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The subject matter of this paper focuses on two functional differential equations
with complex lag functions. We address ourselves to the existence and uniqueness
of solutions and to their asymptotic behaviour. Q 1997 Academic Press

1. INTRODUCTION

The last few decades have witnessed important advances in our under-
standing of the behaviour of functional differential equations with rescal-
ing. A pride of place belongs to the pantograph equation

y9 t s Ay t q By qt q Cy9 qt , t G 0, y 0 s y , 1.1Ž . Ž . Ž . Ž . Ž . Ž .0

d Ž . � 4where y g C , A, B, C are d = d matrices, and q g 0, ` _ 1 and to its
w x Ž .generalizations 5, 9, 11, 12, 14 . The interest in 1.1 is motivated by the

ubiquity of its applications in a wide range of subject areas, from probabil-
w xity theory to wavelets to applied mathematics 5, 6, 9, 15 .

Ž . Ž .Our knowledge of 1.1 is fairly comprehensive in the case q g 0, 1 and
the results are conveniently expressed in terms of the spectrum s and the
spectral radius r of the corresponding matrices. Specifically, unless qyj g
Ž . Ž .s C for some j g Z, the solution of 1.1 exists and is unique subject to
Ž . w x Ž . Ž y1 .r C - 1 9 . Moreover, provided that max Re s A - 0, r A B - 1,
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Ž . Ž . w xand r C - 1, the trivial solution of 1.1 is asymptotically stable 9 .
Ž .The behaviour along the stability boundaries max Re s A s 0 and

Ž y1 . w xr A B s 1 is more complicated and we refer the reader to 9, 10 ,
respectively.

The equation

l my1
Žn. Žk .y t s a y a t , t G 0, 1.2Ž . Ž .Ž .Ý Ý j , k j

js0 ks0

Žwhere a g C and a ) 1 for all j s 0, 1, . . . , l may be called a gener-j, k j
.alized ad¨anced pantograph equation. Unlike in the retarded case max aj j

- 1, the Cauchy problem for such equations is ill-posed. In general, there
exists a family of solutions depending on an arbitrary function. However,
uniqueness can be guaranteed in a class of quickly decreasing functions.

Ž .Let a [ min a and A [ max a . Every solution of 1.2 which forj j j j
2 Ž 2 .some c ) 0 and g ) n ln Ar 2 ln a satisfies the inequality

2y t F c exp yg ln 1 q t 1.3Ž . Ž . Ž .
w xis necessarily trivial 4, 5 . Moreover, this result cannot be improved in a

Ž . Ž .substantive manner since Eq. 1.2 has a nontrivial solution that obeys 1.3
2 Ž 2 . w xfor some c ) 0 and an arbitrary g - n r 2 ln A 5 .

The equation

l my1
Žn. Žk .y t s a y a t q b , t G 0, 1.4Ž . Ž .Ž .Ý Ý j , k j j

js0 ks0

Ž . Ž .is a generalization of 1.2 . A special feature of 1.4 is the existence of
w xcompactly supported solutions. This phenomenon was studied in 4 and

w xhas direct applications to approximation theory and to wavelets 6 .
In this paper we address ourselves to two generalizations of the panto-

graph equation to the complex plane, namely the pantograph equation with
in¨olution

my1 my1 my1
k k ky9 z s a y v z q b y rv z q c y9 rv z , z g C,Ž . Ž . Ž . Ž .Ý Ý Ýk k k

ks0 ks0 ks0

1.5Ž .

Ž .where a , b , c g C, k s 0, 1, . . . , m y 1, are given, r g 0, 1 , and v isk k i
the primitive mth root of unity, and to the pantograph equation of the
second type,

l n
Žk .y z s a y v z , z g C, 1.6Ž . Ž . Ž .Ý Ý j , k j

js0 ks1
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where a , v g C, supplemented by appropriate initial conditions at thej, k j
origin. Our main results are

THEOREM 1. Suppose that

my1
2p i lk r ma e / 0, k s 0, 1, . . . , m y 1.Ý l

ls0

Ž .Then the solution of the linear equation with in¨olution 1.5 cannot be
uniformly bounded for a nonzero initial ¨alue in the case m G 3, while in the
case m G 2 the zero solution is not asymptotically stable.

