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Abstract In this note, we introduce a fuzzy method for producing family of univariate and multivariate
skew-elliptical distributions based on fuzzy conditional events.We illustrate special cases of interest, such
as skew-normal distribution. Furthermore, we use the idea of fuzzy events for calculating tail conditional
expectations for elliptical and skew-elliptical distributions.
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1. Introduction

The class of elliptically-contoured distributions (or elliptical
distributions, for short) provides a generalization of the
multivariate normal distributions. This class contains many
non-normal multivariate distributions such as the multivariate
Student-t , Cauchy, logistic, Laplace and symmetric stable.
Skewed distributions have recently received a great deal of
attention in the literature, since many data encountered in
practice display a great deal of skewness. The class of skew-
normal distributions was given its name by Azzalini [1] in
1985 and generalized to the multivariate case by Azzalini
and DallaValle [2]. Moreover, Azzalini and Capitanio [3]
proposed a generalization of skew Student-t distributions using
a perturbation of symmetry; Arellano-Valle and Genton [4]
discuss various generalizations andmultivariate forms of skew-
normal and skew-elliptical distributions. Also, Wang et al. [5]
studied skew-symmetric distributions.

The class of skew-elliptical distributions can be obtained by
several stochastic mechanisms, for example see Azzalini [6],
Azzalini & Dalla Valle [2], Azzalini & Capitanio [3] and Branco &
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Dey [7]. Our motivation for this note is to provide a mechanism
for producing a family of skew-elliptical distributions via fuzzy
conditional events. In Section 2, we give a brief introduction
on skew-elliptical distributions and the probability measure of
fuzzy events. In Section 3, we show how to construct a skew-
elliptical distribution using fuzzy events. Finally, in Section 4,
we state the idea of fuzzy events for calculating tail conditional
expectations and derive explicit expressions for normal and
skew-normal distributions.

2. Preliminaries

In this section, we review definitions and basic properties
of skew-elliptical distributions as well as the concepts of the
probability measure of fuzzy events [8] that will be used in this
paper. For more comprehensive review and characterization
elliptical distributions see [4,9–11].

2.1. The family of the skew-elliptical distributions

An m-dimensional random vector X is said to have an
elliptical distribution with location vector µ ∈ Rm, dispersion
matrix Σ ∈ Rm×m, density generator h(m), if the probability
density function (pdf) of X has the form:

fECm(x; µ, Σ, h(m)) = |Σ|
−

1
2 h(m)


(x − µ)TΣ−1(x − µ)


, (1)

which is denoted by X ∼ ECm(µ, Σ; h(m)).
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Now, let X ∈ Rm and Y ∈ Rn be two random vectors and
X
Y


∼ ECm+n


γ
δ


,


Γ ∆T

∆ Σ


; h(m+n)


, (2)

where γ ∈ Rm, δ ∈ Rn, Σ ∈ Rn×n, Γ ∈ Rm×m and ∆ ∈ Rn×m.
The random vector U = (Y|X ∈ C), where C = {x ∈ Rm

|

x > 0}, is said to have the unified multivariate skew-elliptical
distribution (Arellano-Vallea & Genton [4]), denoted by U ∼

SECn,m(θ, h(m+n)), where θ = (δ, γ, Σ, Γ , ∆), if the pdf of U
has the form:

fSECn,m

u; θ, h(m+n)

=

fECn

u; δ, Σ, h(n)


FECm


γ + ∆TΣ−1(u − δ); Λ, h(m)

ω(u)


FECm


γ; Γ , h(m)

 ,

u ∈ Rn, (3)

whereΛ = Γ −∆TΣ−1∆ andω(u) = (u−δ)TΣ−1(u−δ). Also,
FECm(γ + ∆TΣ−1(u− δ); Λ, h(m)

ω(x)) and FECm(γ; Γ , h(m)) denote

Pr(Y ∈ C) where Y ∼ ECm(γ + ∆TΣ−1(u − δ), Λ, h(m)

ω(x)) and
Y ∼ ECm(γ, Γ ; h(m)), respectively.

