥ and thus

u�
i = A−t ui/

∣∣A−t ui

∣∣. (2.7)

Now h�
i = h(P �, u�

i ) = h(AP,u�
i ) = h(P,Atu�

i ), by (1.4). Thus, from (2.7) we have

h�
i = h

(
P,Atu�

i

) = h
(
P,ui/

∣∣A−t ui

∣∣) = h(P,ui)/
∣∣A−t ui

∣∣ = hi/
∣∣A−t ui

∣∣. (2.8)

Now from definition (2.3), the fact that V � = V and V �
i = Vi together with (2.7) and (2.8),

definition (2.3) again, and finally (1.4), we have

hΠφAP (x) = hΠφP �(x)

= inf

{
λ > 0:

m∑
i=1

φ

(
x · u�

i

λh�
i

)
V �

i

V � � 1

}

= inf

{
λ > 0:

m∑
i=1

φ

(
x · A−t ui

λhi

)
Vi

V
� 1

}

= inf

{
λ > 0:

m∑
i=1

φ

(
A−1x · ui

λhi

)
Vi

V
� 1

}

= hΠφP

(
A−1x

)
= hA−tΠφP (x),

showing that ΠφAP = A−tΠφP . This along with Lemma 2.4 completes the proof. �
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3. Proof of the Orlicz Petty projection inequality

We shall require the following.

Lemma 3.1. If K ⊂ R
n−1 × R is a convex body that contains the origin in its interior, and if ∂K

is line free in direction en, then for (y′, t) ∈ R
n−1 × R,

∫
∂K

φ

(
(y′, t) · νK(x)

x · νK(x)

)
x · νK(x)dHn−1(x)

=
∫
K ′

φ

(
t − y′ · ∇	(x′)

〈	〉(x′)

)
〈	〉(x′) dx′ +

∫
K ′

φ

(−t − y′ · ∇	(x′)
〈	〉(x′)

)
〈	〉(x′) dx′,

where K ′ = Ken denotes the image of the orthogonal projection of K onto the subspace e⊥
n =

R
n−1.

Proof. Note that we abbreviated the overgraph and undergraph functions of K in the direction
en by 	 = 	en(K; ·) : K ′ → R and 	 = 	en(K; ·) : K ′ → R; i.e.,

K = {
x′ + sen: x′ ∈ K ′, −	(x′) � s � 	(x′)

}
.

For x′ ∈ K ′, denote the outer unit normal of the overgraph of K at (x′, 	(x′)) by ν(x′). Thus,

ν(x′) = (−∇	(x′),1)

(1 + |∇	(x′)|2) 1
2

.

Denote the outer unit normal of the undergraph of K at (x′,−	(x′)) by ν(x′), so that

ν(x′) = (−∇	(x′),−1)

(1 + |∇	(x′)|2) 1
2

.

When x is on the overgraph of ∂K , i.e., x = (x′, 	(x′)), we have

x · νK(x) = (
x′, 	(x′)

) · ν(x′) = 〈	〉(x′)
(1 + |∇	(x′)|2) 1

2

. (3.1)

When x is on the undergraph of ∂K , i.e., x = (x′,−	(x′)), we have

x · νK(x) = (
x′,−	(x′)

) · ν(x′) = 〈	〉(x′)
(1 + |∇	(x′)|2) 1

2

. (3.2)

To complete the proof we now appeal to (1.20). �
We now establish the main ingredient in the proof of the Orlicz Petty projection inequality.
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Proposition 3.1. Suppose φ ∈ C . If K ∈ Kn
o and ∂K is line free in direction u, then

SuΠ
∗
φK ⊆ Π∗

φ(SuK). (3.3)

If φ ∈ Cs and SuΠ
∗
φK = Π∗

φ(SuK), then all of the midpoints of the chords of K parallel to u lie
on a hyperplane that passes through the origin.

Proof. Without loss of generality, assume that u = en. We will be appealing to Lemma 1.1 and
thus we begin by supposing that

h(ΠφK;y′, t) = 1 and h(ΠφK;y′,−s) = 1,

with t �= −s, or equivalently, by (1.8), that

(y′, t) ∈ ∂Π∗
φK and (y′,−s) ∈ ∂Π∗

φK.