And
t j < <THEOREM 4. Let us assume that v s q , j s 0, 1, . . . , l, where q ) 1j

and the numbers t , t , . . . , t are rational. Gï en that0 1 l

< <max v ) 1,j
js0, 1, . . . , l

the following assertions are true:

Ž . Ž .1 E¨ery Eq. 1.6 has a nontrï ial analytic solution in some neigh-
bourhood of the origin.

Ž .2 The abo¨e analytic solution can be continued to the whole complex
plane as an entire function of order zero. Hence it is unbounded along any ray
approaching infinity.

w xWe refer to 7 for an early work on functional differential equations
with complex delay.

2. THE PANTOGRAPH EQUATION WITH INVOLUTION

Let us consider the equation

my1 my1 my1
k k ky9 z s a y v z q b y rv z q c y9 rv z , z g C,Ž . Ž . Ž . Ž .Ý Ý Ýk k k

ks0 ks0 ks0

2.1Ž .

where the constants a , b , c g C, k s 0, 1, . . . , m y 1, are given, r gk k k
Ž .0, 1 , and v is the mth primitive root of unity,

2p i
v s exp .

m
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Ž . Ž .Equation 2.1 is accompanied by the initial condition y 0 s 1. Follow-
w x Ž .ing the terminology in 16 , we term 2.1 a pantograph equation with

in¨olution.
Let us define

y z [ y v l z , l s 0, 1, . . . , m y 1.Ž . Ž .l

l Ž .By replacing z with v z in 2.1 we readily obtain

my1 my1
X ly z s v a y z q b y rzŽ . Ž . Ž .Ý Ýl Žkql . mod m kql Žkql . mod m kql

ks0 ks0

my1
Xq c y z , l s 0, 1, . . . , m y 1.Ž .Ý Žkql . mod m kql

ks0

In a matrix notation this becomes the standard pantograph equation

y9 z s Ay z q By rz q Cy9 rz , z g C, y 0 s 1. 2.2Ž . Ž . Ž . Ž . Ž . Ž .

The matrices A, B, C are defined as follows. Given a sequence a s
� 4my 1 ma g C we letk ks0

a a a ??? a0 1 2 my1

va va va ??? vamy 1 0 1 my2

2 2 2 2v a v a v a ??? v aH a , v s .Ž . my 2 my1 0 my3m . . . .. . . .. . . .
my 1 my1 my1 my1v a v a v a ??? v a1 2 3 0

Ž . Ž . Ž .Then A s H a, v , B s H b, v , and C s H c, v . Although the matrix
H might have already appeared somewhere in the literature, we give it the
provisional name of a v-circulant.

Ž . Ž lyk .The components of the vector y obey the identity y z s y v z ,l k
k, l s 0, 1, . . . , m y 1. Therefore, the equation

y9 t s Ay t q By rt q Cy9 rt , t g Rq, y 0 s 1, 2.3Ž . Ž . Ž . Ž . Ž . Ž .
Ž . k qgives the solution of 2.2 on all line segments v t, t g R , for k s

Ž .0, 1, . . . , m y 1. By the same token, the solution of 2.2 on the straight
iu k q w xlines e v t, t g R , for k s 0, 1, . . . , m y 1 and an arbitrary u g 0, 2p ,

is given by the equation

x9 t s eiuAx t q eiuBx rt q Cx9 rt , t g Rq, x 0 s 1, 2.4Ž . Ž . Ž . Ž . Ž . Ž .
Ž . Ž yi u .by letting y t s x e t . Since, as will be apparent from the analysis in

Ž . Ž .Sections 3 and 4, Eqs. 2.3 and 2.4 share for m G 2 the same asymptotic
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stability features, we incur no loss of generality by focusing exclusively on
Ž .2.3 in the sequel.

w xWe recall from 9, 13 that

Ž . Ž .1 The solution of 2.3 exists if

ryp f s C , p g Zq.Ž .
1w . Ž .and it is unique in C 0, ` provided that r C - 1.