Note that the unified skew-elliptical distributions are re-
duced to the skew-elliptical distributions when γ = 0. The
family of the skew-elliptical distributions consist of many
asymmetric distributions where the skew-normal, the skew-t ,
the skew-logistic and the skew-Laplace are its familiar exam-
ples. In this paper, we only study the normal case, i.e. when:

h(m+n)(u) = (2π)−
(m+n)

2 exp

−

u
2


.

In this case, we obtain the unified multivariate skew-normal
distribution, denoted by U ∼ SNn,m(θ), with the pdf

φSNn,m(u; θ)

=
φn (u; δ, Σ) Φm


γ + ∆TΣ−1 (u − δ) ; Λ


Φm (γ; Γ )

,

u ∈ Rn, (4)

where

- φn(·; δ, Σ) is the pdf of Nn(δ, Σ);
- Φm (·; Λ) is the cumulative density function (cdf) of Nm

(0, Λ);
- −Φm (·; Γ ) is the cdf of Nm (0, Γ ).

We can readily obtain the other skew-elliptical distributions
in Eq. (3), in a manner similar to the above.

2.2. Concepts on fuzzy sets

Probability theory and fuzzy logic are the principal compo-
nents of an array of methodologies for dealing with problems
in which uncertainty and imprecision play important roles. In
this subsection, we have collected together the basic ideas from
fuzzy sets and probability of fuzzy events which are needed in
this paper.

2.2.1. The membership function
The concept of fuzzy set was initiated by Zadeh [12] in 1965.

Let Ω be a universe of discourse and Ã a fuzzy subset of Ω . If,
for all x ∈ Ω , there is a number µÃ(x) ∈ [0, 1] assigned to
represent the membership of x to Ã, then µÃ is called the mem-
bership function of Ã. In many cases, the membership functions
take on specific functional forms like triangular, trapezoidal,
S-functions, Pi-functions, sigmoid, and even Gaussian for con-
venience in representation and computation. Alternately,mem-
bership functions can be estimated from training data, much as
probability density and cumulative distribution functions are
estimated. A good overview of the various interpretations of
membership functions in fuzzy set theory can be found in [13].
The focus in this paper is on skew-membership functions and
cumulative distribution functions (cdfs) that provide a method
for constructing skew distributions in Section 3.

2.2.2. Probability of fuzzy events
Let (Ω, A, P) be a probability space where A is the σ -field

of Borel sets on the sample space Ω and P is a probability
measure over Ω . A fuzzy event in Ω is a fuzzy set Ã in Ω whose
membership function, µÃ : Ω −→ [0, 1], is Borel measurable.
A fuzzy-logical treatment for the probability of classical events
has been widely studied in the last years. In particular, starting
from the basic ideas exposed by Zadeh [8], unconditional and
conditional probability can be studied using various kinds of
modal-fuzzy logics [14]. In the case where we have some
probability distributions on the universe Ω , it seems to be
more natural to view a vague concept as providing additional
information according towhichwemay be able to conditionally
update this distribution. In the context of fuzzy set theory,
definitions for the probability and conditional probability of
fuzzy sets are required. Zadeh [8] defined the probability of a
fuzzy event as the expected value of its membership function.

Let (Ω, A, P) be a probability space and X ∈ Rn be a random
vector in the continuous sample space Ω . If fX is the pdf of X,
then probability of the fuzzy event Ã in Ω is defined by:

P

Ã


=


Ω

µÃ(x)fX(x)dx. (5)

Based on the formula for the probability of a fuzzy set in
Eq. (5), he also proposed the following definition for conditional
distribution of X given the fuzzy event Ã.

Definition 2.1. Let X ∈ Rn be a n-dimensional random vector
in Ω and Ã be a fuzzy event defined over Ω with the member-
ship functionµÃ(x), then the conditional distribution ofX given
the fuzzy constraint Ã is:

f(x|Ã) =
µÃ(x)fX(x)

x∈Ω
µÃ(x)fX(x)dx

, x ∈ Ω. � (6)

Indeed, Definition 2.1 can be viewed as a version of Bayes
theorem, provided we interpret the value of membership
function µÃ as the likelihood of fuzzy event Ã given the value
x [15]. Also see Example 83 of [14].