By Lemma 2.1 this means that

1

n|K|
∫

∂K

φ

(
(y′, t) · νK(x)

x · νK(x)

)
x · νK(x)dHn−1(x) = 1 (3.4a)

and

1

n|K|
∫

∂K

φ

(
(y′,−s) · νK(x)

x · νK(x)

)
x · νK(x)dHn−1(x) = 1. (3.4b)

By Lemma 1.1, the desired inclusion (3.3) will have been established if we can show that

h

(
ΠφSuK;y′, 1

2
t + 1

2
s

)
� 1. (3.5)

By Lemma 3.1 and (1.15), (1.14), (1.1), and Lemma 3.1 once again, we have

∫
∂(SuK)

φ

(
(y′, 1

2 t + 1
2 s) · νSuK(x)

x · νSuK(x)

)
x · νSuK(x) dHn−1(x)

=
∫
K ′

φ

( 1
2 t + 1

2 s − y′ · ∇( 1
2	 + 1

2	)(x′)
〈 1

2	 + 1
2	〉(x′)

)〈
1

2
	 + 1

2
	

〉
(x′) dx′

+
∫
K ′

φ

(− 1
2 t − 1

2 s − y′ · ∇( 1
2	 + 1

2	)(x′)
〈 1

2	 + 1
2	〉(x′)

)〈
1

2
	 + 1

2
	

〉
(x′) dx′
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� 1

2

∫
K ′

φ

(
t − y′ · ∇	(x′)

〈	〉(x′)

)
〈	〉(x′) dx′ + 1

2

∫
K ′

φ

(
s − y′ · ∇	(x′)

〈	〉(x′)

)
〈	〉(x′) dx′

+ 1

2

∫
K ′

φ

(−t − y′ · ∇	(x′)
〈	〉(x′)

)
〈	〉(x′) dx′ + 1

2

∫
K ′

φ

(−s − y′ · ∇	(x′)
〈	〉(x′)

)
〈	〉(x′) dx′

= 1

2

∫
∂K

φ

(
(y′, t) · νK(x)

x · νK(x)

)
x · νK(x)dHn−1(x)

+ 1

2

∫
∂K

φ

(
(y′,−s) · νK(x)

x · νK(x)

)
x · νK(x)dHn−1(x). (3.6)

As an aside, observe that if φ is strictly convex, then (1.1) tells us that equality in the inequality
of (3.6) would imply that

t − y′ · ∇	(x′)
〈	〉(x′)

= s − y′ · ∇	(x′)
〈	〉(x′)

and
−s − y′ · ∇	(x′)

〈	〉(x′)
= −t − y′ · ∇	(x′)

〈	〉(x′)
,

for almost all x′ ∈ K ′.
Since |SuK| = |K|, it follows from (3.4) and (3.6), that

1

n|SuK|
∫

∂(SuK)

φ

(
(y′, 1

2 t + 1
2 s) · νSuK(x)

x · νSuK(x)

)
x · νSuK(x) dHn−1(x) � 1.

This and a glance at definition (2.1), gives (3.5), and thus (3.3) is proved.
Suppose that φ is strictly convex and

SuΠ
∗
φK = Π∗

φ(SuK). (3.7)

For each y′ ∈ K ′ that is sufficiently close to the origin, there exist real ty′ and sy′ , with ty′ �= −sy′ ,
such that

h(ΠφK;y′, ty′) = 1 and h(ΠφK;y′,−sy′) = 1; (3.8)

or equivalently by (1.8)

(y′, ty′) ∈ ∂Π∗
φK and (y′,−sy′) ∈ ∂Π∗

φK. (3.9)

By Lemma 1.1, (3.7) and (3.8) forces

h

(
ΠφSuK;y′, 1

2
ty′ + 1

2
sy′

)
= 1. (3.10)

Now (3.10) forces equality in (3.6). The strict convexity of φ and the equality conditions of
(1.1) now show that
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ty′ − y′ · ∇	(x′)
〈	〉(x′)

= sy′ − y′ · ∇	(x′)
〈	〉(x′)

, (3.11a)

−sy′ − y′ · ∇	(x′)
〈	〉(x′)

= −ty′ − y′ · ∇	(x′)
〈	〉(x′)

, (3.11b)

for almost all x′ ∈ K ′. Let y′ = 0 and note from (3.9) that s0 �= 0 and t0 �= 0. Observe that the
denominators in (3.11) are strictly positive for almost all x′ ∈ K ′, and by solving (3.11) we see
that

〈	〉(x′) = 〈	〉(x′),

for almost all x′ ∈ K ′; i.e.,

(	 − 	)(x′) − x′ · ∇(	 − 	)(x′) = 0 (3.12)

for almost all x′ ∈ K ′. But the fact that 〈	 〉(x′) = 〈	〉(x′), for almost all x′ ∈ K ′, together with
(3.11) shows that

(ty′ − sy′) − y′ · ∇(	 − 	)(x′) = 0, (3.13)

for almost all x′ ∈ K ′. However (3.13) says that, for some null set N ′ ⊂ K ′

{∇(	 − 	)(x′): x′ ∈ K ′ \ N ′}
is a set of points that must lie in a plane of R

n−1 with normal vector y′. But y′ can be chosen in
any direction in R

n−1, so there exists an x′
o ∈ R

n−1 with

{∇(	 − 	)(x′): x′ ∈ K ′ \ N ′} = {
x′
o

}
.