Ž . Ž .2 The solution of 2.3 is uniformly bounded if either

max Re s A - 0, r Ay1B F 1Ž . Ž .
and all the eigenvalues of Ay1B with unit modulus share the same
algebraic and geometric multiplicity, or

max Re s A s 0, 0 f s A , r Ay1B - 1.Ž . Ž . Ž .

Ž . Ž .3 The trivial solution of 2.3 is asymptotically stable if

max Re s A - 0, r Ay1B - 1.Ž . Ž .
Ž .Therefore, the location of the eigenvalues of H ?, v is critical to ourm

discussion.

3. THE EIGENVALUES OF v-CIRCULANTS

Ž Ž ..There are several alternative ways of deriving s H a , v but them
following one is probably the neatest. We emphasize the dependence of
the spectrum upon the sequence a by denoting

s a s s H a , v .Ž . Ž .Ž .˜ m

Since v m s 1, we have

m m mv a v a ??? v a0 1 my1

va va ??? vamy 1 0 my2
. . .H a , v sŽ .m . . .. . .

my 1 my1 my1v a v a ??? v a1 2 0

my 1 my1 my1v b v b ??? v b0 1 my1

b b ??? bmy 1 0 my2s ,. . .. . .. . .
my 2 my2 my2v b v b ??? v b1 2 0
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Ž .where b s va , l s 0, 1, . . . , m y 1. We next permute H a , v by bring-l l
ing the top row to the bottom and the leftmost column to the right. This is

Ž .a similarity transformation since permutation matrices are orthogonal ,
Ž .hence eigenvalues stay intact}but the end result is H b , v ! Thereforem

we deduce that

s a s s v a . 3.1Ž . Ž . Ž .˜ ˜
Ž . w Ž . xLet us suppose that l g s a . Then det H a , v y lI s 0. The fact˜ m

that the determinant vanishes remains true if we multiply each element of
w Ž . xa matrix by the same constant, therefore det H v a , v y vlI s 0.m

Ž . Ž .Together with 3.1 , this implies that vl g s a .˜
The last statement implies by induction that

l g s a « v ll g s a , l s 0, 1, . . . , m y 1. 3.2Ž . Ž . Ž .˜ ˜
Ž .Up to a multiplicative constant, this gives all the eigenvalues of H a , v :m

The statement is trivial if l / 0 and, moreover, it is enough for one
Ž .eigenvalue to be nonzero to be able to deduce from 3.2 that so are all the

rest. Hence the only exception is when all the eigenvalues are zero}and
Ž .this is also consistent with both 3.2 and complete knowledge of the

spectrum.
Ž .Finally, we fill in the missing gap in 3.2 by specifying the multiplicative

constant. Since the determinant of a matrix equals the product of its
Ž .eigenvalues, 3.2 yields

v Žmy1.m r2lm s det H a , v .Ž .m

The determinant is a multiplicative functional, therefore

� my 14det H a , v s det diag 1, v , . . . , v = det C a ,Ž . Ž .n m

Ž .where C a is the circulant of the sequence a . But, as is trivial to affirm,m
� my 14 Žmy1.m r2 Ž .mdet diag 1, v, . . . , v s v s y1 , while

my1
kdet C a s a v ,Ž . Ž .Łm

ks0

where
my1

la z s a z , z g C,Ž . Ý l
ls0

Ž .is the symbol of C a . We therefore conclude that the spectrum ofm
Ž .H a , v ism

1rmmy1
k la v v , l s 0, 1, . . . , m y 1. 3.3Ž . Ž .Ł

ks0



THE PANTOGRAPH EQUATION 123

Ž .An interesting consequence of 3.3 is that no quotient of two distinct
eigenvalues of the matrix A can be of the form r k for some k g Z. Hence,

w x � 4in the parlance of 9 , the pencil A, A is r-canonical and the solution
Ž . Žof 2.3 alternatively, of its sufficiently high derivative in the case

Ž y1 . .r A B G 1 can be expanded in Dirichlet series.