3. Construction of skew-elliptical distributions via fuzzy
events

Information imprecision and uncertainty exist in real-world
applications. It can be due to human errors in collecting data
or some unexpected situations. Therefore, the fuzzy set theory
naturally provides an appropriate tool in modeling the impre-
cise concepts. Also, sometimes, the vagueness in statistical data
effects to distort the symmetry of the symmetric distributions.
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This leads to the idea of studying skew distribution via fuzzy
data. In this section, we use the concept of the vagueness in data
for constructing skew-elliptical distributions via fuzzy events
for two cases as follows:

(I) Firstly, we suppose the membership function of the fuzzy
event depends on a cdf. This approach is based on the
following general result by Azzalini [1,3,6]:

Lemma 3.1. If gn is a n-dimensional pdf such that gn(x) =

gn(−x) for x ∈ Rn, H is an m-dimensional differentiable cdf such
that the corresponding pdf of H is symmetric about 0 and wk(.)
is a polynomial of order k, such that wk(−x) = −wk(x) for all
x ∈ Rn, then:

fn(x) = 2gn(x)Hm {wk(x)} , (7)

is a pdf on Rn.

Now, let X ∼ ECn(µ, Σ; h(n)) and Ã be a fuzzy event over Ω .
According to the properties of cdf and membership functions,
we can simply show that for α, β ∈ R+

Fα
ECn(x; µ, Σ, h(n)) × Hβ

m (x) , x ∈ Rn, (8)

and:

Fα
ECn


Pk


x1 − µ1

σ1


, . . . , Pk


xn − µn

σn


, h(n)


, (9)

are membership functions for Ã, where Pk(
xi−µi

σi
) is an odd

polynomial of order k, µi is the location parameters, and σ 2
i

is the diagonal entries of Σ for i = 1, . . . , n. For example, in
normal case, X ∼ Nn(µ, Σ), then according to Eq. (9):

Φα
n


λTΣ−

1
2 (x − µ)


, (10)

and:

Φ


λ1


x − µ1

σ1


+ λ2


x − µ1

σ1

3


, (11)

are membership functions, where λT
= (λ1, . . . , λn) ∈ Rn

and the constants µi and σ 2
i are the mean and variance of Xi,

respectively, for i = 1, . . . , n.
Using the following theorem, we can construct the skew-

elliptical distributions via fuzzy events when the membership
functions depend on a cdf.

Theorem 3.2. Let (Ω, A, P) be a probability space, X ∼ ECn

(µ, Σ; h(n)) and Ã be a fuzzy event over Ω with the membership
function Hm(λTΣ−

1
2 (x − µ)), λ ∈ Rn, where Hm is defined

in Lemma 3.1. Then, the conditional random vector, Y = X|Ã,
generates a family of multivariate skew-elliptical distributions.

Proof. Let f(x) and f(x|Ã) denote the pdfs of X and Y = X|Ã,
respectively. Using the notion of probability measure of fuzzy
event given in Definition 2.1 and Eq. (3), we see that f(x|Ã) =

2fECn(x; µ, Σ, h(n))Hm(λTΣ−
1
2 (x − µ)) is a multivariate skew

elliptical distribution, for any fixed x. �

Example 3.3 (Multivariate Skew-Normal Distribution). If X ∼

Nn(µ, Σ) and Ã is a fuzzy event with the membership function
Φ(λTΣ−

1
2 (x − µ)), then by Theorem 3.2, Y = X|Ã has the
multivariate skew-normal distribution [2], denoted by Y ∼

SNn(µ, Σ;λ), with the pdf:

φSN(x; µ, Σ, λ) = 2φn(x; µ, Σ)Φ

λTΣ−

1
2 (x − µ)


. (12)

IfY is the standard variable, i.e.µ = 0, Σ = I, where I ∈ Rn×n is
the identity matrix, then we write Y ∼ SNn(λ). The parameter
λ regulates the skewness where λ = 0 corresponds to the
standard normal case. �

Theorem 3.2 states that if X ∼ ECn(µ, Σ; h(n)), then one can
generate the family of skew-elliptical distributions based on Ã.
In the next theorem, the family of skew-elliptical distributions
is generated based on Ã when the distribution is also skew-
elliptical.