Substituting this into (3.12) shows that

(	 − 	)(x′) = x′ · x′
o

for almost all x′ ∈ K ′ and hence for all x′ ∈ K ′. This shows that the midpoints of the chords of
K parallel to en,

{(
x′, 1

2
	(x′) − 1

2
	(x′)

)
: x′ ∈ K ′

}
,

lie in the subspace {(x′, 1
2x′

o · x′): x′ ∈ R
n−1} of R

n. �
The observation (1.18), the continuity of Π∗

φ : Kn
o → Kn

o , and the fact that every convex body
has a boundary that is line free in almost all directions (1.19), allows us to conclude from Propo-
sition 3.1:
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Corollary 3.1. If φ ∈ C , and K ∈ Kn
o , then

SuΠ
∗
φK ⊆ Π∗

φ(SuK),

for all u ∈ Sn−1.

To establish the equality conditions of our theorem we will make use of the following clas-
sical characterization of ellipsoids centered at the origin: A convex body K ∈ Kn

o is an ellipsoid
centered at the origin if and only if there exists a dense set D of directions in Sn−1 such that for
each u ∈ D, the midpoints of the chords of K parallel to u lie in a subspace of R

n.

Theorem 3.1. Suppose φ ∈ C . If K ∈ Kn
o , then the volume ratio

∣∣Π∗
φK

∣∣/|K|

is maximized when K is an ellipsoid centered at the origin. If φ ∈ Cs , then ellipsoids centered at
the origin are the only maximizers.

Proof. Suppose φ ∈ Cs and K is not an ellipsoid centered at the origin. Choose a direction u

in which ∂K is line free and for which the chords of K (in direction u) have midpoints which
do not lie in a subspace of R

n. Let K1 = SuK . From Proposition 3.1 and the fact that Steiner
symmetrization leaves volume unchanged, it follows that

∣∣Π∗
φK

∣∣ <
∣∣Π∗

φK1
∣∣ with |K| = |K1|.

Choose a sequence of line-free directions {ui} such that the sequence defined by Ki+1 =
Sui

Ki , converges to cB , where c > 0. Here we are using (1.19) together with the fact (see [4])
that a dense set of directions is sufficient to Steiner transform any convex body into a ball. But
Proposition 3.1 and the continuity of Π∗

φ : Kn
o → Kn

o can now be used to conclude that

∣∣Π∗
φK

∣∣ <
∣∣Π∗

φK1
∣∣ � · · · � ∣∣Π∗

φKi

∣∣ → ∣∣Π∗
φcB

∣∣,
with |Ki+1| = |Ki | = · · · = |K1| = |K| and thus |K| = |cB|, since Ki → cB . From (2.6) we
know that Π∗

φcB = cΠ∗
φB and from this we have

|Π∗
φK|

|K| <
|Π∗

φB|
|B| .

For φ ∈ C that is not necessarily strictly convex, use the same argument — but now with a
first step that results in an inequality that is not necessarily strict. �
4. Open problems

The equality conditions in Theorem 3.1 were only established under the assumption that φ is
strictly convex. Was this restriction necessitated by our methods?
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Conjecture 4.1. Suppose φ ∈ C . If K ∈ Kn
o , then the volume ratio

∣∣Π∗
φK

∣∣/|K|

is maximized only when K is an ellipsoid.

For φ ∈ C and K ∈ Kn
o , the Orlicz centroid body ΓφK of K is defined in [48] as the convex

body whose support function at x ∈ R
n is given by

h(ΓφK;x) = inf

{
λ > 0:

1

|K|
∫
K

φ

(
1

λ
x · y

)
dy � 1

}
,

where the integration is with respect to Lebesgue measure in R
n.

In [48] the following Orlicz version of the Busemann–Petty centroid inequality is established.

Orlicz Busemann–Petty centroid inequality. If φ ∈ C and K ∈ Kn
o then the volume ratio

|ΓφK|/|K|

is minimized if and only if K is an ellipsoid centered at the origin.

A technique introduced in [35] shows that once the Petty projection inequality has been estab-
lished one can easily derive the Busemann–Petty centroid inequality as a consequence. Is there
a simple path from the Orlicz Petty projection inequality to the Orlicz Busemann–Petty centroid
inequality?
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