4. BOUNDEDNESS AND ASYMPTOTIC STABILITY

On the face of it, the previous section proves that for m G 3 there is
always an eigenvalue of A in the open right half-plane, hence no uniform
boundedness, while for m G 2 there is always an eigenvalue of A in the
closed right half-plane, consequently no asymptotic stability. This, how-

Ž .ever, disregards the possibility that the vector y 0 s 1 might lie in a
Ž l .subspace which is orthogonal to unstable modes of exp q tA for all

l g Zq. We now show that this is impossible.
Let

1
sv

2 s qvv [ , s g Z .s ...
Žmy1. sv

It is easy to verify the formula

H a , v v s a v s v , s g Zq,Ž . Ž .m s sq1

hence the identity

sy1
s j qH a , v 1 s a v v , s g Z . 4.1Ž . Ž . Ž .Łm s

js0

Incidentally, a simple consequence of our analysis and the identity
v s v is thats s mod m

my1
m jH a , v v s a v v , s s 0, 1, . . . , m y 1.Ž . Ž .Łm s s

js0

Therefore

my1
m jH a , v s a I , where a [ a v .Ž . Ž .ˆ ˆ Łm

js0
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This is consistent with our derivation of the spectrum of H in the lastm
section. Moreover, it is ‘‘almost’’ a proof that the spectrum is indeed as
stated.

Ž .Given j g C, we next proceed to evaluate exp j A 1. The purpose of our
analysis is to demonstrate that, unless all the eigenvalues of A are zero,
for almost all values of j this vector has nonzero components in the
direction of all the eigenvectors of A.

Expanding the exponential into a Taylor series,

` `1 1
j A s s se 1 s j A v s j vÝ Ý0 ss! s!ss0 ss0

` sy11
l ms a v j vŽ .Ý Ł ss! ls0ss0

rmqjy1` m 1
l ms v q a v j v .Ž .Ý Ý Ł0 jrm q j !Ž . ls0rs0 js1

However,

rrmqjy1 jy1 jy1my1
l l j r la v s a v a v s a a v ,Ž . Ž . Ž . Ž .ˆŁ Ł Ł Ł

ls0 ls0 ls0 ls0

therefore

jy1m ` 1 rj A l j mw xe 1 s v q a v j aj v .Ž . ˆÝ Ł Ý0 j½ 5rm q j !Ž .ls0js1 rs0

Let

1;
r` zz 1

f z s s F ,Ž . j q 1 j q 2 j q mÝj 1 m mmrm q j ! j!Ž . , , . . . , ;rs0
m m m

j s 1, 2, . . . , m ,

where F is a generalized hypergeometric function. Therefore1 m

jy1m
j A l j me 1 s v q a v j f aj v .Ž . Ž .ˆÝ Ł0 j j

ls0js1

Ž . � 4 Ž l.Note that, unless s A s 0 , all the terms of the form a v are nonzero.
Ž .Therefore exp j A can be expressed as a linear combination of
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v , v , . . . , v with coefficients that are nonzero for all the values of0 1 my1
Žj g C except possibly a countable set because all the f are entirej

.functions and none is identically zero . Moreover, the countable set where
Žsome f ’s might vanish cannot accumulate at the origin or at any finitej

.point}the reason is, again, analyticity . Hence, we deduce that all vectors
Ž l . lexp tr A 1, except possibly for a finite number of values of tr , contain

nonzero components in the direction of all the eigenvectors of A. This, in
w xtandem with the work in 9 , completes the proof that m G 3 implies no

Ž .uniform boundedness, while m G 2 implies no asymptotic stability of 2.1 .
We formulate the main result of this section as a theorem.

Ž l.THEOREM 1. Suppose that a v / 0, l s 0, 1, . . . , m y 1. The solution
Ž .of the linear equation with in¨olution 2.1 cannot be uniformly bounded for a

nonzero initial ¨alue in the case m G 3, while in the case m G 2 the zero
solution is not asymptotically stable.

5. q-DIFFERENCE EQUATIONS AND DIFFERENCE
EQUATIONS WITH EXPONENTIAL COEFFICIENTS

The next major objective of this paper is the analysis of the equation
l n

Žk .y z s a y v z , z g C, 5.1Ž . Ž . Ž .Ý Ý j , k j
js0 ks1

where a , v g C, accompanied by appropriate initial conditions at z s 0.j, k j
We term it the pantograph equation of the second type.