Theorem 3.4. Let (Ω, A, P) be a probability space, X ∼ SECn,m

(δ, γ, Σ, Γ , ∆, h(m+n)) with the cdf FSECn,m and Ã be a fuzzy
event over Ωwithmembership function FSECn,m(x; δ, γ, Σ, Γ , ∆,

h(m+n)). Then, the pdf of Y = X|Ã, belongs to the family of skew-
elliptical distributions.

Proof. By Definition 2.1, we have:

f(x|Ã) ∝ fECn(x; δ, Σ, h(n))Hn,m(x), x ∈Rn,

where Hn,m(x) = FECm(γ + ∆TΣ−1(x − δ); Λ, h(m)

ω(u)) × FSECn,m
(x; δ, γ, Σ, Γ , ∆, h(m+n)). But according to Eq. (8), Hn,m is a
membership function. So, the rest of the proof is similar to the
Theorem 3.2. �

Example 3.5 (Univariate Balakrishnan Skew-Normal Distribu-
tion). Let the random variable X ∼ SN(λ) and Ã be a fuzzy event
with the membership function Φn−1(λx), for n > 1, then by
Theorem 3.4, the random variable Y = X |Ã follows the univari-
ate Balakrishnan skew-normal distribution [16], with the pdf:

φBSN(x; λ) = cn(λ)φ(x)Φn(λx), x, λ ∈ R, (13)

where cn(λ) is the normalizing constant. �

Similarly, other skew elliptical distributions such as skew-
t and skew-Cauchy [3,7] can be represented with appropriate
choice of the membership functions in Theorem 3.2. Also, we
can obtain an extension of the above results, such as the skew
Cauchy-normal and the skew Cauchy-t [17], by suggesting that
one takes fECn and Hm in Theorem 3.2 to belong to different
families.

(II) Secondly, we present some generalizations of the skew-
elliptical distribution via fuzzy event based on skew mem-
bership functions.

Note that any continuous skew-function π can be written
as:

π(x) = H{wk(x)}, x ∈ Rn, (14)

where H : R → [0, 1] is the cdf of a continuous random
variable symmetric around 0 and wk : Rn

→ R is an arbitrary
odd polynomial of order k. By Eq. (14), Yanyuan andGenton [18]
introduced the family of multivariate flexible skew-symmetric
distributions with the pdf:

fn(x) = 2fECn(x − ξ)H{wk(x − ξ)}, (15)

where ξ ∈ Rn, H and wk are given in Eq. (14). Genton and
Loperfido [11] introduced a result similar to Eq. (15), class of
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univariate generalized skew-elliptical distributions, defined by
densities of the form:

h(x) = 2fEC (x)π(x), (16)

where fEC : R → R+ is univariate elliptical pdf and π : R →

[0, 1] is a skew-function such that:

0 ≤ π(x) ≤ 1, π(−x) + π(x) = 1. (17)

Also,Wang et al. [5] introduced the family ofmultivariate skew-
symmetric distributions with the pdf:

hn(x) = 2fECn(x − ξ)π(x − ξ), (18)

where ξ ∈ Rn, fECn : Rn
→ R+ is multivariate elliptical pdf and

π : Rn
→ [0, 1] is a skew-function with given properties in

Eq. (17).
The following theorem can be used for constructing

generalized skew-elliptical distributions like skew-symmetric
and flexible skew-symmetric distributions via fuzzy events.

Theorem 3.6. Let (Ω, A, P) be a probability space, the random
vector X ∼ En(0, Σ; h(n)) and Ã be a fuzzy event over Ω with
the skew-membership function µÃ(x) = π(x) defined in Eq. (17).
Then, the conditional random vector X|Ã, has a generalized skew-
elliptical distribution.