Ž .Before we can proceed to examine 5.1 , we need to pay attention to
certain properties of difference and q-difference equations.

The equation
n

ny ia p f q p s 0, p g C, 5.2Ž . Ž .Ž .Ý i
is0

where a , a , . . . , a are given complex functions and q g C, is called a0 1 n
< <q-difference equation. Let us assume without loss of generality that q ) 1.

Moreover, we stipulate that a , a , . . . , a are analytic in the neighbour-0 1 n
hood of the origin and admit there an expansion of the form

`
la p s a p .Ž . Ýi i , l

ls0

The algebraic equation

a r n q a r ny1 q ??? qa r q a s 00, 0 1, 0 ny1, 0 n , 0

Ž .is termed the characteristic equation of 5.2 .
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w xThe following result is a consequence of 1 .

Ž .THEOREM 2. 1 Suppose that a , a / 0. Then the q-difference equa-0, 0 n, 0
Ž .tion 5.2 possesses a solution of the form

`
k l1f p s p c p , p g C,Ž . Ý l

ls0

where k s log r and r is a root of the characteristic equation. The power1 q 1 1
series con¨erges in a neighbourhood of the origin and the coefficient c can be0
chosen arbitrarily.
Ž .2 Suppose that either a s 0 or a s 0 or both and let a denote the0, 0 n, 0 i, ji

Ž . Ž . Ž .first nonzero coefficient in a p . We plot the pairs i, j in the i, j -plane.i i
The Newton diagram of the point set X g R2 is the maximal piecewise-linear
con¨ex cur̈ e whose endpoints belong to X and such that all points of this set

Ž . �Ž .4lie either on or abo¨e the line cf. Fig. 1 . The Newton diagram of i, j isi
Ž .called the characteristic line of 5.2 . Let m be the slope of the extreme left

Ž .segment of the characteristic line. Then 5.2 has a solution of the form

`
2mŽlog pylog p.r2 k l r sq q 2f p s q p d p , p g C, 5.3Ž . Ž .Ý l

ls0

where k is a complex number, s is an integer, and d might be chosen2 0
arbitrarily. The power series con¨erges in a neighbourhood of the origin.

Ž .FIG. 1. The characteristic line of Eq. 5.2 , which is the Newton diagram of the points
Ž .i, j .i
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The following lemma is employed in the proof of Theorem 4, while
being of an independent interest.

� 4̀LEMMA 3. Let us suppose that the sequence c satisfies the differencek ks0
equation

N n2
jrA q c q c s 0, r s 0, 1, . . . , 5.4Ž .Ý Ý j , k rqk r

jsN ks11

< <where N G 1, A are gï en complex coefficients, q ) 1, and there exist2 j, k
� 4k , k g 1, 2, . . . , n such that A , A / 0. Then for any e ) 0 there1 2 N , k N , k1 1 2 2

Ž .exists D ) 0 such that 5.4 has a nontrï ial solution that obeys the estimate

< < r yŽ1y« . r 2 rŽ2 n.c F D L , r s 0, 1, . . . . 5.5Ž .r

Ž . N2 rProof. We commence by dividing 5.4 by the factor q , and this
yields the equivalent equation

Ž . N rN yj rN 22n2 1 1
A c q c s 0, r s 0, 1, . . . , 5.6Ž .Ý Ý j , k rqk rž / ž /q qjsN ks11

or, changing the index of summation,

jr N rN yN 2n2 1 1 1
A c q c s 0, r s 0, 1, . . . . 5.7Ž .Ý Ý N yj , k rqk r2 ž / ž /q qjs0 ks1

Letting

N yN2 1
N j2a t [ t , a t [ A t , k s 1, 2, . . . , n ,Ž . Ž . Ý0 k N yj , k2

js0

Ž .we may rewrite 5.7 in the form

n
yr yra q c q a q c s 0, r s 0, 1, . . . . 5.8Ž . Ž . Ž .Ý0 r k rqk

ks1

Ž .Simultaneously with 5.8 , we consider the q-difference equation

n
n nyka t f q t q a t f q t s 0, t G 0. 5.9Ž . Ž . Ž . Ž .Ž .Ý0 k

ks1

Since, according to the assumptions of the lemma, N G 1, it follows that2
at least one of the polynomials a , k s 1, 2, . . . , n, has a nontrivial con-k
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Ž w x. Ž .stant term. According to Theorem 2 the Adams theorem 1 Eq. 5.8
Ž .possesses a solution f of the form 5.3 in a sufficiently small neighbour-0

� < < 4hood of the origin, UU s t g C: 0 - t - R , say. In accordance withR
Fig. 1,

N2y F m - 0.
n

Ž .The constant d in 5.3 can be chosen arbitrarily, hence we may suppose0
Ž . Ž .that d / 0. Then there exists R g 0, R such that f t / 0 in UU .0 1 0 R1yr Ž .Letting t s q in 5.9 , we obtain

n
yr nyr yr nyŽ rqk .a q f q q a q f q s 0.Ž . Ž . Ž . Ž .Ý0 0 k 0

ks1

Ž ny r .We denote c s f q , r G r , where r is the first integer such thatr 0 0 0
q nyr0 g UU . Subsequently, we complete the definition of c ,R r y11 0

Ž .c , . . . , c by means of the recurrence 5.6 . This results in a sequencer y2 00
� 4̀ Ž .c which, by virtue of f t / 0 in UU , is nonzero. We thus deducer rs0 0 R1

Ž . Ž .that this sequence is a nontrivial solution of 5.8 , therefore of 5.6 .
To complete the proof of the lemma we need to demonstrate that the

Ž .inequalities 5.5 hold. We commence by observing that there exists
w .u g 0, 2p such that

arg q ny r / u , r s 0, 1, . . . ,

< < < <and choose the branches of log q s log q q ic and log t s log t q iw so
that

u F c , w - u q 2p .

We denote by UU c the neighbourhood UU of the origin, cut along the rayR R1 1

arg t s u . Substitution into the expansion of f yields0

2k̃ m log < t < rlog < q < c< <f t F D t e , t g UU ,Ž .0 0 R1

where D ) 0 and k are real numbers and m has been already restricted˜0
w Ž . .to the range yN r 2n , 0 . Consequently,2

2k Žnyr .˜ny r mŽnyr .log < q < rlog < q << < < <c s f q F D q eŽ .r 0 0

F Dr eyŽ1 y« .N2 r 2 log < q < rŽ2 n. s Dr eyŽ1 y« . r 2 log < q < rŽ2 n. s Dr LyŽ1 y« . r 2 rŽ2 n.
1 1 1

Ž .and 5.5 follows.
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6. THE PANTOGRAPH EQUATION OF THE
SECOND TYPE

The present section is devoted to an investigation of the pantograph
Ž .equation of the second type 5.1 . We address ourselves to the question of

local existence and analyticity of the solution around z s 0, to analytic
continuation into the whole complex plane, and to the asymptotic behavior
of the function y.

We commence by denoting

< < < <l [ min v , L [ max vj j
js0, 1, . . . , l js0, 1, . . . , l

Ž .and recalling that L - 1 implies that 5.1 has no nontrivial solutions that
w xare analytic at the origin 3 . Therefore, we turn our attention to the case

L ) 1.
Ž .In this case too the Cauchy problem for Eq. 5.1 , supplemented by the

initial data

y Žk . 0 s c , k s 0, 1, . . . , n y 1, 6.1Ž . Ž .k

w xhas in general no analytic solution at z s 0 4 .

EXAMPLE. Consider the equation

y z s yy9 4 z q y0 2 z , z g C,Ž . Ž . Ž .

which, by a trivial change of variable, can be more conveniently written as

y0 z s y9 2 z q y zr2 , z g C. 6.2Ž . Ž . Ž . Ž .

Ž .We accompany 5.4 with the initial conditions

y 0 s 0, y9 0 s 1. 6.3Ž . Ž . Ž .

Ž . Ž .Supposing that the solution of 6.2 , 6.3 is analytic at z s 0, we expand
it in Taylor series,

` cr ry z s z ,Ž . Ý r !rs0

Ž r .Ž . Ž .where c s y 0 , r s 0, 1, . . . . Differentiating 5.4 r times and lettingr
z s 0 results in the difference equation

c s 2 rc q 2yr c , r s 0, 1, . . . ,rq2 rq1 r
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Ž .where c , c are given by 5.5 . It is trivial to verify that0 1

< < Ž ry2.Ž ry1.r2c G 2 , r s 1, 2, . . . .r

Therefore, the radius of convergence of the Taylor series is zero and the
solution is not analytic at the origin.