Proof. The result can be easily obtained using Definition 2.1
and Eq. (15). �

Example 3.7 (Flexible Generalized Skew-NormalDistribution). Let
the random vector X = (X1, X2)

T
∼ N2(0, I), where I ∈ R2×2 is

the identity matrix and Ã is a fuzzy event. By Theorem 3.6 and
Eq. (9):

f (x1) = 2φ(x1)Φ(α1x1 + β1x31), (19)

and:

f(x1, x2) = 2φ2(x1, x2)Φ

α1x1 + α2x2 + β1x31

+ β2x32 + β3x21x2 + β4x1x22

, (20)

can be the pdfs [10] for the flexible generalized skew-normal
random variable Y = X1|Ã and the random vector Z = X|Ã,
respectively. �

4. The tail conditional expectation with fuzzy conditions

A risk measure is a mapping from random variables
representing the risks to the real line. Its purpose is to give
a single value for the degree of risk or uncertainty associated
with the random variables. Examples of such risk measures
are the standard deviation and the quantile of a distribution,
also called Value-at-Risk (VaR). As one of the most commonly
used risk measures,VaR suffers serious deficiencies if the losses
are not normally distributed, Artzner et al. [19] introduced the
notion of coherent riskmeasure, i.e. a riskmeasurewhich fulfills
the following properties: monotonicity, subadditivity, positive
homogeneity and translation invariance. They proved that the
VaR is not coherent. A coherent alternative risk measure is the
Tail Conditional Expectation (TCE).

Let the random variable X be the amount of claims on an
insurance portfolio or the loss on an investment portfolio. The
conditional expectation of X given that X > xq, is denoted by:

TCEX (xq) = E(X |X > xq), (21)
is called the tail conditional expectation of X at xq, where xq is
the qth quantile of the distribution of X , for 0 < q < 1. If FX (x)
is cdf of the random variable X , then xq is defined as:

xq = inf (x|FX (x) ≥ q) . (22)

So, the TCE risk measure is the conditional expectation of the
random variable X given that X exceeds a specified quantile.
Panjer [20] developed the TCE for the normal family, while
Landsman and Valdez [21] deduced expressions for this risk
measure for the class of elliptical distributions. Also Vernic [22]
extended the TCE for the skew-normal distributions. In this
section, we extend TCE formulas for elliptical and skew-
elliptical distributions via fuzzy events. In particular, we obtain
new TCE formulas for normal and skew-nomal distributions.

Wewill now turn our attention to TCEof the randomvariable
X when the conditional event in Eq. (21), i.e. A = {X > xq} is
fuzzy.

Remark 4.1. Let the random variable X has a elliptical or skew-
elliptical distribution and Ã is a fuzzy event, denoted by Ã =

{X % xq}, then the distribution Y = X |Ã can be skew-elliptical.
So we can find TCE formulas for elliptical and skew-elliptical
distributions via fuzzy events, according to Theorems 3.2, 3.4
and 3.6

Example 4.2 (TCE for Normal Distribution). We first recall the
result obtained by Panjer [20], for X ∼ N(µ, σ 2), i.e.:

TCEX (xq) = µ +
φ(zq)

1 − Φ(zq)
σ , (23)

where zq = (xq − µ)σ−1. Now, let H(x) =
x−xq+a
a+b is the cdf

of a uniform random variable on the interval [xq − a, xq + b],
where a, b ∈ R+. According to Definition 2.1 and Theorem 3.2,
if Ã = {X % xq} is a fuzzy event with the membership function:

µÃ(x) =


0 x < xq − a
x − xq + a

a + b
xq − a ≤ x < xq + b

1 x ≥ xq + b

, x ∈ R, (24)

then, the pdf of the random variable Y = X |Ã is:

f (x|Ã)

=
1
α


0 x < xq − a
x − xq + a

a + b


φ

x; µ, σ 2 xq − a ≤ x < xq + b,

φ(x; µ, σ 2) x ≥ xq + b

x ∈ R. (25)

According to properties of pdf, the normalizing constant α is:

α =
σ

a + b
(φ(υ1) − φ(υ2)) +

συ1

a + b
(Φ(υ1) − Φ(υ2))

+ Φ(−υ2),

where υ1 =
xq−a−µ

σ
and υ2 =

xq+b−µ

σ
. So the fuzzy TCE of Y is

defined as:

TCEY (xq) =
1
α

 xq+b

xq−a
x

x − xq + a

a + b


φ(x; µ, σ 2)dx

+


+∞

xq+b
xφ(x; µ, σ 2)dx

 .
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Upon integrating by parts and after some simple algebraic
calculations, TCE of the random variable Y is obtained as:

TCEY (xq) =
1
α


σ 2

a + b
(υ1φ(υ1) − υ2φ(υ2))

+
σ(µ − συ1)

a + b
(φ(υ1) − φ(υ2))

−
σ(σ − µυ1)

a + b
(Φ(υ1) − Φ(υ2))

+ σφ(υ2) + µΦ(−υ2)


. � (26)

Example 4.3. Let the daily profit of a company in a particular
industry (X), is normally distributed with a mean of 1300$ and
a standard deviation of 250$. We want to find the expected
value of X , given that this profit already has been defined
approximately more than 1190$ with themembership function
(24), when a = b = 1.We know that in this normal distribution
1190 is the 33th quantile of the distribution ofX . Thus according
to Eq. (26), we have

E(X |X % 1190) = TCEX (1190) = 1435.2$,

whereas the value of TCE for crisp condition is 1435.1$. Table 1
shows the values of TCE for different quantiles for fuzzy and
crisp conditions in normal distribution with mean 1300$ and
standard deviation 250$.

Example 4.4 (TCE for Skew-Normal Distribution). Let X ∼

SN(λ), λ ∈ R, with cdf ΦSN. Vernic [22] obtained TCE of X as:

TCEX (xq) =
2

1 − ΦSN(xq; λ)


φ

xq

Φ


γ

1 − γ 2
xq



+
γ

√
2π

Φ


−

1
1 − γ 2

xq


, (27)

where γ =
λ√
1+λ2

. Now, if Ã = {X % xq} be a fuzzy event with

the given membership function in Eq. (24), we can proceed,
similar to Example 4.2, to derive explicit expressions for the pdf
of Y = X |Ã, as:

f (x|Ã)

=
1
β


0 x < xq − a
x − xq + a

a + b


φSN(x; λ) xq − a ≤ x < xq + b

φSN(x; λ) x ≥ xq + b

,

x ∈ R, (28)

with:

β =


1 +

1
a + b

(φSN(ω1; λ) − φSN(ω2; λ))

+
2λ

(a + b)

2π(1 + λ2)

(Φ(ω1) − Φ(ω2))

+
ω1

a + b
(ΦSN(ω1; λ) − ΦSN(ω2; λ)) − ΦSN(ω2; λ)


,

whereω1 = xq −a andω2 = xq +b. Similarly, upon integrating
by parts and some simple algebraic calculations, TCE of the
Table 1: Some of values of TCE for N (1300, 2502).

q xq TCE (crisp) TCE (fuzzy, a = b = 1)

0.0007 500 1300.6 1290
0.036 850 1320.5 1309.3
0.330 1190 1435.1 1435.2
0.421 1250 1468.8 1470.2
0.500 1300 1499.5 1499.5
0.788 1500 1641.8 1641.5
0.990 1890 1973.7 2000

skew-normal distribution is:

TCEY (xq) =
1
β


1 +

1
a + b

(ω1φSN(ω1; λ)

− ω2φSN(ω2; λ)) −
1

a + b
(ΦSN(ω1; λ))

− (1 − a − b)ΦSN(ω2; λ)

+
2

(a + b)

2π(1 + λ2)


λ(Φ(ω1) − Φ(ω2))

−
ω1

√
1 + λ2

(φ(ω1) − φ(ω2))


. � (29)

Results as those in Examples 4.2 and 4.4 can be found
for other elliptical and skew-elliptical distributions via fuzzy
events. These results can be used by researcher in portfolio
selection problem. That is how to determine an optimal
portfolio which guarantees a maximal profit, the capital
allocation and computing risk measure etc.

5. Conclusion

The class of skew-elliptical distributions provides a gener-
alization of the multivariate skew normal distributions. These
distributions canbe obtainedby several stochasticmechanisms.
In this paper, we have proposed a fuzzymechanism for produc-
ing the skew-elliptical distributions. The newmethod is also ef-
ficient for producing every skew distribution.
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