Ž .We contend, however, that for each equation of the form 5.1 it is
Ž . Ž . Ž .possible to choose initial data 6.1 so that the Cauchy problem 5.1 , 6.1

has at least one nontrivial analytic solution at the neighbourhood of the
origin.

Ž .Suppose that all the v in 5.1 are real. In that case the standardj
classification of functional differential equations into those of retarded,

Ž .neutral, and advanced type can be applied to 5.1 . It is worthwhile to
Ž .mention that the case v ) 1 can correspond in 5.1 to any of these threej

types.
The central result of this section is a theorem on existence and continu-

ation into the complex plane of solutions to the pantograph equation of
Ž .the second kind 5.1 .

Let us suppose that the numbers v are multiplicatively commensurable,j
i.e., that

v s qt j , j s 0, 1, . . . , l ,j

< <where q ) 1 and t , . . . , t are rational numbers.0 l

THEOREM 4. Gï en that L ) 1, the following assertions are true.

Ž . Ž .1 E¨ery Eq. 5.1 has nontrï ial analytic solution in some neighbour-
hood of the origin.

Ž .2 The abo¨e analytic solution can be continued to the whole complex
plane as an entire function of order zero. Hence it is unbounded along any ray
approaching infinity.

Proof. Recalling that v s qt j, j s 0, 1, . . . , l, where the t are rational,j j
we observe that, possibly rescaling q, we may assume without loss of

Ž .generality that the t are integers. Therefore, we may rewrite 5.1 in thej
form

N n2
Žk . jy z s A y q z , z g C,Ž . Ž .Ý Ý j , k

jsN ks11

� 4where N - N are integers and there exist k , k g 1, 2, . . . , n such that1 2 1 2
A , A / 0. Moreover, L ) 1 implies that N G 1.N , k N , k 21 1 2 2
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We differentiate the equation r times and set z s 0. The outcome is

N n2
Ž r . jr Ž rqk .y 0 s A q y 0 , r s 0, 1, . . . . 6.4Ž . Ž . Ž .Ý Ý j , k

jsN ks11

Ž r .Ž . Ž .Letting c [ y 0 , r s 0, 1, . . . , we recover the difference Eq. 6.2 . It isr
easily verifiable that we are within the conditions of Lemma 3, therefore

� 4̀ Ž .the sequence c obeys the inequalities 6.3 . Therefore it readilyr rs0
follows that

` cr ry z s z , z g C,Ž . Ý r !rs0

Ž .is an entire function. Its order r y can be determined easily by the
classical formula

r log r
r y s lim supŽ .

< <log r !y log crª` r

w x Ž . Ž .8 . Because of 6.3 , it follows at once that r y s 0. According to the
Phragmen]Lindelof principle, every entire function of order zero is un-¨
bounded along any ray approaching `, and this completes the proof.

Ž .COROLLARY. Pro¨ided that L ) 1, the trï ial solution y z ' 0 of the
Ž .pantograph equation of the second kind 5.1 is unstable.

ACKNOWLEDGMENTS

The work of the first author is partially supported by a grant from the Israeli Academy of
Sciences and Humanities. This paper has been written during the second author’s visit to
Departamento de Matematica Aplicada y Computacion, Universidad de Valladolid, as an´ ´
IBERDROLA Visiting Professor. An initial draft of the paper has been read by Yunkang Liu
Ž .Cambridge , who has offered a number of constructive remarks.

REFERENCES

Ž .1. R. Adams, On the linear ordinary q-difference equation, Ann. of Math. 30 1929 ,
195]205.

2. P. J. Davis, ‘‘Circulant Matrices,’’ Wiley, New York, 1979.
3. G. Derfel, On the existence of analytic and almost-periodic solutions of functional-dif-

Ž .ferential equations with linearly transformed arguments, Trans. Tbilisi Unï . 1977 ,
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